JPH0511116B2 - - Google Patents

Info

Publication number
JPH0511116B2
JPH0511116B2 JP22271985A JP22271985A JPH0511116B2 JP H0511116 B2 JPH0511116 B2 JP H0511116B2 JP 22271985 A JP22271985 A JP 22271985A JP 22271985 A JP22271985 A JP 22271985A JP H0511116 B2 JPH0511116 B2 JP H0511116B2
Authority
JP
Japan
Prior art keywords
complex
group
metal
niobium
ethanedithiolate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22271985A
Other languages
Japanese (ja)
Other versions
JPS6284091A (en
Inventor
Akira Nakamura
Kazuyuki Tatsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP22271985A priority Critical patent/JPS6284091A/en
Publication of JPS6284091A publication Critical patent/JPS6284091A/en
Publication of JPH0511116B2 publication Critical patent/JPH0511116B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はV族金属含有導電性無機高分子化合物
の製造方法に関し、詳しくは特定のV族金属錯体
を熱分解することによつて、所望の電気伝導度を
有するV族金属含有の導電性無機高分子化合物を
効率よく製造することのできる方法に関する。 〔従来の技術及び発明が解決しようとする問題
点〕 ニオブ、タンタル等の周期表第V族金属のカル
コゲニド化合物は、特有の電磁気的性質等、興味
深い物性を示す無機高分子化合物であり、最近
様々な分野で注目を浴びてきている。 しかし、これまでのところ上述の無機高分子化
合物を製造するには、V族金属の粉末とカルコゲ
ニンを混合したものを500〜1000℃の高温下で固
相反応させる方法に限られていた。しかも、この
固相反応によつて得られる無機高分子化合物は、
必ずしも所望する物性を示さず、実用的価値のあ
るものはなかなか製造することができなかつた。 そこで、本発明者らは、上述の固相反応による
方法の欠点を解消し、全く新たな方法で効率よく
しかも物性のすぐれた上記無機高分子化合物であ
るV族金属カルコゲニドを製造すべく鋭意研究を
重ねた。 その結果、錯体化学的な新しい手法を採用し
て、特定のV族金属錯体を熱分解することによ
り、目的とする物性を有するV族金属カルコゲニ
ドを製造することに成功した。 本発明はこのような知見に基いて完成したもの
である。 〔問題点を解決するための手段〕 すなわち本発明は、 一般式 〔(C6H54P〕〔M(S2C2H43〕 ……() (式中、Mはニオブあるいはタンタルを示す。) で表わされるV族金属エタンジチオラート錯体を
熱分解することを特徴とするV族金属含有導電性
無機高分子化合物の製造方法を提供するものであ
る。 本発明の方法に使用する上記一般式()で表
わされるV族金属エタンジタオラート錯体は、具
体的には、 式〔(C6H54P〕〔Nb(S2C2H43〕で表わせる
ニオブエタンジチオラート錯体あるいは式
〔(C6H54P〕〔Ta(S2C2H43〕で表わされるタン
タルエタンジチオラート錯体をあげることができ
る。 このV族金属エタンジチオラート錯体を製造す
るには様々な方法が考えられるが、好ましい製造
方法としては、一般式MX1 5(式中、X1はハロゲ
ン原子を示し、Mは前記と同じである。)で表わ
される五ハロゲン化金属(例えばNbCl5
TaCl5、NbBr5、TaBr5など)、式
LiSCH2CH2SLiで表わされるエタンジチオール
のリチウム塩および一般式(C6H54PX2(式中、
X2はハロゲン原子を示す。)で表わされるハロゲ
ン化テトラフエニルホスホニウム(例えば臭化テ
トラフエニルホスホニウム、塩化テトラフエニル
ホスホニウムなど)をアセトニトリルの存在下で
反応させる方法があげられる。 また、上述の五ハロゲン化金属およびエタンジ
チオールのリチウム塩を不活性炭化水素溶媒(例
えばベンゼン、トルエン、キシレンなど)の存在
下で反応させ、次いで得られた反応生成物にテト
ラヒドロフランを加えて一般式 〔Li(thf)3〕〔M(S2C2H43〕 (式中、(thf)はテトラヒドロフランを示し、M
は前記と同じである。)で表わされるリチウム含
有錯体を得、しかる後に該錯体を前述のハロゲン
化テトラフエニルホスホニウムと反応させる方法
によつても、一般式()で表わされるV族金属
エタンジチオラート錯体を製造することができ
る。 本発明の方法では、前述の如く得られたV族金
属エタンジチオラート錯体を原料として、これを
熱分解する。この熱分解の条件は特に制限はな
く、各種状況に応じて適宜定めればよいが、通常
は温度200〜500℃、好ましくは400〜500℃の範囲
に設定し、分解時間を2時間〜7日間、好ましく
は2〜3日間とすればよい。また、熱分解の雰囲
気は真空中でもよく、アルゴンや窒素などの不活
性気体雰囲気下でもよい。 この熱分解によつて生成する分解生成物は、分
解温度や時間、あるいは他の分解時間によつて異
なるが、いずれも電気伝導性の良好なV族金属含
有の無機高分子化合物、具体的にはニオブあるい
はタンタルのV族金属カルコゲニド、さらに具体
的にはエタンジチオラートや硫黄を配位子にもつ
クラスターあるいはこの類縁物である。この分解
生成物の化学組成は様々であるが、通常は
MSaCbHc(式中、Mはニオブあるいはタンタル
を示し、aは2.0〜2.9、bは1.0〜18.8、cは1.4〜
16.4の実数を示す。)で表わされるものとなる。 〔発明の効果〕 以上の如く、本発明の方法によれば簡単な熱分
解操作によつて電気伝導性の良好な高分子化合
物、即ちV族き族含有導電性無機高分子化合物か
ら得られ、またこの得られる無機高分子化合物は
熱分解条件によつて電気伝導度の異なるものとな
る。したがつて、本発明の方法で熱分解条件を適
宜選定することにより、希望する電気伝導度を有
する高分子化合物を容易に得ることができる。 本発明の方法により製造される高分子化合物
は、良好な電気伝導性を示すものであるため、各
種の電気・電子材料として有効な用途が期待され
る。 〔実施例〕 次に本発明の方法を実施例によりさらに詳しく
説明する。 参考例 1 (ニオブエタンジチオラート錯体の製造) 五塩化ニオブ(NbCl5)6.8g(25ミリモル)
をアセトニトリル50mlに溶かして五塩化ニオブ溶
液を調製した。一方、エタンジチオールをリチウ
ム塩(LiSCH2CH2SLi)8.2g(77ミリモル)を
アセトニトリル80mlに懸濁した懸濁液を、0℃氷
浴中で撹拌し、ここへ前記五塩化ニオブ溶液を小
量ずつ添加した。反応は直ちに起こり、赤色溶液
となつたが、そのまま1時間撹拌した。次に、デ
カンテーシヨンと濾過によつて不純物を除去した
後、約1/3体積の溶媒を留去した。 その後、得られた溶液に、臭化テトラフエニル
ホスホニウム((C6H54PBr9.6g(23ミリモル)
をアセトニトリル40mlに溶かした溶液を小量ずつ
加えたところ、約1分後に結晶が析出しはじめ
た。一晩、冷蔵庫に静置した後、粗結晶を濾取し
た。粗結晶の収量は13.6gであり、収率は77%で
あつた。 続いて、上記粗結晶1.4gを採り、これをジオ
メチルホルムアミド(DMF)40mlに溶解させて
濾過した後、約1/2体積のDMFを留去し、冷蔵庫
に一晩静置した。翌日、溶液を注射器で吸出して
結晶を少量のアセトニトリルおよびジエチルエー
テルで洗浄した後、6時間減圧乾燥した。その結
果精製された結晶1.2g(収率86%)が得られた。
このものの分析結果は次のとおりであつた。 元素分析値(%) 炭素 水素 窒素 硫黄 計算値 50.68 5.04 1.79 24.60 実測値 50.61 4.95 1.84 24.75 〔(C6H54P〕〔Nb(S2C2H43〕・DMF、組成
式:NbC33H39NOPS6 プロトン核磁気共鳴スペクトリ(ジメチルスル
ホキシド−d6)、 δ3.66(SCH2 12H、s)、 7.84((C6H54P 20H、m)、 2.82(DMF CH3 6H、d)、 8.04(DMF 1H、sbr) 遠赤外線吸収スペクトル(Nujol mull) 440w、354m、331m(cm-1) 紫外−可視光線吸収スペクトル(CH3CN) λ、nm(10-4ε、M-1cm-1)523(0.48)、386
(1.02)、325(1.14) 参考例 2 (ニオブエタンジチオラート錯体の製造) 五塩化ニオブ(NbCl5)6.2g(23ミリモル)
をベンゼン100mlに懸濁させ、0℃の氷浴中で撹
拌しながら、これにエタンジチオールのリチウム
塩(LiSCH2CH2SLi)7.5g(71ミリモル)を粉
末のまま少量ずつ加えた。ベンゼンを留去した
後、残つた赤褐色の固体にテトラヒドロフタン
(TMF)を注ぐと約10分で赤色の溶液になつた。
これを濾過し濃縮したところ赤色結晶が得られ
た。収量は5.9g、収率は43%(NbCl5基準)で
あつた。またこの赤色結晶はプロトン核磁気共鳴
スペクトル、遠赤外線吸収スペクトル、紫外−可
視光線吸収スペクトルの分析結果から 式〔Li(thf)3〕〔Nb(S2C2H43〕で表わされる
リチウム含有錯体であることがわかつた。 続いて、このリチウム含有錯体2.5g(4.2ミリ
モル)をアセトニトリル35mlに溶かし、これに臭
化テトラフエニルホスホニウム1.76g(4.2ミリ
モル)のアセトニトリル30ml溶液を添加した。そ
の結果、結晶が生成し、収量2.7g、収率約90%
であつた。 この結晶を上記参考例1と同様の分析を行なつ
たところ、式〔(C6H54P〕〔Nb(S2C2H43〕で
表わされるニオブエタンジチオラート錯体である
ことが確認された。 参考例 3 (タンタルエタンジチオラート錯体の製造) 参考例1において五塩化ニオブの代わりに五塩
化タンタル(TaCl5)4.0g(11.8ミリモル)を用
いたこと以外は参考例1と同様の操作を行なつて
結晶を7.2g、収率77%にて得た。このものの分
析結果は次のとおりであつた。 元素分析値(%) 炭素 水素 窒素 硫黄 計算値 45.55 4.53 1.61 22.11 実測値 45.31 4.49 1.64 22.00 〔(C6H54P〕〔Ta(S2C2H43〕・DMF、組成
式:NbC33H39NOPS6 プロトン核磁気共鳴スペクトリ(ジメチルスル
ホキシド−d6)、 δ3.87(SCH2 12H、s)、 7.85((C6 H5 4P 20H、m)、 2.82(DMF CH3 6H、d)、 8.05(DMF 1H、sbr) 遠赤外線吸収スペクトル(Nujol mull) 442w、333m、307m(cm-1) 紫外−可視光線吸収スペクトル(CH3CN) λ、nm(10-4ε、M-1cm-1)441(0.62)、342
(1.28)、291(1.64) 実施例 1〜3 参考例1で得られた式 〔(C6H54P〕〔Nb(S2C2H43〕・DMF で表わされるニオブエタンジチオラート錯体
(DMFが結晶溶媒として付加したもの)の所定量
を反応管に入れ、管内を減圧にした後、この反応
管を予め所定温度に加熱された電気炉に入れて所
定時間熱分解を行なつた。 この熱分解では、まず原料である上記錯体が融
解して黒化し、熔岩のような状態で約20分間分解
反応が起こつているのが目視される。最終的に得
られる分解生成物は黒色固体であるが、200℃で
加熱したものではジメチルホルムアミド(DNF)
やジメチルスルホキシド(DMSO)等の極性溶
媒に一部溶解するが、400℃で加熱したものは全
く不溶性であつた。また、副生成物は主として
(C6H53PSであり、これは反応管の温度の低くな
るところに結晶化して出てきた。 熱分解条件および分解生成物の性状を第1表に
示す。また分解生成物の粉末のX線回折パターン
を第1図に示す。さらに上記原料錯体の示差熱分
析曲線(DTA)および熱天秤曲線(TG曲線)を
第2図に示す。
[Industrial Application Field] The present invention relates to a method for producing a conductive inorganic polymer compound containing a group V metal, and more specifically, by thermally decomposing a specific group V metal complex, a V group having a desired electrical conductivity is produced. The present invention relates to a method for efficiently producing a group metal-containing conductive inorganic polymer compound. [Prior art and problems to be solved by the invention] Chalcogenide compounds of group V metals of the periodic table, such as niobium and tantalum, are inorganic polymer compounds that exhibit interesting physical properties such as unique electromagnetic properties. It is attracting attention in various fields. However, to date, the method for producing the above-mentioned inorganic polymer compounds has been limited to a method in which a mixture of Group V metal powder and chalcogenin is subjected to a solid phase reaction at a high temperature of 500 to 1000°C. Moreover, the inorganic polymer compound obtained by this solid phase reaction is
They do not necessarily exhibit the desired physical properties, and it has been difficult to produce products of practical value. Therefore, the present inventors have conducted intensive research in order to solve the drawbacks of the above-mentioned solid-phase reaction method and to efficiently produce group V metal chalcogenide, which is an inorganic polymer compound with excellent physical properties, using a completely new method. layered. As a result, by employing a new method of complex chemistry and thermally decomposing a specific group V metal complex, we succeeded in producing a group V metal chalcogenide having the desired physical properties. The present invention was completed based on this knowledge. [Means for Solving the Problems] That is, the present invention has the general formula [(C 6 H 5 ) 4 P] [M(S 2 C 2 H 4 ) 3 ] ... () (wherein M is niobium The present invention provides a method for producing a conductive inorganic polymer compound containing a group V metal, which comprises thermally decomposing a group V metal ethanedithiolate complex represented by Specifically, the group V metal ethaneditaolate complex represented by the above general formula () used in the method of the present invention has the formula [(C 6 H 5 ) 4 P] [Nb(S 2 C 2 H 4 ) 3 ] or a tantaluethanedithiolate complex represented by the formula [(C 6 H 5 ) 4 P] [Ta(S 2 C 2 H 4 ) 3 ]. Various methods can be considered to produce this Group V metal ethanedithiolate complex, but a preferred production method is based on the general formula MX 1 5 (wherein, X 1 represents a halogen atom, and M is the same as above). metal pentahalides (e.g. NbCl 5 ,
TaCl 5 , NbBr 5 , TaBr 5 etc.), formula
The lithium salt of ethanedithiol represented by LiSCH 2 CH 2 SLi and the general formula (C 6 H 5 ) 4 PX 2 (in the formula,
X 2 represents a halogen atom. ) is reacted with a halogenated tetraphenylphosphonium (eg, tetraphenylphosphonium bromide, tetraphenylphosphonium chloride, etc.) in the presence of acetonitrile. Alternatively, the above metal pentahalide and the lithium salt of ethanedithiol are reacted in the presence of an inert hydrocarbon solvent (e.g., benzene, toluene, xylene, etc.), and then tetrahydrofuran is added to the resulting reaction product to form the general formula [Li(thf) 3 ] [M(S 2 C 2 H 4 ) 3 ] (wherein (thf) represents tetrahydrofuran, M
is the same as above. ) A group V metal ethanedithiolate complex represented by the general formula () can also be produced by a method of obtaining a lithium-containing complex represented by the formula () and then reacting the complex with the aforementioned tetraphenylphosphonium halide. I can do it. In the method of the present invention, the group V metal ethanedithiolate complex obtained as described above is used as a raw material and is thermally decomposed. The conditions for this thermal decomposition are not particularly limited and may be determined as appropriate depending on various situations, but usually the temperature is set in the range of 200 to 500°C, preferably 400 to 500°C, and the decomposition time is set in the range of 2 to 7 hours. The duration may be 2 to 3 days, preferably 2 to 3 days. Further, the atmosphere for thermal decomposition may be a vacuum or an inert gas atmosphere such as argon or nitrogen. The decomposition products produced by this thermal decomposition vary depending on the decomposition temperature, time, and other decomposition times, but all of them are inorganic polymer compounds containing Group V metals with good electrical conductivity, specifically is a group V metal chalcogenide of niobium or tantalum, more specifically a cluster having ethanedithiolate or sulfur as a ligand, or an analog thereof. The chemical composition of this decomposition product varies, but typically
MSaCbHc (in the formula, M represents niobium or tantalum, a is 2.0 to 2.9, b is 1.0 to 18.8, c is 1.4 to
Show the real number of 16.4. ). [Effects of the Invention] As described above, according to the method of the present invention, a polymer compound with good electrical conductivity, that is, a group V-containing conductive inorganic polymer compound, can be obtained by a simple thermal decomposition operation, Furthermore, the electrical conductivity of the obtained inorganic polymer compound varies depending on the thermal decomposition conditions. Therefore, by appropriately selecting the thermal decomposition conditions in the method of the present invention, a polymer compound having a desired electrical conductivity can be easily obtained. Since the polymer compound produced by the method of the present invention exhibits good electrical conductivity, it is expected to be effectively used as various electrical and electronic materials. [Example] Next, the method of the present invention will be explained in more detail with reference to Examples. Reference Example 1 (Production of niobium ethanedithiolate complex) 6.8 g (25 mmol) of niobium pentachloride (NbCl 5 )
was dissolved in 50 ml of acetonitrile to prepare a niobium pentachloride solution. On the other hand, a suspension of 8.2 g (77 mmol) of lithium salt of ethanedithiol (LiSCH 2 CH 2 SLi) in 80 ml of acetonitrile was stirred in an ice bath at 0°C, and a small amount of the niobium pentachloride solution was added thereto. Added in portions. The reaction occurred immediately, resulting in a red solution, which was left to stir for 1 hour. Next, after removing impurities by decantation and filtration, about 1/3 volume of the solvent was distilled off. Thereafter, 9.6 g (23 mmol) of tetraphenylphosphonium bromide ((C 6 H 5 ) 4 PBr) was added to the resulting solution.
When a solution prepared by dissolving . After standing in the refrigerator overnight, the crude crystals were collected by filtration. The yield of crude crystals was 13.6 g, giving a yield of 77%. Subsequently, 1.4 g of the above crude crystals were taken, dissolved in 40 ml of dimethylformamide (DMF), and filtered. About 1/2 volume of DMF was distilled off, and the mixture was left standing in a refrigerator overnight. The next day, the solution was sucked out with a syringe, the crystals were washed with a small amount of acetonitrile and diethyl ether, and then dried under reduced pressure for 6 hours. As a result, 1.2 g of purified crystals (yield 86%) were obtained.
The analysis results of this product were as follows. Elemental analysis value (%) Carbon Hydrogen Nitrogen Sulfur Calculated value 50.68 5.04 1.79 24.60 Actual value 50.61 4.95 1.84 24.75 [(C 6 H 5 ) 4 P] [Nb (S 2 C 2 H 4 ) 3 ]・DMF, composition formula: NbC 33 H 39 NOPS 6 proton nuclear magnetic resonance spectroscopy (dimethyl sulfoxide-d 6 ), δ3.66 (SC H 2 12H, s), 7.84 ((C 6 H 5 ) 4 P 20H, m), 2.82 (DMF C H 3 6H, d), 8.04 (DMF 1H, sbr) Far-infrared absorption spectrum (Nujol mull) 440w, 354m, 331m (cm -1 ) Ultraviolet-visible absorption spectrum (CH 3 CN) λ, nm (10 -4 ε, M -1 cm -1 ) 523 (0.48), 386
(1.02), 325 (1.14) Reference example 2 (Production of niobium ethanedithiolate complex) Niobium pentachloride (NbCl 5 ) 6.2 g (23 mmol)
was suspended in 100 ml of benzene, and 7.5 g (71 mmol) of the lithium salt of ethanedithiol (LiSCH 2 CH 2 SLi) was added little by little as a powder while stirring in an ice bath at 0°C. After distilling off the benzene, tetrahydrophthane (TMF) was poured into the remaining reddish-brown solid, which turned into a red solution in about 10 minutes.
When this was filtered and concentrated, red crystals were obtained. The yield was 5.9 g, and the yield was 43% (based on NbCl 5 ). Furthermore, from the analysis results of proton nuclear magnetic resonance spectrum, far-infrared absorption spectrum, and ultraviolet-visible light absorption spectrum, this red crystal is a lithium compound expressed by the formula [Li(THF) 3 ][Nb(S 2 C 2 H 4 ) 3 ]. It was found to be a complex containing Subsequently, 2.5 g (4.2 mmol) of this lithium-containing complex was dissolved in 35 ml of acetonitrile, and a solution of 1.76 g (4.2 mmol) of tetraphenylphosphonium bromide in 30 ml of acetonitrile was added thereto. As a result, crystals were formed, yielding 2.7g, yield approximately 90%.
It was hot. When this crystal was analyzed in the same manner as in Reference Example 1 above, it was found to be a niobethane dithiolate complex represented by the formula [(C 6 H 5 ) 4 P] [Nb(S 2 C 2 H 4 ) 3 ]. This was confirmed. Reference Example 3 (Manufacture of tantalum ethanedithiolate complex) The same operation as in Reference Example 1 was performed except that 4.0 g (11.8 mmol) of tantalum pentachloride (TaCl 5 ) was used instead of niobium pentachloride in Reference Example 1. 7.2 g of crystals were obtained in a yield of 77%. The analysis results of this product were as follows. Elemental analysis value (%) Carbon Hydrogen Nitrogen Sulfur Calculated value 45.55 4.53 1.61 22.11 Actual value 45.31 4.49 1.64 22.00 [(C 6 H 5 ) 4 P] [Ta (S 2 C 2 H 4 ) 3 ]・DMF, composition formula: NbC 33 H 39 NOPS 6 proton nuclear magnetic resonance spectroscopy (dimethyl sulfoxide- d 6 ), δ3.87 (SC H 2 12H, s), 7.85 ((C 6 H 5 ) 4 P 20H, m), 2.82 (DMF C H 3 6H, d), 8.05 (DMF 1H, sbr) Far-infrared absorption spectrum (Nujol mull) 442w, 333m, 307m (cm -1 ) Ultraviolet-visible absorption spectrum (CH 3 CN) λ, nm (10 -4 ε, M -1 cm -1 ) 441 (0.62), 342
(1.28), 291 (1.64) Examples 1 to 3 Formula obtained in Reference Example 1 Niobethane represented by [(C 6 H 5 ) 4 P] [Nb(S 2 C 2 H 4 ) 3 ]・DMF A predetermined amount of the dithiolate complex (DMF added as a crystallizing solvent) is put into a reaction tube, the pressure inside the tube is reduced, and the reaction tube is placed in an electric furnace preheated to a predetermined temperature to undergo thermal decomposition for a predetermined period of time. I did it. In this thermal decomposition, the above-mentioned complex, which is the raw material, first melts and turns black, and the decomposition reaction is visually observed to occur for about 20 minutes in a lava-like state. The final decomposition product is a black solid, but when heated at 200°C it turns into dimethylformamide (DNF).
Although it is partially soluble in polar solvents such as dimethyl sulfoxide (DMSO) and dimethyl sulfoxide (DMSO), it was completely insoluble when heated at 400°C. Furthermore, the by-product was mainly (C 6 H 5 ) 3 PS, which crystallized and came out at the lower temperature of the reaction tube. Thermal decomposition conditions and properties of the decomposition products are shown in Table 1. Moreover, the X-ray diffraction pattern of the powder of the decomposition product is shown in FIG. Furthermore, the differential thermal analysis curve (DTA) and thermobalance curve (TG curve) of the above raw material complex are shown in FIG.

【表】 なお、原料錯体であるニオブエタ
ンジチオラート錯体の電気
伝導度は10−11Ω−1・cm−1
以下である。
[Table] In addition, the electricity of the raw material complex, niobbutane dithiolate complex,
The conductivity is 10 −11 Ω −1 cm −1
It is as follows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜3で得られた分解生成物
(無機高分子化合物)のX線回折パターンであり、
図中θはブラツグ角である。また、第2図は実施
例1〜3で用いる原料錯体であるニオブエタンジ
チオラート錯体のDTA曲線およびTG曲線であ
る。なお第2図における縦軸の重量パーセントは
TG曲線についての目盛である。
FIG. 1 is an X-ray diffraction pattern of the decomposition products (inorganic polymer compounds) obtained in Examples 1 to 3,
In the figure, θ is the Bragg angle. Moreover, FIG. 2 shows a DTA curve and a TG curve of a niobium ethanedithiolate complex which is a raw material complex used in Examples 1 to 3. In addition, the weight percentage on the vertical axis in Figure 2 is
This is a scale for the TG curve.

Claims (1)

【特許請求の範囲】 1 一般式 〔(C6H54P〕〔M(S2C2H43〕 (式中、Mはニオブあるいはタンタルを示す。) で表わされるV族金属エタンジチオラート錯体を
熱分解することを特徴とするV族金属含有導電性
無機高分子化合物の製造方法。 2 熱分解を200〜500℃にて2時間〜7日間行な
う特許請求の範囲第1項記載の製造方法。
[Claims] 1. Group V metal represented by the general formula [(C 6 H 5 ) 4 P] [M(S 2 C 2 H 4 ) 3 ] (wherein, M represents niobium or tantalum) A method for producing a conductive inorganic polymer compound containing a Group V metal, which comprises thermally decomposing an ethanedithiolate complex. 2. The manufacturing method according to claim 1, wherein the thermal decomposition is carried out at 200 to 500°C for 2 hours to 7 days.
JP22271985A 1985-10-08 1985-10-08 Production of electrically conductive inorganic high polymer containing group v metal Granted JPS6284091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22271985A JPS6284091A (en) 1985-10-08 1985-10-08 Production of electrically conductive inorganic high polymer containing group v metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22271985A JPS6284091A (en) 1985-10-08 1985-10-08 Production of electrically conductive inorganic high polymer containing group v metal

Publications (2)

Publication Number Publication Date
JPS6284091A JPS6284091A (en) 1987-04-17
JPH0511116B2 true JPH0511116B2 (en) 1993-02-12

Family

ID=16786833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22271985A Granted JPS6284091A (en) 1985-10-08 1985-10-08 Production of electrically conductive inorganic high polymer containing group v metal

Country Status (1)

Country Link
JP (1) JPS6284091A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1115122B1 (en) * 1999-12-07 2004-05-06 Walter Dr. Schmid Electrically conductive inorganic polymer
EP1107261A1 (en) * 1999-12-07 2001-06-13 Walter Dr. Schmid Electrically conductive inorganic polymer

Also Published As

Publication number Publication date
JPS6284091A (en) 1987-04-17

Similar Documents

Publication Publication Date Title
Hertler et al. Chemistry of boranes. XXIX. Thia-and azaboranes
Suzuki et al. Synthesis and reactions of some new heterocyclic bismuth-(III) and-(V) compounds. 5, 10-Dihydrodibenzo [b, e] bismine and related systems
Little Group V boranes. 4. Icosahedral stibaboranes and their cyclopentadienylcobalt (III) complexes
US5372798A (en) Fullerene compositions and preparation
Lee et al. Synthesis, structure, and reactivity of functionalized germyl complexes of the formula (. eta. 5-C5H5) Re (NO)(PPh3)(GePh2X): equilibria involving the germylene complex [(. eta. 5-C5H5) Re (NO)(PPh3)(: GePh2)]+ TfO
JPH0511116B2 (en)
GB1579038A (en) Substituted heterofulvalenes
Mironov et al. Dodecanuclear rhenium cluster complexes with an interstitial carbon atom: Synthesis, structures and properties of two new compounds K6 [Re12CS17 (OH) 6]· 4H2O and Na12Re12CS17 (SO3) 6· 48.5 H2O
Filippou et al. Insertion of GeCl2 into molybdenum-hydrogen bonds: A convenient route to dichlorogermyl complexes
US4626586A (en) Transition metal poly(benzodithiolene)
Delgado et al. Structural diversity of copper complexes with angular and linear dipyridyl ligands
JPH0451557B2 (en)
JPH0689001B2 (en) Bis (octaalkyl phthalocyaninato) lanthanide compound
Spencer et al. Preparation of [tris (1, 3-dithiole-2-thione-4, 5-dithiolato) antimonate (1−)] complexes,[Sbv (dmit) 3]−. Crystal structure of the 1, 4-dimethylpyridinium salt
Cauzzi et al. Easy access to phosphido-selenido clusters. Reaction of [Ru3 (CO) 12] with Ph2 (pyth) PSe {pyth= 5-(2-Pyridyl)-2-Thienyl} and crystal structure of [Ru3 (μ3-Se)(μ-PPh2)(μ-pyth)(CO) 6 {P (pyth) Ph2}]
JP2003073372A (en) Method for producing phenylethynyl phthalic anhydride derivative
JPH06107668A (en) Tetrathiafulvalene derivative precursor, tetrathiafulvalene derivative, production of tetrathiafulvalene derivative precursor and production of tetrathiafulvalene derivative
Ai‐Soudani et al. Heterocycles derived from dichlorothiophene
US2794824A (en) Preparation of tetracyanoethylene
US4124627A (en) Trans-fluoro(pentafluorophenyl)-bis(triethylphosphine)nickel(II)
Stadlbauer et al. The Chemistry of Carbon Subsulfide
Rausch et al. The formation and reactions of some new functionally substituted derivatives of (η5-cyclopentadienyl dicarbonylnitrosylchromium (cynichrodene)
CA1088951A (en) Process for manufacturing chlorothianthrenes
Liu et al. Anthryl-functionalized cyanide-bridged Fe/Co cubes
JPS62260719A (en) Production of transition metal polysulfide complex of former period and production thereof