JPH0511184A - Large-diameter variable power lens - Google Patents

Large-diameter variable power lens

Info

Publication number
JPH0511184A
JPH0511184A JP11365291A JP11365291A JPH0511184A JP H0511184 A JPH0511184 A JP H0511184A JP 11365291 A JP11365291 A JP 11365291A JP 11365291 A JP11365291 A JP 11365291A JP H0511184 A JPH0511184 A JP H0511184A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
object side
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11365291A
Other languages
Japanese (ja)
Inventor
Katsuhiro Takada
勝啓 高田
Hirobumi Tsuchida
博文 槌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11365291A priority Critical patent/JPH0511184A/en
Publication of JPH0511184A publication Critical patent/JPH0511184A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the variable power lens which has short overall length by composing the lens of two lens groups and arranging a negative lens which has a concave surface on an object side in the 2nd positive lens group most closely to the object side. CONSTITUTION:This large-diameter variable power lens consists of a, 1st lens group which has positive refracting power and a 2nd lens group which has positive refracting power in order from the object side. The lens system which is varied in power by varying the interval between both the lens groups and forms an image by single-time image formation has either of the 1st and 2nd lens group composed of at least one positive lens and at least one negative lens. The negative lens which has the concave surface on the object side is arranged as the lens which is closest to the object side in the 2nd lens group and conditions shown by inequalities I are satisfied. Here, phiW is the power of the whole system at the wide-angle end and phi1N and phi2N are the sums of power of the negative lenses included in the 1st and 2nd lens groups.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラ等に用いられる
大口径変倍レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large aperture variable magnification lens used in cameras and the like.

【0002】[0002]

【従来の技術】銀塩カメラ等で用いられるズームレンズ
として、物体側より順に負のレンズ群と正のレンズ群か
らなるレンズ系もしくは正のレンズ群と負のレンズ群か
ら成るレンズ系の2群ズームレンズ、正のレンズ群,負
のレンズ群,負のレンズ群,正のレンズ群もしくは正の
レンズ群,負のレンズ群,正のレンズ群,正のレンズ群
よりなる4群ズームレンズが良く知られている。これら
の従来のズームレンズはFナンバーが2.8よりも大で
レンズ系が暗いという欠点を有している。
2. Description of the Related Art As a zoom lens used in a silver-salt camera or the like, a lens system including a negative lens group and a positive lens group or a lens system including a positive lens group and a negative lens group in order from the object side. Zoom lens, positive lens group, negative lens group, negative lens group, positive lens group or positive lens group, negative lens group, positive lens group, 4-group zoom lens consisting of positive lens group Are known. These conventional zoom lenses have a drawback that the F number is larger than 2.8 and the lens system is dark.

【0003】また、ビデオカメラ用のズームレンズの中
には、Fナンバーが1.2の明るいレンズ系もある。し
かしこれらズームレンズは、焦点距離に比べて全長が極
端に長いと云う欠点がある。
Further, among zoom lenses for video cameras, there is a bright lens system having an F number of 1.2. However, these zoom lenses have a drawback that the total length is extremely longer than the focal length.

【0004】また前記構成の4群ズームレンズは、基本
的にはマスターレンズの前にアフォーカルコンバーター
が付いている構成であるため、レンズ系の全長が焦点距
離に比べて極端に長くなる。例えばビデオカメラ用の4
群ズームレンズは、ワイド端での望遠比が20程度であ
り又テレ端の望遠比が2程度と非常に長い。
Further, since the four-group zoom lens having the above-mentioned structure is basically composed of an afocal converter in front of the master lens, the total length of the lens system becomes extremely longer than the focal length. 4 for video cameras, for example
The zoom ratio of the group zoom lens is about 20 at the wide end and about 2 at the tele end, which is very long.

【0005】また前記の負,正の2群ズームレンズも、
パワー配置がレトロフォーカスタイプになるので、ワイ
ド端での望遠比が3程度、テレ端での望遠比が1.5程
度でレンズ系の全長が非常に長い。
The above-mentioned negative and positive two-group zoom lens also includes
Since the power arrangement is a retrofocus type, the telephoto ratio at the wide end is about 3, the telephoto ratio at the tele end is about 1.5, and the total length of the lens system is very long.

【0006】更に正,負の2群ズームレンズは、レンズ
系の全長は短いが像側にパワーの強い負のレンズ群があ
るためにFナンバーが大になる。例えば銀塩コンパクト
カメラ用ズームレンズでは、ワイド端でのFナンバーが
4程度、テレ端でのFナンバーが6程度と非常に暗い。
更にこのタイプのレンズ系は、バックフォーカスが短く
なる欠点もある。
Further, in the positive and negative two-group zoom lens, the total length of the lens system is short, but the negative lens group having a strong power on the image side has a large F number. For example, in a zoom lens for a silver salt compact camera, the F number at the wide end is about 4, and the F number at the tele end is about 6, which is very dark.
Further, this type of lens system has a drawback that the back focus becomes short.

【0007】上記の欠点を解消するために、物体側より
順に正の第1レンズ群と正の第2レンズ群の2群ズーム
レンズが考えられる。このズームレンズは、第1レンズ
群と第2レンズ群の間で1度結像させた後に2度目に結
像させた像を実際の像とするタイプと、1回の結像で像
を得るタイプとがある。
In order to solve the above drawbacks, a two-group zoom lens including a positive first lens group and a positive second lens group in order from the object side can be considered. This zoom lens is of a type in which an image is formed between the first lens group and the second lens group once and then the second image is formed, and an image is obtained by forming the image once. There is a type.

【0008】前者のタイプは、地上望遠鏡のレンズ系と
して知られている。このレンズ系は、大きな変倍比が得
られるが二つのレンズ群の間で1度結像するためにレン
ズ系の全長が極端に長くなる欠点がある。
The former type is known as a terrestrial telescope lens system. This lens system provides a large zoom ratio, but has the drawback that the total length of the lens system becomes extremely long because the image is formed once between the two lens groups.

【0009】後者のタイプのレンズ系の例としては、特
開昭58−184917号公報に記載されているズーム
レンズや、特開昭61−289316号公報に記載され
ているレンズ系がある。
Examples of the latter type of lens system include a zoom lens disclosed in Japanese Patent Application Laid-Open No. 58-184917 and a lens system disclosed in Japanese Patent Application Laid-Open No. 61-289316.

【0010】特開昭58−184917号に記載された
レンズ系は、バックフォーカスを短くしてコンパクトに
したカメラ用レンズ系であるが、一眼レフカメラ用のよ
うにバックフォーカスを大きくとる必要があるレンズ系
としては使用出来ず、又Fナンバーが3.5の暗いもの
である。またペッツバール和が極めて大きく、そのため
に像面が大きく物体側に湾曲するという欠点がある。
The lens system described in Japanese Unexamined Patent Publication No. Sho 58-184917 is a lens system for a camera in which the back focus is shortened to be compact, but it is necessary to have a large back focus as in a single lens reflex camera. It cannot be used as a lens system, and it has a dark F number of 3.5. In addition, the Petzval sum is extremely large, so that there is a drawback that the image plane is large and is curved toward the object side.

【0011】また特開昭61−289316号公報に開
示されているレンズ系は、等倍付近で縮小,拡大を行な
い、かつ物体面と像面を定位置に保つことを目的とした
レンズ系で、、カメラレンズのように任意の位置の物体
を結像するために用いられるレンズ系としては使用し得
ない。
The lens system disclosed in Japanese Unexamined Patent Publication (Kokai) No. 61-289316 is a lens system for reducing and enlarging near the same magnification and for keeping the object plane and the image plane at fixed positions. , Cannot be used as a lens system used for imaging an object at an arbitrary position like a camera lens.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、Fナ
ンバーが1.4〜2程度の明るいバックフォーカスが長
くしかも全長の短い変倍レンズを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a variable magnification lens having an F number of about 1.4 to 2 and a long bright back focus and a short total length.

【0013】[0013]

【課題を解決するための手段】本発明の大口径変倍レン
ズは、物体側より順に正の屈折力を持つ第1レンズ群と
正の屈折力を持つ第2レンズ群とよりなり、両レンズ群
の間の間隔を変化させることにより変倍を行なう1回結
像により像を形成するレンズ系で、第1レンズ群,第2
レンズ群共に少なくとも1枚の正レンズと少なくとも1
枚の負レンズとからなり、第2レンズ群の最も物体側の
レンズを凹面を物体側に向けた負レンズを配置し、更に
次の条件(1),(2)を満足することを特徴とするも
のである。 (1)−2.0<φ2N/ φw <−0.6 (2)−4.0<φ1N/ φw <−2.4 ただしφw はワイド端における全系のパワー、φ1N,φ
2Nは夫々第1レンズ群および第2レンズ群に含まれる負
レンズのパワーの和である。
A large aperture variable magnification lens of the present invention comprises a first lens group having a positive refractive power and a second lens group having a positive refractive power in order from the object side. A lens system for forming an image by one-time image formation in which magnification is changed by changing an interval between the first lens group and the second lens group.
At least one positive lens and at least one in each lens group
And a negative lens having a concave surface facing the object side, which is the most object side lens of the second lens group, and further satisfies the following conditions (1) and (2): To do. (1) -2.0 <φ2N / φw <-0.6 (2) -4.0 <φ1N / φw <-2.4 where φw is the power of the entire system at the wide end, φ1N, φ
2N is the sum of the powers of the negative lenses included in the first lens group and the second lens group, respectively.

【0014】前述のように変倍レンズを二つのレンズ群
で構成する場合、負のレンズ群,正のレンズ群で構成す
るとレンズ系の全長が長くなり、又正のレンズ群,負の
レンズ群の構成とするとレンズ系のバックフォーカスが
短くなる。そのため本発明では、正のレンズ群,正のレ
ンズ群で構成し、レンズ系の全長が短く、ある程度のバ
ックフォーカスが確保できるようにした。この点の概要
を示したのが図25である。これら図のうち(A)は、
正の1群のみで構成したもので、(B)は負正の2群、
(C)は正負の2群、(D)は正正の2群で構成したも
のである。
When the variable power lens is composed of two lens groups as described above, if it is composed of a negative lens group and a positive lens group, the total length of the lens system becomes long, and the positive lens group and the negative lens group are also formed. With this configuration, the back focus of the lens system becomes short. Therefore, in the present invention, the positive lens group and the positive lens group are used, and the total length of the lens system is short so that a certain degree of back focus can be secured. FIG. 25 shows an outline of this point. (A) of these figures
It is composed of only one positive group, and (B) is two negative groups,
(C) is composed of two groups of positive and negative, and (D) is composed of two groups of positive and positive.

【0015】本発明は、この図25の(D)に示すよう
な全体を正のレンズ群と正のレンズ群との2群にて構成
し、前記のようにレンズ系の全長が短くある程度長いバ
ックフォ−カスを確保できるようにした。更に前記のよ
うな構成のズームレンズにすることによって各レンズ群
のパワーを小さくでき大口径化が可能になる。
In the present invention, the entire structure as shown in FIG. 25D is composed of two groups, a positive lens group and a positive lens group, and as described above, the total length of the lens system is short and long to some extent. The back focus can be secured. Further, by using the zoom lens having the above-mentioned configuration, the power of each lens group can be reduced and the aperture can be increased.

【0016】このような正,正の二つのレンズ群からな
る2群ズームレンズは、二つのレンズ群の間隔を変化さ
せたときの焦点距離の変化量が小さく、変倍比を大にす
るためには二つのレンズ群の間隔の変化量を大にしなけ
ればならず、テレ端でバックフォーカスが短くなる。こ
れを防ぐために第1レンズ群を射出する軸上光線高を高
くしようとすると第1レンズ群のレンズ径が大になり好
ましくない。それと同時に第1レンズ群で発生する軸上
収差も大になるので、収差補正のために多くのレンズが
必要になりレンズ系が大型にならざるを得ない。
In such a two-group zoom lens composed of two positive and positive lens groups, the amount of change in the focal length when the distance between the two lens groups is changed is small and the zoom ratio is large. Therefore, the amount of change in the distance between the two lens groups must be large, and the back focus becomes short at the tele end. If it is attempted to increase the axial ray height that exits the first lens group in order to prevent this, the lens diameter of the first lens group becomes large, which is not preferable. At the same time, since the axial aberration generated in the first lens group also becomes large, many lenses are required for aberration correction, and the lens system must be large.

【0017】本発明は、図26に示すように、第2レン
ズ群を物体側から順に負レンズと正レンズのレンズ構成
としていわゆるレトロフォーカスのパワー配置にして第
2レンズ群の後側主点位置を像面に近づけこれによって
適度な変倍比を有しながらバックフォーカスを確保する
ようにした。この第2レンズ群の負レンズと正レンズは
適宜な間隔をあけてもよく、又接合レンズにしてもよ
い。更にバックフォーカスの確保を効果的に行なうため
に設けたのが条件(1)である。
According to the present invention, as shown in FIG. 26, the second lens group has a lens arrangement of a negative lens and a positive lens in order from the object side, so-called retrofocus power arrangement is adopted, and the rear principal point position of the second lens group. Is brought close to the image plane, and thereby the back focus is secured while having an appropriate zoom ratio. The negative lens and the positive lens of the second lens group may be appropriately spaced, or may be a cemented lens. Further, the condition (1) is provided in order to effectively secure the back focus.

【0018】この条件(1)は、第2レンズ群をレトロ
フォーカスのパワー配置にした時のパワー配分を規定し
たものである。条件(1)の下限を越えると第2レンズ
群に含まれる各レンズのパワーが強くなりすぎて収差の
発生量が大になり好ましくない。又条件(1)の上限を
越えると第2レンズ群の負のパワーが不足し、十分なバ
ックフォーカスを確保することが困難になる。またこの
効果を十分に発揮し得るようにするためには、上記の負
のパワーを物体側に近づけることが好ましく、第2レン
ズ群の最も物体側のレンズとして物体側に凹面を向けた
負レンズを配置することが望ましい。
The condition (1) defines the power distribution when the second lens group is arranged in the retrofocus power arrangement. When the value goes below the lower limit of the condition (1), the power of each lens included in the second lens unit becomes too strong, and the amount of aberration is increased, which is not preferable. If the upper limit of the condition (1) is exceeded, the negative power of the second lens group will be insufficient, and it will be difficult to secure a sufficient back focus. Further, in order to sufficiently exert this effect, it is preferable to bring the negative power close to the object side, and a negative lens having a concave surface facing the object side as the most object side lens of the second lens group. It is desirable to arrange.

【0019】又本発明のレンズ系は、正,正の二つのレ
ンズ群より構成するため、ペッツバール和が増大し、像
面が物体側へ強く湾曲する傾向が強い。これを防ぐため
に両レンズ群共に負レンズのパワーを強くする必要があ
る。第2レンズ群は、バックフォーカスを確保すること
と収差を良好に補正するためとにより条件(1)を満足
する必要がある。そのため第1レンズ群中の負レンズを
前記条件(2)を満足するようにする必要がある。
Further, since the lens system of the present invention is composed of two positive and positive lens groups, the Petzval sum increases, and the image plane has a strong tendency to strongly curve toward the object side. In order to prevent this, it is necessary to increase the power of the negative lens in both lens groups. The second lens group needs to satisfy the condition (1) in order to secure the back focus and to correct the aberration favorably. Therefore, the negative lens in the first lens group needs to satisfy the above condition (2).

【0020】条件(2)の下限を越えると第1レンズ群
に含まれる各レンズのパワーが強くなりすぎて発生する
収差が増大し好ましくない。条件(2)の上限を越える
と第1レンズ群の負のパワーが不足し、像面を平坦にす
ることが困難になる。
When the value goes below the lower limit of the condition (2), the power of each lens included in the first lens unit becomes too strong, and the aberrations produced increase, which is not preferable. When the value exceeds the upper limit of the condition (2), the negative power of the first lens group becomes insufficient, and it becomes difficult to flatten the image surface.

【0021】以上述べた本発明の変倍レンズは、更に次
の条件(3),(4)を満足することが好ましい。 (3)0.5<β2 <0.8 (4)0.6<f1/f2 <1.5 ただしβ2 はワイド端での第2レンズ群の結像倍率、f
1 ,f2は夫々第1レンズ群および第2レンズ群の焦点
距離である。
The variable power lens of the present invention described above preferably further satisfies the following conditions (3) and (4). (3) 0.5 <β2 <0.8 (4) 0.6 <f1 / f2 <1.5 where β2 is the imaging magnification of the second lens group at the wide end, f
1 and f2 are focal lengths of the first lens group and the second lens group, respectively.

【0022】条件(3)は、レンズ系の明るさを損なう
ことなく又レンズ系の大型化を招くことなしにバックフ
ォーカスを確保するための条件である。
The condition (3) is a condition for ensuring the back focus without impairing the brightness of the lens system and without increasing the size of the lens system.

【0023】条件(3)の下限を越えると、第1レンズ
群の屈折力が小さくなりすぎるため第2レンズ群の正の
屈折力を大きくしなければならず、明るさを確保する上
では有利であるが、バックフォーカスを確保しようとす
るとテレ端での第1レンズ群と第2レンズ群との主点間
隔が大になり、レンズ系が大型になる。又第1レンズ群
の正の屈折力が小さいと、第1レンズ群でフォーカシン
グを行なう場合には、レンズ群の繰り出し量が大にな
り、画面周辺で暗くなったり像のけられが生じやすくな
る。逆に条件(3)の上限を越えると、第1レンズ群の
屈折力が大になりすぎ、バックフォーカスを確保しよう
とするとワイド端での第1レンズ群と第2レンズ群との
間隔が小さくなりすぎて両レンズ群が衝突するおそれが
ある。又第2レンズ群の正の屈折力が小さくなるため明
るさを確保することが困難になり、第1レンズ群で十分
な明るさを得るようにしなければならず、第1レンズ群
で発生する軸上収差が増大し補正が困難になる。
When the value goes below the lower limit of the condition (3), the refractive power of the first lens group becomes too small, so that the positive refractive power of the second lens group must be increased, which is advantageous for ensuring brightness. However, in order to secure the back focus, the distance between the principal points of the first lens group and the second lens group at the telephoto end becomes large, and the lens system becomes large. When the positive refractive power of the first lens group is small, the amount of extension of the lens group becomes large when focusing is performed by the first lens group, and it becomes easy to darken or blur the image around the screen. .. On the contrary, if the upper limit of the condition (3) is exceeded, the refracting power of the first lens group becomes too large, and if the back focus is to be secured, the distance between the first lens group and the second lens group at the wide end becomes small. There is a risk that both lens groups may collide with each other. Further, since the positive refractive power of the second lens group becomes small, it becomes difficult to secure the brightness, and it is necessary to obtain sufficient brightness in the first lens group, which occurs in the first lens group. Axial aberration increases and correction becomes difficult.

【0024】条件(4)は、第1レンズ群と第2レンズ
群との移動量を規定するために設けた条件である。条件
(3)を満足しても条件(4)の下限を越えると第1レ
ンズ群と第2レンズ群との間隔を小さくしなければなら
ず、ワイド端において第1レンズ群と第2レンズ群とが
衝突するおそれが増大し好ましくない。又条件(4)の
上限を越えると第1レンズ群と第2レンズ群との間隔を
大にしなければならず、テレ端でのバックフォーカスが
確保できなくなる。このように第1レンズ群と第2レン
ズ群との間隔を大きくした場合、レンズ系が大型になり
好ましくない。
The condition (4) is a condition provided for defining the amount of movement of the first lens group and the second lens group. Even if the condition (3) is satisfied, if the lower limit of the condition (4) is exceeded, the distance between the first lens group and the second lens group must be reduced, and the first lens group and the second lens group at the wide end. This is not preferable because the possibility of collision with and increases. If the upper limit of the condition (4) is exceeded, the distance between the first lens group and the second lens group must be increased, and the back focus at the telephoto end cannot be secured. When the distance between the first lens group and the second lens group is increased in this way, the lens system becomes large, which is not preferable.

【0025】変倍レンズにおけるフォーカシングは、一
般に最も物体側のレンズ群を移動させて行なう。このよ
うな最も物体側のレンズ群によるフォーカシングは、変
倍を行なってもフォーカシングレンズ群の移動量が変化
しないことが特長である。またフォーカシングによる収
差変動を小さくするためには、フォーカシングレンズ群
単独で収差補正がなされていることが好ましい。特に軸
外収差の変動を小さくするためには、第1レンズ群中に
絞りを配置することが望ましく、第1レンズ群中に絞り
がない場合は、変倍によって第1レンズ群と絞りの位置
関係が崩れ、軸外光束の進行が一定せず、軸外収差の変
動が大きくなり好ましくない。さらに本発明のような大
口径なレンズ系は、球面収差が良好に補正されているこ
とが不可欠であり、第1レンズ群として、いわゆるガウ
スタイプに代表されるレンズタイプ等が考えられる。
Focusing in a variable power lens is generally performed by moving the lens unit closest to the object side. Focusing by such a lens unit on the most object side is characterized in that the amount of movement of the focusing lens unit does not change even when zooming is performed. Further, in order to reduce the aberration variation due to focusing, it is preferable that aberration is corrected by the focusing lens group alone. Particularly, in order to reduce the fluctuation of the off-axis aberration, it is desirable to dispose a diaphragm in the first lens group. If there is no diaphragm in the first lens group, the positions of the first lens group and the diaphragm may be changed by zooming. The relationship is broken, the progress of the off-axis light flux is not constant, and the variation of the off-axis aberration is large, which is not preferable. Further, in the large-diameter lens system as in the present invention, it is essential that the spherical aberration is properly corrected, and the first lens group may be a lens type represented by a so-called Gauss type.

【0026】第2レンズ群としては、前述の通り負レン
ズと正レンズを順に配置したものが好ましく、そのうち
物体側の負レンズを第1レンズ群中に配置した絞りに対
しアプラナティックに近い構成にすることにより、軸外
収差の発生を小さく抑えることが出来る。したがって前
述の負レンズのように物体側に凹面を向けた構成とする
ことが望ましい。
As the second lens group, it is preferable that a negative lens and a positive lens are arranged in this order as described above. Among them, a negative lens on the object side is close to aplanatic with respect to the diaphragm in the first lens group. By setting, it is possible to suppress the occurrence of off-axis aberrations to be small. Therefore, it is desirable that the concave surface is directed to the object side like the negative lens described above.

【0027】[0027]

【実施例】次に本発明の大口径変倍レンズの各実施利を
示す。 実施例1 f=85〜100mm ,F/2.0,2ω=28.6°〜24.4°,最大像高=21.6 r1 =142.5970 d1 =4.7442 n1 =1.80400 ν1 =46.57 r2 =-505.4362 d2 =0.1000 r3 =49.4465 d3 =7.2168 n2 =1.49700 ν2 =81.61 r4 =121.9876 d4 =0.1500 r5 =43.3357 d5 =8.7907 n3 =1.80440 ν3 =39.58 r6 =35.8983 d6 =5.8200 r7 =-227.8262 d7 =3.4905 n4 =1.69895 ν4 =30.12 r8 =43.0172 d8 =11.0787 r9 =(絞り) d9 =3.6489 r10=-41.0884 d10=2.0000 n5 =1.68893 ν5 =31.08 r11=1373.1758 d11=4.2632 n6 =1.79952 ν6 =42.24 r12=-58.0966 d12=0.1000 r13=604.7779 d13=4.1408 n7 =1.79952 ν7 =42.24 r14=-65.7932 d14=D1(可変) r15=-36.2906 d15=3.2593 n8 =1.67270 ν8 =32.10 r16=-120.1970 d16=6.2935 n9 =1.80400 ν9 =46.57 r17=-43.3347 d17=1.0000 r18=210.9903 d18=2.4962 n10=1.80400 ν10=46.57 r19=-478.6728 f 85 92 100 D1 2.450 18.016 33.145 テレ端でのバックフォーカス=37.99 ,ワイド端での望
遠比=1.50 テレ端での望遠比=1.40 φ1N/ φw =-3.27 ,φ2N/ φw =-1.08 ,β2 =0.7
1,f1/f2 =0.82 実施例2 f=85〜100mm ,F/2.0,2ω=28.6°〜24.4°,最大像高=21.6 r1 =150.3223 d1 =4.2927 n1 =1.78800 ν1 =47.38 r2 =-617.3429 d2 =0.1000 r3 =46.8191 d3 =6.7861 n2 =1.49700 ν2 =81.61 r4 =115.0487 d4 =0.1000 r5 =39.1464 d5 =8.7832 n3 =1.80610 ν3 =40.95 r6 =33.1824 d6 =5.8599 r7 =-615.5743 d7 =2.8253 n4 =1.69895 ν4 =30.12 r8 =39.1095 d8 =7.3314 r9 =(絞り) d9 =3.6129 r10=-41.6681 d10=2.0000 n5 =1.68893 ν5 =31.08 r11=220.1170 d11=4.6216 n6 =1.80610 ν6 =40.95 r12=-64.3681 d12=0.1000 r13=480.3186 d13=4.1440 n7 =1.79500 ν7 =45.29 r14=-67.5313 d14=D1(可変) r15=-38.7361 d15=3.8503 n8 =1.64769 ν8 =31.23 r16=-107.3098 d16=0.9388 r17=-166.2236 d17=5.8935 n9 =1.79500 ν9 =45.29 r18=-49.6256 d18=0.1000 r19=272.0962 d19=2.1902 n10=1.80610 ν10=40.95 r20=-576.6584 f 85 92 100 D1 2.142 17.695 32.816 テレ端でのバックフォーカス=37.99 ,ワイド端での望
遠比=1.43 テレ端での望遠比=1.34 φ1N/ φw =-3.40 ,φ2N/ φw =-0.89 ,β2 =0.7
1,f1/f2 =0.84 実施例3 f=85〜100mm ,F/1.4〜2.0 ,2ω=28.7°〜24.5°,最大像高=21.6 r1 =189.2977 d1 =3.9320 n1 =1.80400 ν1 =46.57 r2 =-1550.3851 d2 =0.1000 r3 =56.5396 d3 =7.7422 n2 =1.49700 ν2 =81.61 r4 =264.8426 d4 =0.1500 r5 =37.2623 d5 =8.4875 n3 =1.83481 ν3 =42.72 r6 =30.8145 d6 =10.6046 r7 =-152.9203 d7 =1.9999 n4 =1.68893 ν4 =31.08 r8 =51.4902 d8 =4.6678 r9 =(絞り) d9 =3.9793 r10=-59.6524 d10=2.0000 n5 =1.68893 ν5 =31.08 r11=132.7298 d11=6.1118 n6 =1.83481 ν6 =42.72 r12=-86.6974 d12=0.1000 r13=357.9774 d13=4.9820 n7 =1.83481 ν7 =42.72 r14=-85.4048 d14=D1(可変) r15=-40.9112 d15=3.5000 n8 =1.69895 ν8 =30.12 r16=-147.7932 d16=11.0000 n9 =1.81554 ν9 =44.36 r17=-49.2805 d17=1.0000 r18=113.0070 d18=6.4773 n10=1.81600 ν10=46.62 r19=1167.2186 f 85 92 100 D1 3.823 17.209 30.214 テレ端でのバックフォーカス=37.99 ,ワイド端での望
遠比=1.56 テレ端での望遠比=1.45 φ1N/ φw =-3.12 ,φ2N/ φw =-1.04 ,β2 =0.6
7,f1/f2 =1.08 実施例4 f=85〜100mm ,F/2.0,2ω=28.6°〜24.4°,最大像高=21.6 r1 =126.2230 d1 =3.2279 n1 =1.78590 ν1 =44.18 r2 =535.5916 d2 =0.1000 r3 =54.4849 d3 =7.0750 n2 =1.48749 ν2 =70.20 r4 =-2590.9382 d4 =0.1500 r5 =41.3012 d5 =8.6994 n3 =1.83400 ν3 =37.16 r6 =37.3647 d6 =5.4839 r7 =-268.6199 d7 =1.2978 n4 =1.68893 ν4 =31.08 r8 =38.1601 d8 =10.1563 r9 =-35.3921 d9 =2.0000 n5 =1.67270 ν5 =32.10 r10=296.5692 d10=5.0994 n6 =1.80610 ν6 =40.95 r11=-55.5978 d11=0.1000 r12=-822.7875 d12=4.0794 n7 =1.80610 ν7 =40.95 r13=-59.6807 d13=0.9999 r14=(絞り) d14=D1(可変) r15=-50.0016 d15=6.9095 n8 =1.62004 ν8 =36.25 r16=202.3209 d16=9.4745 n9 =1.74100 ν9 =52.68 r17=-70.8936 d17=1.0000 r18=262.9146 d18=3.6071 n10=1.78590 ν10=44.18 r19=-196.3231 f 85 92 100 D1 4.385 18.620 32.455 テレ端でのバックフォーカス=38.09 ,ワイド端での望
遠比=1.50 テレ端での望遠比=1.40 φ1N/ φw =-3.5,φ2N/ φw =-1.3,β2 =0.70,f
1/f2 =0.94 実施例5 f=85〜100mm ,F/1.4〜2.0 ,2ω=28.6°〜24.5°,最大像高=21.6 r1 =112.6887 d1 =5.3910 n1 =1.80400 ν1 =46.57 r2 =5399.2834 d2 =0.1000 r3 =57.9913 d3 =5.8728 n2 =1.49700 ν2 =81.61 r4 =146.2029 d4 =0.1500 r5 =39.4010 d5 =7.5798 n3 =1.80400 ν3 =46.57 r6 =39.2357 d6 =5.9675 r7 =117.9968 d7 =2.0000 n4 =1.69895 ν4 =30.12 r8 =31.9985 d8 =12.4675 r9 =-39.3785 d9 =2.0000 n5 =1.68893 ν5 =31.08 r10=-413.2942 d10=5.4519 n6 =1.79952 ν6 =42.24 r11=-87.5989 d11=0.1000 r12=-202.9048 d12=4.8515 n7 =1.80400 ν7 =46.57 r13=-50.4786 d13=1.0049 r14=(絞り) d14=D1(可変) r15=-40.0727 d15=2.5000 n8 =1.59270 ν8 =35.29 r16=130.9024 d16=13.7615 n9 =1.77250 ν9 =49.66 r17=-57.1645 d17=1.0000 r18=172.0253 d18=2.0000 n10=1.53256 ν10=45.91 r19=106.9048 d19=4.8706 n11=1.81554 ν11=44.36 r20=-451.5460 f 85 92 100 D1 6.688 19.057 31.073 テレ端でのバックフォーカス=38.12 ,ワイド端での望
遠比=1.55 テレ端での望遠比=1.46 φ1N/ φw =-2.68 ,φ2N/ φw =-1.81 ,β2 =0.6
0,f1/f2 =1.46 実施例6 f=85〜100mm ,F/2.0,2ω=28.7°〜24.5°,最大像高=21.6 r1 =200.5732 d1 =2.9937 n1 =1.81600 ν1 =46.62 r2 =-1114.6382 d2 =0.1000 r3 =66.3652 d3 =6.6706 n2 =1.49700 ν2 =81.61 r4 =299.9082 d4 =0.1500 r5 =38.4955 d5 =9.0154 n3 =1.80440 ν3 =39.58 r6 =37.0499 d6 =5.3328 r7 =1156.6167 d7 =1.9999 n4 =1.69895 ν4 =30.12 r8 =39.7352 d8 =10.9466 r9 =(絞り) d9 =6.0807 r10=-33.6237 d10=1.9998 n5 =1.68893 ν5 =31.08 r11=-238.0792 d11=3.9757 n6 =1.79952 ν6 =42.24 r12=-49.4466 d12=0.1000 r13=131395.8474 d13=4.1439 n7 =1.79952 ν7 =42.24 r14=-59.6987 d14=D1(可変) r15=-47.7184 d15=3.2575 n8 =1.54869 ν8 =45.55 r16=54.7083 d16=10.2871 n9 =1.72916 ν9 =54.68 r17=-55.5927(非球面) f 85 92 100 D1 1.016 18.793 36.063 非球面係数 P=1,A4 =0.10140 ×10-5 ,A6 =0.23495 ×10
-9 ,A8 =-0.16353×10-12 テレ端でのバックフォーカス=37.99 ,ワイド端での望
遠比=1.50 テレ端での望遠比=1.41 φ1N/ φw =-2.93 ,φ2N/ φw =-1.85 ,β2 =0.7
2,f1/f2 =0.70 実施例1は、図1に示す構成で、物体側から順に正の屈
折力を持つ第1レンズ群と正の屈折力を持つ第2レンズ
群とよりなり、第1レンズ群はいわゆるガウスタイプの
構成で絞りを第4レンズと第5レンズとの間に位置せし
め、絞りの前後で対称に配置して特に軸外収差の発生を
抑えるようにしている。また第2レンズ群は、物体側か
ら順に、凹面を物体側に向けた負のメニスカスレンズと
正レンズとを接合した接合レンズと正レンズとにて構成
した。このように第1レンズ群と第2レンズ群とを構成
することによって、ワイド端からテレ端へかけてのFナ
ンバーが2.0という明るいレンズ系でありながら、充
分なバックフォーカスを確保し、しかもワイド端からテ
レ端ヘかけての望遠比を1.5〜1.4と小さくした変
倍レンズになし得た。実施例2は、図2に示すように、
物体側から順に正の屈折力を持つ第1レンズ群と正の屈
折力を持つ第2レンズ群とよりなり、第1レンズ群は、
実施例1と同様の構成である。又第2レンズ群は、物体
側から順に、物体側に凹面を向けた負のメニスカスレン
ズ、正レンズ、正レンズからなり、接合レンズを用いず
に収差補正上の自由度を大きくした。これによって実施
例1と同じ仕様でありながらワイド端からテレ端にかけ
て望遠比が1.43〜1.34と実施例中で全長の最も
短いレンズ系である。実施例3は、図3に示すレンズ構
成で、物体側から順に正の屈折力を持つ第1レンズ群と
正の屈折力を持つ第2レンズ群とよりなり、各レンズ群
とも実施例1と同様の構成である。しかし実施例1,2
と比較して第2レンズ群の屈折力を大にし、適度なバッ
クフォーカスを確保した時に明るいレンズ系にしやすい
構成にして、ワイド端からテレ端にかけてのレンズ系の
明るさを、Fナンバー1.4〜2.0という単焦点レン
ズとほぼ同等の明るさになっている。実施例4は、図4
に示す構成で、物体側から順に、正の屈折力を持つ第1
レンズ群と、正の屈折力を持つ第2レンズ群とよりな
り、第1レンズ群はいわゆるガウスタイプと呼ばれる構
成である。しかし実施例1,2,3のように第1レンズ
群中に絞りを配置すると絞りの前後で金枠構造が変わ
り、レンズ配列の軸ずれによって性能が劣化する。その
ため特に変倍レンズのようにフォーカシング以外でのレ
ンズ群の移動を必要とする時には、金枠構造の簡純化の
ためにも絞りは移動するレンズ群の端に位置せしめるの
が望ましい。この実施例4では、絞りを第1レンズ群の
最も像側に位置せしめている。又この実施例では、第2
レンズ群を、物体側から順に両凹形状の負レンズと正レ
ンズとを接合した接合レンズと、正レンズとにて構成し
た。実施例5は、図5に示す構成で、物体側から順に、
正の屈折力を持つ第1レンズ群と正の屈折力を持つ第2
レンズ群とよりなり、第1レンズ群は、いわゆるガウス
タイプと呼ばれる構成であり、実施例4と同様に第1レ
ンズ群の最も像側に絞りを位置せしめた。この絞りの位
置のため、実施例1〜3に比較して絞りに関して対称な
配置の点では劣るため軸外収差の補正が十分でなくな
る。この実施例では、第2レンズ群を物体側から順に両
凹形状の負レンズと正レンズとを接合した接合レンズ
と、負のメニスカスレンズと正レンズとを接合した接合
レンズとにより軸外収差の補正を行なっている。そして
ワイド端からテレ端にかけてのFナンバーが1.4〜
2.0という明るいレンズ系になし得た。実施例6は、
図6に示す構成で、物体側から順に、正の屈折力を持つ
第1レンズ群と正の屈折力を持つ第2レンズ群とよりな
り、第1レンズ群はいわゆるガウスタイプで、実施例4
と同様、第1レンズ群の最も像側に絞りを位置せしめて
いる。この実施例6では、第2レンズ群を両凹形状の負
レンズと正レンズとを接合した接合レンズにて構成し、
その最も像側の屈折面を非球面にした。これによって他
の実施例が、第2レンズ群を3枚以上のレンズにて構成
しているのに対して、この実施例では2枚のレンズのみ
で第2レンズ群を構成し、しかも他の実施例と同様の性
能を保持している。この実施例で用いている非球面の形
状は、光軸方向をx軸,光軸と垂直な方向をy軸とする
時、次の式にて表わされる。 ただしrは基準球面の曲率半径、A2iは非球面係数であ
る。
[Embodiments] Next, the respective advantages of the large aperture variable magnification lens of the present invention will be shown. Example 1 f = 85 to 100 mm, F / 2.0, 2ω = 28.6 ° to 24.4 °, maximum image height = 21.6 r1 = 142.5970 d1 = 4.7442 n1 = 1.80400 ν1 = 46.57 r2 = -505.4362 d2 = 0.1000 r3 = 49.4465 d3 = 7.2168 n2 = 1.49700 ν2 = 81.61 r4 = 121.9876 d4 = 0.1500 r5 = 43.3357 d5 = 8.7907 n3 = 1.80440 ν3 = 39.58 r6 = 35.8983 787 d6 = 5.8200 r7 = -227.8262 d7 = 498 = 4905 r9 = (aperture) d9 = 3.6489 r10 = -41.0884 d10 = 2.0000 n5 = 1.68893 ν5 = 31.08 r11 = 1373.1758 d11 = 4.2632 n6 = 1.79952 ν6 = 42.24 r12 = -58.0966 d13 = 0.1000 r13 = 60407779 n7 = 4.17779 n7 = 42.24 r14 = -65.7932 d14 = D1 (variable) r15 = -36.2906 d15 = 3.2593 n8 = 1.67270 ν8 = 32.10 r16 = -120.1970 d16 = 6.2935 n9 = 1.80400 ν9 = 46.57 r17 = -43.3347 d18 = 21.003 1.00 2.4962 n10 = 1.80400 ν10 = 46.57 r19 = -478.6728 f 85 92 100 D1 2.450 18.016 33.145 Back focus at tele end = 37.99, telephoto ratio at wide end = 1.50 Telephoto ratio at tele end = 1.40 φ1N / φw = -3.27, φ2N / φw = -1.08, β2 = 0.7
1, f1 / f2 = 0.82 Example 2 f = 85 to 100 mm, F / 2.0, 2ω = 28.6 ° to 24.4 °, maximum image height = 21.6 r1 = 150.3223 d1 = 4.2927 n1 = 1.78800 v1 = 47.38 r2 = -617.3429 d2 = 0.1000 r3 = 46.8191 d3 = 6.7861 n2 = 1.49700 ν2 = 81.61 r4 = 115.0487 d4 = 0.1000 r5 = 39.1464 d5 = 8.7832 n3 = 1.86010 ν3 = 1.80610 ν3 = 1.83 rd7 = 4.95 = 7. 30.12 r8 = 39.1095 d8 = 7.3314 r9 = (aperture) d9 = 3.6129 r10 = -41.6681 d10 = 2.0000 n5 = 1.68893 ν5 = 31.08 r11 = 220.1170 d11 = 4.6216 n6 = 1.80610 ν6 = 400.186 r12 = -64.395 r12 = -64.3 d13 = 4.1440 n7 = 1.79500 ν7 = 45.29 r14 = -67.5313 d14 = D1 (variable) r15 = -38.7361 d15 = 3.8503 n8 = 1.64769 ν8 = 31.23 r16 = -107.3098 d16 = 0.9388 r17 = -166.2236 n9 = 5.91.79 n9 = 45.29 r18 = -49.6256 d18 = 0.1000 r19 = 272.0962 d19 = 2.1902 n10 = 1.80610 ν10 = 40.95 r20 = -576.6584 f85 92 100 D1 2.142 17.695 32.816 Back focus at tele end = 37.99, telephoto ratio at wide end = 1.43 Tele ratio at tele end = 1.34 φ1N / φw = -3.40, φ2N / φw = -0.89, β2 = 0.7
1, f1 / f2 = 0.84 Example 3 f = 85 to 100 mm, F / 1.4 to 2.0, 2ω = 28.7 ° to 24.5 °, maximum image height = 21.6 r1 = 189.2977 d1 = 3.9320 n1 = 1.80400 ν1 = 46.57 r2 =- 1550.3851 d2 = 0.1000 r3 = 56.5396 d3 = 7.7422 n2 = 1.49700 ν2 = 81.61 r4 = 264.8426 d4 = 0.1500 r5 = 37.2623 d5 = 8.4875 n3 = 1.83481 r6 = 2.93487 = 6348766 = 30.8145 ν4 = 31.08 r8 = 51.4902 d8 = 4.6678 r9 = (aperture) d9 = 3.9793 r10 = -59.6524 d10 = 2.0000 n5 = 1.68893 ν5 = 31.08 r11 = 132.7298 d11 = 6.1118 ns 6 = 1.83481 ν6 = 12-8.72 = 42.72 = 357.9774 d13 = 4.9820 n7 = 1.83481 ν7 = 42.72 r14 = -85.4048 d14 = D1 (variable) r15 = -40.9112 d15 = 3.5000 n8 = 1.69895 ν8 = 30.12 r16 = -147.7932 d16 = 11.0000 = 14.9 9ν = 1.89 49.2805 d17 = 1.0000 r18 = 113.0070 d18 = 6.4773 n10 = 1.81600 ν10 = 46.62 19 = 1167.2186 f 85 92 100 D1 3.823 17.209 30.214 Back focus at tele end = 37.99, telephoto ratio at wide end = 1.56 Telephoto ratio at tele end = 1.45 φ1N / φw = -3.12, φ2N / φw = -1.04, β2 = 0.6
7, f1 / f2 = 1.08 Example 4 f = 85 to 100 mm, F / 2.0, 2ω = 28.6 ° to 24.4 °, maximum image height = 21.6 r1 = 126.2230 d1 = 3.2279 n1 = 1.78590 v1 = 44.18 r2 = 535.5916 d2 = 0.1000 r3 = 54.4849 d3 = 7.0750 n2 = 1.48749 ν2 = 70.20 r4 = -2590.9382 d4 = 0.1500 r5 = 41.3012 d5 = 8.6994 n3 = 1.83400 ν = 31.6647 739 = 77.64 31.08 r8 = 38.1601 d8 = 10.1563 r9 = -35.3921 d9 = 2.0000 n5 = 1.67270 ν5 = 32.10 r10 = 296.5692 d10 = 5.0994 n6 = 1.80610 ν6 = 40.95 r11 = -55.5978 d11 = 00.1000 r7 = 122.7 = 012 875 = 127,000 = 40.95 r13 = -59.6807 d13 = 0.9999 r14 = (aperture) d14 = D1 (variable) r15 = -50.0016 d15 = 6.9095 n8 = 1.62004 ν8 = 36.25 r16 = 202.3209 d16 = 9.4745 n9 = 1.74100 ν9 = 52.68 r17 = 7. = 1.0000 r18 = 262.9146 d18 = 3.6071 n10 = 1.78590 ν10 = 44.18 r19 = -1 96.3231 f 85 92 100 D1 4.385 18.620 32.455 Back focus at tele end = 38.09, telephoto ratio at wide end = 1.50 Telephoto ratio at tele end = 1.40 φ1N / φw = -3.5, φ2N / φw = -1.3, β2 = 0.70, f
1 / f2 = 0.94 Example 5 f = 85 to 100 mm, F / 1.4 to 2.0, 2ω = 28.6 ° to 24.5 °, maximum image height = 21.6 r1 = 1112.6887 d1 = 5.3910 n1 = 1.80400 ν1 = 46.57 r2 = 5399.2834 d2 = 0.1000 r3 = 57.9913 d3 = 5.8728 n2 = 1.49700 ν2 = 81.61 r4 = 146.2029 d4 = 0.1500 r5 = 39.4010 d5 = 7.5798 n3 = 1.80400 ν3 = 98 d = 40.68 = 8.60 = 6.57 = 4. = 31.9985 d8 = 12.4675 r9 = -39.3785 d9 = 2.0000 n5 = 1.68893 ν5 = 31.08 r10 = -413.2942 d10 = 5.4519 n6 = 1.79952 ν6 = 42.24 r11 = -87.59 = d7 = 0.1000 04880 = 90. 46.57 r13 = -50.4786 d13 = 1.0049 r14 = (aperture) d14 = D1 (variable) r15 = -40.0727 d15 = 2.5000 n8 = 1.59270 ν8 = 35.29 r16 = 130.9024 d16 = 13.7615 n9 = 1.77250 ν9 = 49.66 r17 = -57.1 1.0000 r18 = 172.0253 d18 = 2.0000 n10 = 1.53256 ν10 = 45.91 r19 = 10 6.9048 d19 = 4.8706 n11 = 1.81554 ν11 = 44.36 r20 = -451.5460 f 85 92 100 D1 6.688 19.057 31.073 Back focus at tele end = 38.12, telephoto ratio at wide end = 1.55 Tele ratio at tele end = 1.46 φ1N / φw = -2.68, φ2N / φw = -1.81, β2 = 0.6
0, f1 / f2 = 1.46 Example 6 f = 85 to 100 mm, F / 2.0, 2ω = 28.7 ° to 24.5 °, maximum image height = 21.6 r1 = 200.5732 d1 = 2.9937 n1 = 1.81600 v1 = 46.62 r2 = -1114.6382 d2 = 0.1000 r3 = 66.3652 d3 = 6.6706 n2 = 1.49700 ν2 = 81.61 r4 = 299.9082 d4 = 0.1500 r5 = 38.4955 d5 = 9.0154 n3 = 1.80440 ν3 = 1.99 167 = 167 d3 = 49.5 = 167.96 = 167. r8 = 39.7352 d8 = 10.9466 r9 = (aperture) d9 = 6.0807 r10 = -33.6237 d10 = 1.9998 n5 = 1.68893 ν5 = 31.08 r11 = -238.0792 d11 = 3.9757 n6 = 1.79952 ν6 = 42.24 r12 = -40.1466466 d13 = 4.1439 n7 = 1.79952 ν7 = 42.24 r14 = -59.6987 d14 = D1 (variable) r15 = -47.7184 d15 = 3.2575 n8 = 1.48869 ν8 = 45.55 r16 = 54.7083 d16 = 10.2871 n9 = 1.72916 927.6817 ν9 = 54. Spherical surface) f 85 92 100 D1 1.016 18.793 36.063 Aspheric coefficient P = 1, A 4 = 0.10140 × 10 -5 , A6 = 0.23495 × 10
-9 , A8 = -0.16353 × 10 -12 Back focus at tele end = 37.99, Telephoto ratio at wide end = 1.50 Telephoto ratio at tele end = 1.41 φ1N / φw = -2.93, φ2N / φw = -1.85, β2 = 0.7
2, f1 / f2 = 0.70 The first embodiment has the configuration shown in FIG. 1 and includes a first lens group having a positive refractive power and a second lens group having a positive refractive power in order from the object side. The lens group has a so-called Gauss type structure, and a diaphragm is located between the fourth lens and the fifth lens, and symmetrically arranged before and after the diaphragm so that off-axis aberrations are suppressed. The second lens group is composed of, in order from the object side, a cemented lens in which a negative meniscus lens having a concave surface facing the object side and a positive lens are cemented together, and a positive lens. By constructing the first lens group and the second lens group in this way, a sufficient back focus is ensured while being a bright lens system with an F number of 2.0 from the wide end to the tele end. Moreover, a variable magnification lens having a telephoto ratio from the wide end to the tele end as small as 1.5 to 1.4 can be obtained. In Example 2, as shown in FIG.
The first lens group is composed of a first lens group having a positive refractive power and a second lens group having a positive refractive power in order from the object side.
The configuration is the same as that of the first embodiment. The second lens group includes, in order from the object side, a negative meniscus lens having a concave surface facing the object side, a positive lens, and a positive lens, and the degree of freedom in aberration correction is increased without using a cemented lens. As a result, the telephoto ratio is 1.43 to 1.34 from the wide end to the tele end even though the specifications are the same as those of the first embodiment, and the lens system has the shortest overall length in the embodiments. The third embodiment has a lens configuration shown in FIG. 3, and includes a first lens group having a positive refractive power and a second lens group having a positive refractive power in order from the object side, and each lens group is the same as the first embodiment. It has the same configuration. However, Examples 1 and 2
Compared with, the second lens group has a large refracting power, and when a proper back focus is secured, a bright lens system is easily constructed, and the brightness of the lens system from the wide end to the tele end is set to F number 1. The brightness is 4 to 2.0, which is almost the same as that of a single focus lens. Example 4 is shown in FIG.
In the configuration shown in FIG. 1, the first refractive power is positive in order from the object side.
It is composed of a lens group and a second lens group having a positive refractive power, and the first lens group has a so-called Gauss type structure. However, when the diaphragm is arranged in the first lens group as in Examples 1, 2, and 3, the metal frame structure changes before and after the diaphragm, and the performance is deteriorated due to the axis shift of the lens arrangement. Therefore, especially when it is necessary to move the lens group other than focusing, such as in a variable power lens, it is desirable to position the diaphragm at the end of the moving lens group in order to simplify the metal frame structure. In Example 4, the diaphragm is located closest to the image side of the first lens group. Also, in this embodiment, the second
The lens group is composed of a cemented lens in which a biconcave negative lens and a positive lens are cemented in order from the object side, and a positive lens. The fifth embodiment has the configuration shown in FIG.
The first lens group having a positive refractive power and the second lens group having a positive refractive power
The first lens group has a so-called Gauss type configuration, and the diaphragm is located closest to the image side of the first lens group, as in the fourth embodiment. Because of the position of this diaphragm, the arrangement in symmetry with respect to the diaphragm is inferior to that of the first to third embodiments, and the correction of the off-axis aberration becomes insufficient. In this embodiment, an off-axis aberration is caused by a cemented lens in which a biconcave negative lens and a positive lens are cemented in the second lens group in order from the object side, and a cemented lens in which a negative meniscus lens and a positive lens are cemented. We are making corrections. And the F number from the wide end to the tele end is 1.4-
It was possible to achieve a bright lens system of 2.0. Example 6 is
In the configuration shown in FIG. 6, in order from the object side, a first lens group having a positive refractive power and a second lens group having a positive refractive power are provided, and the first lens group is a so-called Gauss type,
Similarly to the above, the diaphragm is located closest to the image side of the first lens group. In Example 6, the second lens group is configured by a cemented lens in which a biconcave negative lens and a positive lens are cemented,
The most image-side refracting surface is an aspherical surface. As a result, in the other examples, the second lens group is made up of three or more lenses, whereas in this example, the second lens group is made up of only two lenses. It retains the same performance as the embodiment. The shape of the aspherical surface used in this embodiment is expressed by the following equation, where the optical axis direction is the x-axis and the direction perpendicular to the optical axis is the y-axis. However, r is the radius of curvature of the reference spherical surface, and A 2i is an aspherical surface coefficient.

【0028】[0028]

【発明の効果】本発明によれば、Fナンバーが1.4〜
2程度と明るくかつ全長の短い変倍レンズを達成し得
る。
According to the present invention, the F number is 1.4 to
It is possible to achieve a variable magnification lens that is as bright as about 2 and has a short overall length.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の断面図。FIG. 1 is a sectional view of a first embodiment.

【図2】実施例2の断面図。FIG. 2 is a sectional view of a second embodiment.

【図3】実施例3の断面図。FIG. 3 is a sectional view of a third embodiment.

【図4】実施例4の断面図。FIG. 4 is a sectional view of a fourth embodiment.

【図5】実施例5の断面図。FIG. 5 is a sectional view of a fifth embodiment.

【図6】実施例6の断面図。FIG. 6 is a sectional view of a sixth embodiment.

【図7】実施例1の広角端における収差曲線図。7 is an aberration curve diagram for Example 1 at the wide-angle end. FIG.

【図8】実施例1の中間焦点距離における収差曲線図。FIG. 8 is an aberration curve diagram at the intermediate focal length of Example 1.

【図9】実施例1の望遠端における収差曲線図。9 is an aberration curve diagram for Example 1 at the telephoto end. FIG.

【図10】実施例2の広角端における収差曲線図。FIG. 10 is an aberration curve diagram for Example 2 at the wide-angle end.

【図11】実施例2の中間焦点距離における収差曲線
図。
FIG. 11 is an aberration curve diagram at the intermediate focal length of Example 2.

【図12】実施例2の望遠端における収差曲線図。FIG. 12 is an aberration curve diagram for Example 2 at the telephoto end.

【図13】実施例3の広角端における収差曲線図。FIG. 13 is an aberration curve diagram for Example 3 at the wide-angle end.

【図14】実施例3の中間焦点距離における収差曲線
図。
FIG. 14 is an aberration curve diagram for Example 3 at the intermediate focal length.

【図15】実施例3の望遠端における収差曲線図。FIG. 15 is an aberration curve diagram for Example 3 at the telephoto end.

【図16】実施例4の広角端における収差曲線図。FIG. 16 is an aberration curve diagram for Example 4 at the wide-angle end.

【図17】実施例4の中間焦点距離における収差曲線
図。
FIG. 17 is an aberration curve diagram for Example 4 at the intermediate focal length.

【図18】実施例4の望遠端における収差曲線図。FIG. 18 is an aberration curve diagram for Example 4 at the telephoto end.

【図19】実施例5の広角端における収差曲線図。FIG. 19 is an aberration curve diagram for Example 5 at the wide-angle end.

【図20】実施例5の中間焦点距離における収差曲線
図。
FIG. 20 is an aberration curve diagram for Example 5 at the intermediate focal length.

【図21】実施例5の望遠端における収差曲線図。FIG. 21 is an aberration curve diagram for Example 5 at the telephoto end.

【図22】実施例6の広角端における収差曲線図。FIG. 22 is an aberration curve diagram for Example 6 at the wide-angle end.

【図23】実施例6の中間焦点距離における収差曲線
図。
FIG. 23 is an aberration curve diagram for Example 6 at the intermediate focal length.

【図24】実施例6の望遠端における収差曲線図。FIG. 24 is an aberration curve diagram for Example 6 at the telephoto end.

【図25】従来のズームレンズと本発明の変倍レンズの
パワー配置を示す概念図。
FIG. 25 is a conceptual diagram showing a power arrangement of a conventional zoom lens and a variable power lens of the present invention.

【図26】本発明の変倍レンズの第2レンズ群のパワー
配置を示す概念図。
FIG. 26 is a conceptual diagram showing the power arrangement of the second lens group of the variable power lens of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月2日[Submission date] July 2, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 大口径変倍レンズ[Title of Invention] Large aperture variable magnification lens

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】また前記構成の4群ズームレンズは、基本
的にはマスターレンズの前にアフォーカルコンバーター
が付いている構成であるため、レンズ系の全長が焦点距
離に比べて極端に長くなる。例えばビデオカメラ用の4
群ズームレンズは、ワイド端での望遠比が12程度であ
り又テレ端の望遠比が2程度と非常に長い。
Further, since the four-group zoom lens having the above-mentioned structure is basically composed of an afocal converter in front of the master lens, the total length of the lens system becomes extremely longer than the focal length. 4 for video cameras, for example
The zoom ratio of the group zoom lens is about 12 at the wide end and about 2 at the tele end, which is very long.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】[0027]

【実施例】次に本発明の大口径変倍レンズの各実施例を
示す。 実施例1 非球面係数 P=1,A4=0.10140×10−5, A6 =
0.23495×10−9,A8=−0.16353×
10−12 テレ端でのバックフォーカス=37.99,ワイド端で
の望遠比=1.50 テレ端での望遠比=1.41 φ1N/φW=−2.93,φ2N/φW−1.85,
β2=0.72,f1/f2=0.70 実施例1は、図1に示す構成で、物体側から順に正の屈
折力を持つ第1レンズ群と正の屈折力を持つ第2レンズ
群とよりなり、第1レンズ群はいわゆるガウスタイプの
構成で絞りを第4レンズと第5レンズとの間に位置せし
め、絞りの前後で対称に配置して特に軸外収差の発生を
抑えるようにしている。また第2レンズ群は、物体側か
ら順に、凹面を物体側に向けた負のメニスカスレンズと
正レンズとを接合した接合レンズと正レンズとにて構成
した。このように第1レンズ群と第2レンズ群とを構成
することによって、ワイド端からテレ端へかけてのFナ
ンバーが2.0という明るいレンズ系でありながら、充
分なバックフォーカスを確保し、しかもワイド端からテ
レ端へかけての望遠比を1.5〜1.4と小さくした変
倍レンズになし得た。実施例2は、図2に示すように、
物体側から順に正の屈折力を持つ第1レンズ群と正の屈
折力を持つ第2レンズ群とよりなり、第1レンズ群は、
実施例1と同様の構成である。又第2レンズ群は、物体
側から順に、物体側に凹面を向けた負のメニスカスレン
ズ、正レンズ、正レンズからなり、接合レンズを用いず
に収差補正上の自由度を大きくした。これによって実施
例1と同じ仕様でありながらワイド端からテレ端にかけ
て望遠比が1.43〜1.34と実施例中で全長の最も
短いレンズ系である。実施例3は、図3に示すレンズ構
成で、物体側から順に正の屈折力を持つ第1レンズ群と
正の屈折力を持つ第2レンズ群とよりなり、各レンズ群
とも実施例1と同様の構成である。しかし実施例1,2
と比較して第2レンズ群の屈折力を大にし、適度なバッ
クフォーカスを確保した時に明るいレンズ系にしやすい
構成にして、ワイド端からテレ端にかけてのレンズ系の
明るさを、Fナンバー1.4〜2.0という単焦点レン
ズとほぼ同等の明るさになっている。実施例4は、図4
に示す構成で、物体側から順に、正の屈折力を持つ第1
レンズ群と、正の屈折力を持つ第2レンズ群とよりな
り、第1レンズ群はいわゆるガウスタイプと呼ばれる構
成である。しかし実施例1,2,3のように第1レンズ
群中に絞りを配置すると絞りの前後で金枠構造が変わ
り、レンズ配列の軸ずれによって性能が劣化する。その
ため特に変倍レンズのようにフォーカシング以外でのレ
ンズ群の移動を必要とする時には、金枠構造の簡純化の
ためにも絞りは移動するレンズ群の端に位置せしめるの
が望ましい。この実施例4では、絞りを第1レンズ群の
最も像側に位置せしめている。又この実施例では、第2
レンズ群を、物体側から順に両凹形状の負レンズと正レ
ンズとを接合した接合レンズと、正レンズとにて構成し
た。実施例5は、図5に示す構成で、物体側から順に、
正の屈折力を持つ第1レンズ群と正の屈折力を持つ第2
レンズ群とよりなり、第1レンズ群は、いわゆるガウス
タイプと呼ばれる構成であり、実施例4と同様に第1レ
ンズ群の最も像側に絞りを位置せしめた。この絞りの位
置のため、実施例1〜3に比較して絞りに関して対称な
配置の点では劣るため軸外収差の補正が十分でなくな
る。この実施例では、第2レンズ群を物体側から順に両
凹形状の負レンズと正レンズとを接合した接合レンズ
と、負のメニスカスレンズと正レンズとを接合した接合
レンズとにより軸外収差の補正を行なっている。そして
ワイド端からテレ端にかけてのFナンバーが1.4〜
2.0という明るいレンズ系になし得た。実施例6は、
図6に示す構成で、物体側から順に、正の屈折力を持つ
第1レンズ群と正の屈折力を持つ第2レンズ群とよりな
り、第1レンズ群はいわゆるガウスタイプで、実施例4
と同様、第1レンズ群の最も像側に絞りを位置せしめて
いる。この実施例6では、第2レンズ群を両凹形状の負
レンズと正レンズとを接合した接合レンズにて構成し、
その最も像側の屈折面を非球面にした。これによって他
の実施例が、第2レンズ群を3枚以上のレンズにて構成
しているのに対して、この実施例では2枚のレンズのみ
で第2レンズ群を構成し、しかも他の実施例と同様の性
能を保持している。この実施例で用いている非球面の形
状は、光軸方向をx軸,光軸と垂直な方向をy軸とする
時、次の式にて表わされる。 ただしrは基準球面の曲率半径、A2iは非球面係数で
ある。
[Embodiment] Next, each embodiment of the large aperture variable power lens of the present invention
Show. Example 1          Aspherical surface coefficient P = 1, A4 = 0.10140 × 10-5, A6 =
0.23495 x 10-9, A8 = −0.16353 ×
10-12  Back focus at tele end = 37.99, at wide end
Telephoto ratio = 1.50 Telephoto ratio at tele end = 1.41 φ1N / φW = −2.93, φ2N / φW-1.85,
β2 = 0.72, f1 / f2 = 0.70 Example 1 has the configuration shown in FIG.
A first lens group having a folding power and a second lens having a positive refractive power
The first lens group is of a so-called Gauss type
With the configuration, the diaphragm is located between the fourth lens and the fifth lens.
Therefore, it is arranged symmetrically before and after the diaphragm to prevent off-axis aberrations in particular.
I try to keep it down. Also, is the second lens group on the object side?
In order from the negative meniscus lens with the concave surface facing the object side
Consists of a cemented lens made by cementing a positive lens and a positive lens
did. In this way, the first lens group and the second lens group are configured.
By doing so, the F-number from the wide end to the tele end
Although the lens system is a bright lens system of 2.0,
A sufficient back focus is secured, and the
A change in the telephoto ratio from the end to 1.5-1.4.
It was possible to use a double lens. In Example 2, as shown in FIG.
The first lens group having a positive refractive power in order from the object side and the positive refractive power
It is composed of a second lens group having a folding force, and the first lens group is
The configuration is the same as that of the first embodiment. The second lens group is an object
Negative meniscus lens with concave surface facing the object side, in order from the side
, Positive lens, positive lens, without cemented lens
The degree of freedom in aberration correction is increased. Carried out by this
Same specifications as Example 1, but from wide end to tele end
The telephoto ratio is 1.43 to 1.34, which is the longest in the examples.
It is a short lens system. Example 3 is the lens structure shown in FIG.
And the first lens group having positive refractive power in order from the object side.
Each lens group consists of a second lens group having a positive refractive power.
Both have the same configuration as that of the first embodiment. However, Examples 1 and 2
The second lens group has a larger refracting power than that of
It is easy to make a bright lens system when the focus is secured.
With the configuration, the lens system from the wide end to the tele end
Brightness is a single focus lens with an F number of 1.4 to 2.0
The brightness is almost the same as the brightness. Example 4 is shown in FIG.
In the configuration shown in FIG. 1, the first refractive power is positive in order from the object side.
The lens group and the second lens group having positive refractive power
The first lens group is a so-called Gauss type lens.
It is a success. However, as in Examples 1, 2, and 3, the first lens
When the diaphragm is placed in the group, the metal frame structure changes before and after the diaphragm.
Therefore, the performance deteriorates due to the misalignment of the lens array. That
For this reason, it is especially important for lenses other than focusing, such as variable
When it is necessary to move the lens group,
For this reason, the diaphragm should be positioned at the end of the moving lens group.
Is desirable. In the fourth embodiment, the aperture of the first lens group is
It is positioned closest to the image side. Also, in this embodiment, the second
The lens group is composed of a biconcave negative lens and a positive lens in order from the object side.
It consists of a cemented lens that cements the lens and a positive lens.
It was The fifth embodiment has the configuration shown in FIG.
The first lens group having a positive refractive power and the second lens group having a positive refractive power
The first lens group consists of a lens group and a so-called Gauss
The configuration is called a type, and the first type is the same as in the fourth embodiment.
The diaphragm was positioned closest to the image side of the lens group. The position of this aperture
Therefore, as compared with Examples 1 to 3, the symmetry with respect to the diaphragm is
Since the arrangement is inferior, the correction of off-axis aberration is not sufficient.
It In this embodiment, the second lens group is placed in order from the object side.
A cemented lens in which a concave negative lens and a positive lens are cemented
Cemented with a negative meniscus lens and a positive lens
Off-axis aberrations are corrected by the lens. And
The F number from the wide end to the tele end is 1.4-
It was possible to achieve a bright lens system of 2.0. Example 6 is
The structure shown in FIG. 6 has positive refractive power in order from the object side.
The first lens group and the second lens group having a positive refractive power
The first lens group is a so-called Gauss type lens, and
As with, place the diaphragm closest to the image in the first lens group.
There is. In the sixth embodiment, the second lens unit is a biconcave negative lens.
Consists of a cemented lens in which a lens and a positive lens are cemented,
The most image-side refracting surface is an aspherical surface. By this
Embodiment, the second lens group is composed of three or more lenses.
In contrast, in this embodiment, only two lenses are used.
The second lens group is made up of and has the same characteristics as those of the other embodiments.
Holds Noh. Aspherical shape used in this example
The shape is such that the optical axis direction is the x axis and the direction perpendicular to the optical axis is the y axis.
It is expressed by the following equation.Where r is the radius of curvature of the reference spherical surface, A2iIs the aspherical coefficient
is there.

Claims (1)

【特許請求の範囲】 【請求項1】物体側より順に、正の屈折力を持つ第1レ
ンズ群と正の屈折力を持つ第2レンズ群とよりなり、こ
れらレンズ群間の間隔を変化させて変倍を行なう1回結
像によってのみ像を形成するレンズ系で、第1レンズ
群,第2レンズ群ともに少なくとも1枚の正レンズと少
なくとも1枚の負レンズからなり、第2レンズ群中の最
も物体側のレンズが凹面を物体側に向けた負レンズであ
り、かつ次の条件(1),(2)を満足する変倍レン
ズ。 (1)−2.0<φ2N/ φw <−0.6 (2)−4.0<φ1N/ φw <−2.4 ただしφw はワイド端における全系のパワー、φ1N,φ
2Nは夫々第1レンズ群および第2レンズ群に含まれる負
レンズのパワーの和である。
Claim: What is claimed is: 1. A first lens group having a positive refracting power and a second lens group having a positive refracting power, which are arranged in order from the object side. A lens system that forms an image only by one-time image formation with zooming. Both the first lens group and the second lens group include at least one positive lens and at least one negative lens. The lens on the most object side is a negative lens with the concave surface facing the object side, and the variable power lens that satisfies the following conditions (1) and (2). (1) -2.0 <φ2N / φw <-0.6 (2) -4.0 <φ1N / φw <-2.4 where φw is the power of the entire system at the wide end, φ1N, φ
2N is the sum of the powers of the negative lenses included in the first lens group and the second lens group, respectively.
JP11365291A 1991-04-19 1991-04-19 Large-diameter variable power lens Withdrawn JPH0511184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11365291A JPH0511184A (en) 1991-04-19 1991-04-19 Large-diameter variable power lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11365291A JPH0511184A (en) 1991-04-19 1991-04-19 Large-diameter variable power lens

Publications (1)

Publication Number Publication Date
JPH0511184A true JPH0511184A (en) 1993-01-19

Family

ID=14617701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11365291A Withdrawn JPH0511184A (en) 1991-04-19 1991-04-19 Large-diameter variable power lens

Country Status (1)

Country Link
JP (1) JPH0511184A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157360A1 (en) * 2008-06-25 2009-12-30 株式会社ニコンビジョン Relay zoom system
JP2011128273A (en) * 2009-12-16 2011-06-30 Fujifilm Corp Imaging lens and imaging apparatus
US9601800B2 (en) 2010-02-04 2017-03-21 Gs Yuasa International Ltd. Charging method
WO2021230218A1 (en) * 2020-05-12 2021-11-18 株式会社nittoh Lens system and projector
JP2022048949A (en) * 2020-09-15 2022-03-28 レイテック オプティカル (ジョウシュウ) カンパニーリミテッド Image capturing optical lens

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157360A1 (en) * 2008-06-25 2009-12-30 株式会社ニコンビジョン Relay zoom system
EP2293130A1 (en) * 2008-06-25 2011-03-09 Nikon Vision Co., Ltd. Relay zoom system
EP2293130A4 (en) * 2008-06-25 2012-08-29 Nikon Vision Co Ltd Relay zoom system
JP5380444B2 (en) * 2008-06-25 2014-01-08 株式会社 ニコンビジョン Relay zoom system
US8797646B2 (en) 2008-06-25 2014-08-05 Nikon Vision Co., Ltd. Relay zoom system
JP2011128273A (en) * 2009-12-16 2011-06-30 Fujifilm Corp Imaging lens and imaging apparatus
US9601800B2 (en) 2010-02-04 2017-03-21 Gs Yuasa International Ltd. Charging method
WO2021230218A1 (en) * 2020-05-12 2021-11-18 株式会社nittoh Lens system and projector
JP2022048949A (en) * 2020-09-15 2022-03-28 レイテック オプティカル (ジョウシュウ) カンパニーリミテッド Image capturing optical lens
US11947082B2 (en) 2020-09-15 2024-04-02 Raytech Optical (Changzhou) Co., Ltd Camera optical lens

Similar Documents

Publication Publication Date Title
JP3081698B2 (en) 3-group zoom lens
JP3395169B2 (en) Zoom lens with anti-vibration function
US5111338A (en) Zoom Lens
JP3173277B2 (en) Zoom lens
JPH08201695A (en) Rear focus type zoom lens
JP4101992B2 (en) Compact high-magnification wide-angle zoom lens
US5537259A (en) Zoom lens
JPH06281861A (en) Small variable power lens
JP2808905B2 (en) Zoom lens
JP3160846B2 (en) Telephoto zoom lens
JP3018742B2 (en) Zoom lens
JP3331011B2 (en) Small two-group zoom lens
JP3331223B2 (en) Small two-group zoom lens
JP3260798B2 (en) Wide-angle zoom lens
JPH06130330A (en) Zoom lens equipped with vibration preventing function
JP3301815B2 (en) Zoom lens
JP3008711B2 (en) Small zoom lens
JPH05346542A (en) Small-sized two-group zoom lens
JP2579215B2 (en) Zoom lens
JPH0527163A (en) Telephoto lens
JP2005345891A (en) Zoom lens and imaging apparatus having the same
JPH0511184A (en) Large-diameter variable power lens
JP2000214380A (en) Photographing lens
JP2850548B2 (en) Zoom lens
JPH0617937B2 (en) Small zoom lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711