JPS62260719A - Production of transition metal polysulfide complex of former period and production thereof - Google Patents

Production of transition metal polysulfide complex of former period and production thereof

Info

Publication number
JPS62260719A
JPS62260719A JP10319386A JP10319386A JPS62260719A JP S62260719 A JPS62260719 A JP S62260719A JP 10319386 A JP10319386 A JP 10319386A JP 10319386 A JP10319386 A JP 10319386A JP S62260719 A JPS62260719 A JP S62260719A
Authority
JP
Japan
Prior art keywords
general formula
complex
transition metal
polysulfide
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10319386A
Other languages
Japanese (ja)
Inventor
Akira Nakamura
晃 中村
Kazuyuki Tatsumi
巽 和行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP10319386A priority Critical patent/JPS62260719A/en
Publication of JPS62260719A publication Critical patent/JPS62260719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the titled complex useful as a raw material for a transition metal chalcogenide of the former period which is an inorganic high polymer having improved physical properties, by reacting a halide, e.g. Nb, Zr, etc., with lithium polysulfide. CONSTITUTION:This invention provides a transition metal polysulfide complex of the former period expressed by table I. This complex, particularly the transition metal polysulfide complex of the former period expressed by formula II (A is Li) is obtained by reacting a metal halide expressed by formula III with a lithium polysulfide expressed by formula IV. Li[Nb3S12], etc., may be cited as the complex expressed by said formula I. For example, NbC3 is cited as the metal halide expressed by formula III and, e.g. Li2S, is cited as the lithium polysulfide expressed by formula IV. According to this invention, the high-purity transition metal polysulfide complex of the former period is obtained in high yield and is capable of being an inorganic high polymer, e.g. niobium chalcogenide, etc., having good electric conductivity by simple thermal decomposition reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は前用jtJ]遷移金属ポリスルフィド錯体およ
びその製造方法に関し、詳しくは新規な前周期遷移金属
ポリスルフィド錯体ならびにその効率のよい製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pre-transition metal polysulfide complex and a method for producing the same, and more particularly to a novel pre-transition metal polysulfide complex and an efficient method for producing the same.

〔従来の技術および発明が解決しようとする問題点〕ニ
オブ、タンタル等の前周期遷移金属のカルコゲニド化合
物は、特有の電磁気的性質等、興味深い物性を示す無機
高分子化合物であり、最近様々な分野で注目を浴びてき
ている。
[Prior art and problems to be solved by the invention] Chalcogenide compounds of early transition metals such as niobium and tantalum are inorganic polymer compounds that exhibit interesting physical properties such as unique electromagnetic properties, and have recently been used in various fields. has been attracting attention.

しかし、これまでのところ上述の無機高分子化合物を製
造するには、前周期遷移金属の粉末とカルコゲンを7昆
合したものを500〜1000℃およびそれ以上の高温
下で同相反応させる方法に限られていた。しかも、この
固相反応によって得られる無機高分子化合物は、必ずし
も所望する物性を示さず、実用的価値のあるものはなか
なか製造することができなかった。
However, to date, the production of the above-mentioned inorganic polymer compounds has been limited to a method in which a mixture of early transition metal powder and chalcogen is subjected to an in-phase reaction at high temperatures of 500 to 1000°C or higher. It was getting worse. Moreover, the inorganic polymer compounds obtained by this solid-phase reaction do not necessarily exhibit desired physical properties, and it has been difficult to produce ones with practical value.

また、本発明者らは先般、上述の無機高分子化合物の新
しい製造方法として、モノマーに相当するエタンジチオ
ラート錯体を合成し、これを熱分解qて無機高分子化す
る方法を開発した(特願昭60−222719号明細書
)。この方法により製造される無機高分子化合物は、熱
分解条件を選定することにより、希望する電気伝導度を
付与することができるものである。しかしながら、この
無機高分子化合物には、チオラートやカチオン種に由来
する炭素や水素が10〜20%程度残存するという問題
がある。
In addition, the present inventors have recently developed a method for synthesizing ethanedithiolate complexes corresponding to monomers and thermally decomposing them into inorganic polymers as a new method for producing the above-mentioned inorganic polymer compounds (particularly Application No. 60-222719). The inorganic polymer compound produced by this method can be given a desired electrical conductivity by selecting the thermal decomposition conditions. However, this inorganic polymer compound has a problem in that about 10 to 20% of carbon and hydrogen derived from thiolate and cation species remain.

そこで本発明者らは、さらに研究を進め、上述の方法の
欠点を解消し、全く新たな方法で効率よくしかも物性の
すくれた上記無機高分子化合物である前周期遷移金属カ
ルコゲニドを製造すべく検討を重ねた。
Therefore, the present inventors conducted further research, and aimed to overcome the drawbacks of the above-mentioned methods and to efficiently produce the above-mentioned early transition metal chalcogenide, which is an inorganic polymer compound with poor physical properties, using a completely new method. After much consideration.

その結果、特定の金属ポリスルフィド錯体を熱分解する
ことにより、目的とする物性の前周期遷移金属カルコゲ
ニドを製造することに成功した。
As a result, we succeeded in producing early transition metal chalcogenide with the desired physical properties by thermally decomposing a specific metal polysulfide complex.

また、その研究過程において、本発明者らは上述の熱分
解原料として、全く新たな金属錯体を開発することにも
成功した。
In addition, in the course of the research, the present inventors also succeeded in developing a completely new metal complex as the above-mentioned thermal decomposition raw material.

本発明の目的は、すぐれた物性を有する無機高分子化合
物たる前周期遷移金属カルコゲニドの製造原料として有
用な新規な金属錯体を提供すること、およびこの錯体の
を効な製造方法を提供することにある。
The purpose of the present invention is to provide a novel metal complex useful as a raw material for producing an early transition metal chalcogenide, which is an inorganic polymer compound having excellent physical properties, and to provide an effective method for producing this complex. be.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、 一般式 %式%(1) (式中、Mはニオブ、ジルコニウム、バナジウム、タン
タルあるいはチタンを示し、Aはリチウム、テトラフェ
ニルホスホニラ11゜テ1−ラフェニルアルソニウムあ
るいはテトラアルキルアンモニウムを示す。また、X+
Yは正の実数を示す。) で表わされる前用!tJI遷移金属ポリスルフィド↑1
¥体を提供するものであり、またこの一般式(1)で表
わされる前周!t11遷移金9ポリズルフィド錯体を製
造する方法として、一般式MX’、(式中、Mは前記と
同じであり、XIはハロゲン原子を示す。
That is, the present invention is based on the general formula % (1) (where M represents niobium, zirconium, vanadium, tantalum or titanium, and A represents lithium, tetraphenylphosphonyl 11°te 1-raphenylarsonium or tetra Indicates alkylammonium.Also, X+
Y indicates a positive real number. ) is represented by the previous use! tJI transition metal polysulfide ↑1
It provides the ¥ body, and the front circumference expressed by this general formula (1)! As a method for producing a t11 transition gold 9-polysulfide complex, the general formula MX' (wherein M is the same as above and XI represents a halogen atom) is used.

mはMの原子価を示す。)で表わされるハロゲン化金属
および一般式LizSm(式中、aは1〜5の実数を示
す。)で表わされるリチウムポリスルフィドを反応させ
る方法(以下「方法1」という。
m indicates the valence of M. ) and lithium polysulfide represented by the general formula LizSm (in the formula, a represents a real number from 1 to 5) (hereinafter referred to as "Method 1").

ならびに一般式MX’ff1C式中、M 、 X ’ 
、 mは前記と同じ。)で表わされるハロゲン化金属、
一般式Li2Sa(式中、aは前記と同じ。)で表わさ
れるリチウムポリスルフィドおよび一般式QX2(式中
、Qはテトラフェニルホスホニウム。
and in the general formula MX'ff1C, M, X'
, m are the same as above. ) metal halide represented by
Lithium polysulfide represented by the general formula Li2Sa (wherein a is the same as above) and general formula QX2 (wherein Q is tetraphenylphosphonium).

テトラフェニルアルソニウムまたはテトラアルキルアン
モニウムを示し、X2はハロゲン原子を示す。)で表わ
されるハロゲン化合物を反応させる方法(以下「方法2
」という。)を提供するものである。
It represents tetraphenylarsonium or tetraalkylammonium, and X2 represents a halogen atom. ) (hereinafter referred to as "Method 2")
”. ).

前記一般的(1)で表わされる本発明の前周期遷移金属
ポリスルフィド錯体は炭素と水素を含まない可溶性キレ
ート型ポリスルフィド錯体であり、この錯体において、
Mはニオブ、ジルコニウム。
The early transition metal polysulfide complex of the present invention represented by general (1) above is a soluble chelate type polysulfide complex that does not contain carbon and hydrogen, and in this complex,
M is niobium and zirconium.

バナジウム、タンクルあるいはチタンのいずれかの前周
期遷移金属であり、Aはリチウム(Li)。
It is an early transition metal such as vanadium, tanker, or titanium, and A is lithium (Li).

テトラフェニルホスホニウム((C6H5)JP)) 
Tetraphenylphosphonium ((C6H5)JP))
.

テトラフェニルアルソニウム((C6Hs)4AS) 
あるいはテトラアルキルアンモニウム(R4N)で)、
ある。またx、yは必ずしも整数に限られず、正の実数
であればよく特に限定はないが、通常はyとXのモル比
y/xとして2〜4である。このポリスルフィド錯体の
具体例をあげれば、Aがリチウムの場合には、Li (
Nb3S+z)などがあり、またAがテトラフェニルホ
スホニウムの場合には、((C6H5)4P)[Nbz
Szz)などがある。
Tetraphenylarsonium ((C6Hs)4AS)
or with tetraalkylammonium (R4N)),
be. Further, x and y are not necessarily limited to integers, and may be any positive real number and are not particularly limited, but the molar ratio y/x of y and X is usually 2 to 4. To give a specific example of this polysulfide complex, when A is lithium, Li (
Nb3S+z) etc., and when A is tetraphenylphosphonium, ((C6H5)4P)[Nbz
Szz) etc.

前述した本発明の方法1によれば、−C式A (MXS
y)で表わされる前周期遷移金属ポリスルフィド錯体の
うち、Aがリチウムである一般式L i (M XS 
y )で表わされる錯体が得られる。この方法1によっ
て上記前周期遷移金属ポリスルフィド錯体を製造するに
は、前周期遷移金属のハロゲン化物(ハロゲン化金属)
とリチウムポリスルフィドを反応させればよい。ここで
ハロゲン化金属は一般式MX’、で表わされるものであ
り、具体的にはNbCl5+ NbBr5.ZrC1n
+  ZrBratV Cl3.  V Br3. T
aCl5. TaBr5. TlC14゜T i B 
r aなどがあげられる。
According to method 1 of the present invention described above, -C formula A (MXS
Among the early transition metal polysulfide complexes represented by y), the general formula Li (M
A complex represented by y) is obtained. In order to produce the above-mentioned early transition metal polysulfide complex by this method 1, a halide (metal halide) of an early transition metal is used.
and lithium polysulfide. Here, the metal halide is represented by the general formula MX', specifically NbCl5+ NbBr5. ZrC1n
+ ZrBratV Cl3. VBr3. T
aCl5. TaBr5. TlC14゜T i B
Examples include ra.

一方、リチウムポリスルフィドは一般式t、t2saで
表わされるものであり、具体的には通常はL iz S
 a 、  L iz S sがあげられるが、またL
izS、  I、1zSz、LizS3などもある。さ
らに上記化合物の混合物の場合はaは非整数となる。
On the other hand, lithium polysulfide is represented by the general formula t, t2sa, and specifically, it is usually L iz S
a, L iz S s, but also L
There are also izS, I, 1zSz, LizS3, etc. Further, in the case of a mixture of the above compounds, a is a non-integer.

なお、このリチウムポリスルフィドは金属リチウムと単
体いおうを液体アンモニウム中で撹拌するなどの方法で
得ることができる。
Note that this lithium polysulfide can be obtained by a method such as stirring metallic lithium and elemental sulfur in liquid ammonium.

上述の方法1は、ハロゲン化金属とリチウムポリスルフ
ィドを反応させることによって進行するが、この際溶媒
としてアセトニトリルを用いることが好ましく、アセト
ニトリル存在下で上記反応を行なうと効率よく進行する
。また、この際の反応温度は特に制限はなく、所望する
部間3tJI遷移金属ポリスルフィド錯体の種類等によ
り異なるが、一般には−40°C〜+50°C1好まし
くはo ’c〜20℃程度の範囲に設定すればよい。さ
らに、反応の際に加えるハロゲン化金属とリチウムポリ
スルフィドの量比についても、f!A造すべきポリスル
フィド錯体の種類に応じて定めればよく、特に制限はな
い。
Method 1 described above proceeds by reacting a metal halide with lithium polysulfide, and in this case, it is preferable to use acetonitrile as a solvent, and the reaction proceeds efficiently when carried out in the presence of acetonitrile. In addition, the reaction temperature at this time is not particularly limited and varies depending on the type of the desired interpartial 3tJI transition metal polysulfide complex, etc., but is generally in the range of -40°C to +50°C, preferably about o'c to 20°C. You can set it to . Furthermore, regarding the quantitative ratio of metal halide and lithium polysulfide added during the reaction, f! A may be determined depending on the type of polysulfide complex to be produced, and is not particularly limited.

次に、本発明の方法2によれば一般式A(M、s、)で
表わされる前周期遷移金属ポリスルフィド錯体のうち、
Aがテトラフェニルホスホニウムである一般式 ((C
61(S)4P)(M、Sy)の錯体、Aかテトラフェ
?ラルソニウムである一般式((C6H5)4As)(
MxSy〕の錯体、あるいはAがテトラアルキルアンモ
ニウムである一般式(R,N)(MXS、)(式中、R
はアルキル基)の錯体が得られる。この方法2によって
、前周間遷移金属ポリスルフィド錯体を製造するには、
前述のハロゲン化金属とリチウムポリスルフィドととも
に、ハロゲン化合物、具体的にはハ[2ゲン化テトラフ
エニルホスホニウム、ハロケン化テトラフェニルアルソ
ニウムあるいはハロゲン化テトラアルキルアンモニウム
を反応させn、ぽよい。ここでハロゲン化金属およびリ
チウムポリスルフィドの具体例としては前述した如きも
のがあげられる。
Next, according to method 2 of the present invention, among the early transition metal polysulfide complexes represented by the general formula A (M, s,),
General formula where A is tetraphenylphosphonium ((C
61(S)4P)(M,Sy) complex, A or tetraphe? Larsonium has the general formula ((C6H5)4As)(
MxSy] or a complex of the general formula (R,N) (MXS, ) in which A is tetraalkylammonium (wherein R
is an alkyl group). To produce a preperitoneal transition metal polysulfide complex by this method 2,
A halogen compound, specifically, tetraphenylphosphonium halide, tetraphenylarsonium halide, or tetraalkylammonium halide, is reacted with the aforementioned metal halide and lithium polysulfide. Specific examples of the metal halide and lithium polysulfide include those mentioned above.

また、ハロゲン化テトラフェニルホスホニウムは−S式
(C6H5)4PX”で表わされるものであり、具体的
には(C6H5)4PBr、(C6Hs)4PCIがあ
げられる。ハロゲン化テトラフェニルアルソニウムは一
般式(Cb Hs ) 4 A s X ”で表わされ
、具体的には(C6H5)4AS Cj!+ (ChH
s)4AsBrなどがあげられ、ハロゲン化テトラアル
キルアンモニウムは一般式R4NX”で表わされ、具体
的には(CzHs)aNcl、(CzHs)aNBr。
Furthermore, halogenated tetraphenylphosphonium is represented by the formula -S (C6H5)4PX", and specific examples include (C6H5)4PBr and (C6Hs)4PCI. Halogenated tetraphenylarsonium is represented by the general formula ( Cb Hs ) 4 A s X ”, specifically (C6H5)4AS Cj! + (ChH
s) 4AsBr, etc., and the tetraalkylammonium halide is represented by the general formula R4NX'', specifically (CzHs)aNcl, (CzHs)aNBr.

(C4H9)NCR,CCaHq)NBrなどがあげら
れる。
Examples include (C4H9)NCR, CCaHq)NBr, and the like.

上述の方法2は、ハロゲン化金属、リチウムポリスルフ
ィドおよびハロゲン化テトラフェニルホスホニウム(あ
るいはハロゲン化テトラフェニルアルソニウムやハロゲ
ン化テトラアルキルアンモニウム)を同時に反応系に加
えて反応を進行させてもよく、また前記方法1にて一般
式Li(M、S、)をつくり、さらにこれにハロゲン化
テトラフェニルホスホニウム(あるいはハロゲン化テト
ラフェニルアルソニウムやハロゲン化テトラアルキルア
ンモニウム)を反応させることによって進行させてもよ
い。いずれの場合においても反応は溶媒としてのアセト
ニトリルの存在下で進行させることが好ましく、また、
この際の反応1品度や各層f:)の使用割合については
、前記方法1に準ずればよく、特に制限はない。
In the above method 2, the reaction may proceed by simultaneously adding a metal halide, lithium polysulfide, and tetraphenylphosphonium halide (or tetraphenylarsonium halide or tetraalkylammonium halide) to the reaction system, or the above method. The reaction may be carried out by preparing the general formula Li (M, S,) in Method 1 and further reacting it with a halogenated tetraphenylphosphonium (or a halogenated tetraphenylarsonium or a halogenated tetraalkylammonium). In any case, the reaction is preferably carried out in the presence of acetonitrile as a solvent, and
At this time, the quality of the reaction and the proportion of each layer f:) to be used may be in accordance with Method 1, and there are no particular limitations.

なお、方法2によって得られる一般式 ((C6H5)4P)(MXsy)で表わされる錯体(
錯体のPh4P塩)は、一般式L i (M XS y
)で表わされる錯体(錯体のL i塩)よりも空気中に
おいてやや安定に存在するものである。
In addition, the complex represented by the general formula ((C6H5)4P)(MXsy) obtained by method 2 (
Ph4P salt of the complex) has the general formula L i (M XS y
) exists slightly more stably in the air than the complex (Li salt of the complex).

上述の方法1あるいは方法2によれば、前記したような
一般式(I)で表わされるような前周期遷移金属ポリス
ルフィド錯体の結晶が得られるが、さらにこの結晶をジ
メチルホルムアミド(DMF)等の溶媒に溶解し、再結
晶を行なえば一層純度の高い錯体が得られる。
According to Method 1 or Method 2 described above, crystals of the early transition metal polysulfide complex represented by the general formula (I) as described above can be obtained, but these crystals are further treated in a solvent such as dimethylformamide (DMF). A more pure complex can be obtained by dissolving it in and recrystallizing it.

〔発明の効果〕〔Effect of the invention〕

本発明の方法1,2によれば、高い収率でしかも高純度
の前回!tJI遷移金属ポリスルフィド錯体が得られる
。また、この錯体は、簡単な熱分解反応によって、ニオ
ブカルコゲニド、ジルコニウムカルコゲニド、バナジウ
ムカルコゲニド、タンタンカルコゲニド、チタンカルコ
ゲニドという金属カルコゲニドと称される電気伝導性の
良好な無機高分子化合物となる。特に、この場合に得ら
れる無機高分子化合物は、炭素や水素等の不純物の極め
て少ないものとなる。
According to methods 1 and 2 of the present invention, high yield and high purity can be obtained! A tJI transition metal polysulfide complex is obtained. Further, through a simple thermal decomposition reaction, this complex becomes inorganic polymer compounds with good electrical conductivity called metal chalcogenides such as niobium chalcogenide, zirconium chalcogenide, vanadium chalcogenide, tantanum chalcogenide, and titanium chalcogenide. In particular, the inorganic polymer compound obtained in this case contains extremely few impurities such as carbon and hydrogen.

したがって、本発明の前周期遷移金属ポリスルフィド錯
体は、良好な電気伝導性を示す無機高分子化合物の製造
原料として有効に利用することができる。
Therefore, the early transition metal polysulfide complex of the present invention can be effectively used as a raw material for producing an inorganic polymer compound exhibiting good electrical conductivity.

[実施例] 次に本発明を実施例によりさらに詳しく説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

なお、以下の操作はすべてアルゴン雰囲気下、あるいは
真空下で行ない、また溶媒は充分に乾燥した後、アルゴ
ン雰囲気下で蒸留して使用した。
All of the following operations were performed under an argon atmosphere or under vacuum, and the solvent was thoroughly dried and then distilled under an argon atmosphere before use.

参考例1(リチウムポリスルフィド(LizS4)の合
成)金属リチウム0.66g(95ミリモル)と単体イ
オウ(S原子すなわち1/838として) 6.1 g
(190ミリモル)を500mff三つロフラスコに入
れ、メカニカルスタラーを取り付けた。反応系を一78
℃にした後、攪拌しながらアンモニアガスを吹き込んだ
ところ、橙褐色の溶液が生成した。液体アンモニアが約
200mlになるまでアンモニアガスを吹き込み、その
後、冷媒を取り除き、室温でアンモニアを留去した。約
3時間後にはアンモニアは留去され、橙褐色の固体が得
られた。これをさらに減圧下で一晩乾燥しアンモニアを
除いた。容器の底にへばりつくようにしてリチウムポリ
スルフィド(LizSn) 7.2 gが得られた。
Reference Example 1 (Synthesis of lithium polysulfide (LizS4)) 0.66 g (95 mmol) of metallic lithium and 6.1 g of elemental sulfur (S atom, that is, 1/838)
(190 mmol) was placed in a 500 mff three-neck flask and equipped with a mechanical stirrer. The reaction system is 78
After bringing the temperature to ℃, ammonia gas was blown into the mixture while stirring, and an orange-brown solution was produced. Ammonia gas was blown into the reactor until the liquid ammonia amounted to about 200 ml, then the refrigerant was removed, and the ammonia was distilled off at room temperature. After about 3 hours, ammonia was distilled off and an orange-brown solid was obtained. This was further dried under reduced pressure overnight to remove ammonia. 7.2 g of lithium polysulfide (LizSn) was obtained so that it stuck to the bottom of the container.

参1112 <リチウムポリスルフィド頁LizSs)
の合成)参考例1において、単体イオウ(S原子すなわ
ち1/8Seとして)を7.6g(240ミリモル)と
したjこヒ以外は、参考例Iと同様の操作を行なって、
リチウムポリスルフィド(LizSs)を高収率で得た
Reference 1112 <Lithium polysulfide page LizSs)
Synthesis) In Reference Example 1, the same operation as in Reference Example I was carried out, except that 7.6 g (240 mmol) of elemental sulfur (S atom, that is, 1/8 Se) was used.
Lithium polysulfide (LizSs) was obtained in high yield.

実施例1 参考例2で得られたリチウムポリスルフィド(L iz
 S s’) 6.3 g (36,2ミリモル)のア
セトニトリル溶液100mlに、五塩化ニオブ(NbC
1,)2.9g(10,7ミリモル)のアセトニトリル
溶液60m1水浴中で滴下した。数分で溶液の色は褐色
から緑に変わった。そのまま−晩撹拌した。その後褐色
の沈殿(LiC1,Nbを含む分解物)を濾過により取
除いた後、アセトニトリルを減圧下で留去し、緑色ター
ル状の固体(ポリスルフィド錯体Li (Nb3S、□
))5.8gを得た。
Example 1 Lithium polysulfide (Liz
S s') 6.3 g (36.2 mmol) of niobium pentachloride (NbC
1.) A solution of 2.9 g (10.7 mmol) of acetonitrile was added dropwise in a 60 ml water bath. The color of the solution changed from brown to green in a few minutes. The mixture was stirred overnight. After that, the brown precipitate (decomposed product containing LiCl, Nb) was removed by filtration, and the acetonitrile was distilled off under reduced pressure.
)) 5.8g was obtained.

実施例2 上記実施例1で得られた固体にテトラフェニルホスホニ
ウムブロマイド(C6H5)4P B r 4. l’
g(10ミリモル)のアセトニトリル溶液(20mjり
を少量ずつ加えて攪拌し、−晩冷蔵庫に静置して粗結晶
を得、さらにこれを常法により精製して結晶3.5gを
得た。このものの分析結果は次のとおりであった。
Example 2 Tetraphenylphosphonium bromide (C6H5)4P B r was added to the solid obtained in Example 1 above. l'
(10 mmol) of acetonitrile solution (20 mj) was added little by little, stirred, and left to stand in the refrigerator overnight to obtain crude crystals, which were further purified by a conventional method to obtain 3.5 g of crystals. The analysis results were as follows.

遠赤外吸収スペクトル(Nujol mull、 cm
−’)492m、  369m、  350m、  3
25m。
Far infrared absorption spectrum (Nujol mull, cm
-') 492m, 369m, 350m, 3
25m.

290ww、  267w、  187W紫外−可視吸
収スペクトル(λmax、 nm)CTI3CN溶液5
G0.612; C11:lOH溶ン(1318,380sh、   4
30shこれらの結果および元素分析の結果から、上記
結晶は組成式((C6H5)4P)CNh3S+□〕で
表わされるポリスルフィド錯体であることがわかった。
290ww, 267w, 187W UV-visible absorption spectrum (λmax, nm) CTI3CN solution 5
G0.612; C11:1OH soluble (1318,380sh, 4
From these results and the results of elemental analysis, it was found that the above crystal was a polysulfide complex represented by the compositional formula ((C6H5)4P)CNh3S+□].

実施例3 参考例1で得られたリチウムポリスルフィド(Lj25
4) 6.6 g(44゜6ミリモル)と四塩化ジルコ
ニウム(ZrCI4) 3.4 g  (14,8gミ
リ、ユ モル)をアセトニトリル中にて室温1時間反応させて橙
色のポリスルフィド錯体Li (ZrXS、)6.6g
を得た。この錯体はアセトニトリルやジメチルホルムア
ミド るが、これはS3−の色である。またこの錯体はメタノ
ールに熔けて黄色溶液になった。なお、このものの分析
結果(紫外−可視吸収スペクトル)は次の通りであった
Example 3 Lithium polysulfide obtained in Reference Example 1 (Lj25
4) 6.6 g (44°6 mmol) and 3.4 g (14.8 g mmol) of zirconium tetrachloride (ZrCI4) were reacted in acetonitrile at room temperature for 1 hour to form an orange polysulfide complex Li (ZrXS, )6.6g
I got it. This complex is made of acetonitrile or dimethylformamide, and this is the color of S3-. This complex also dissolved in methanol to form a yellow solution. The analysis results (ultraviolet-visible absorption spectrum) of this product were as follows.

紫外−可視吸収スペクトル(λmax, nm)c H
 、O H ?8液 4 0 2実施例4 三塩化バナジウム(VCI:l) 2.4 g (1 
5ミリモル)のアセトニトリル懸濁液を、参考例1で得
られたリチウムポリスルフィド(LizSa) 4. 
2 g(30.2ミリモル)のアセトニトリル懸濁液に
加えたところ、液の色が橙褐色から濃褐色に変化した。
Ultraviolet-visible absorption spectrum (λmax, nm) c H
,OH? 8 liquid 4 0 2 Example 4 Vanadium trichloride (VCI:l) 2.4 g (1
5 mmol) of acetonitrile suspension was mixed with the lithium polysulfide (LizSa) obtained in Reference Example 1.
When it was added to a suspension of 2 g (30.2 mmol) in acetonitrile, the color of the liquid changed from orange-brown to dark brown.

1時間攪拌した後、不溶物を濾過し、減圧下で溶媒を留
去したところ、黒色ガラス状の固体(ポリスルフィド錯
体L i ( V XS y))6. 2 gが得られ
た。この生成物はアセトニトリルやDMFに溶−は緑色
の溶液を与え、またメタノールに溶は黄色の溶液になっ
た。なお、このものの分析結果(紫外−可視吸収スペク
トル)は次のとおりであった。
After stirring for 1 hour, insoluble matter was filtered and the solvent was distilled off under reduced pressure, resulting in a black glassy solid (polysulfide complex Li (V XS y))6. 2 g was obtained. This product gave a green solution when dissolved in acetonitrile or DMF, and a yellow solution when dissolved in methanol. The analysis results (ultraviolet-visible absorption spectrum) of this product were as follows.

紫外−可視吸収スペクトル(λmax, nm)C H
 :lO H ?8液 2’5  6,   3  5
  7,   4  5  0sh。
Ultraviolet-visible absorption spectrum (λmax, nm) C H
:lOH? 8 liquid 2'5 6, 3 5
7,450sh.

4 9 0sh,  5 9 0sh,  6 5 0
sh実施例5 参考例1で得られたリチウムポリスルフィド(LizS
4) 6. 6 g ( 44. 6ミリモル)と五塩
化タンクル(Tacls) 5. 7 g  ( 1 
5. 6ミリモル)幸 をアセトニトリルにて室温1時間反応させて赤褐色のポ
リスルフィド錯体i体Li (Ta.s,) 6. 8
 gを得た。
4 9 0sh, 5 9 0sh, 6 5 0
sh Example 5 Lithium polysulfide (LizS) obtained in Reference Example 1
4) 6. 6 g (44.6 mmol) and Tacls pentachloride 5. 7 g (1
5. 6 mmol)) was reacted with acetonitrile at room temperature for 1 hour to obtain a reddish brown polysulfide complex i-form Li (Ta.s,) 6. 8
I got g.

このta体はアセトニトリルやり. M Fに溶は緑色
溶液となり、またメタノールに)容けて赤褐色)各機に
なった。なお、このものの分析結果(紫外−可視吸収ス
ペクトル)は次の通りであった。
This ta body is acetonitrile. When dissolved in MF, it became a green solution, and when dissolved in methanol, it became a reddish brown solution. The analysis results (ultraviolet-visible absorption spectrum) of this product were as follows.

紫外−可視吸収スペクトル(λmax, nm)C H
:lO Hm?ffl 3 1 0 sh,  3 7
 0 sh。
Ultraviolet-visible absorption spectrum (λmax, nm) C H
:lO Hm? ffl 3 1 0 sh, 3 7
0 sh.

20sh 1・1己−・ニーへ120sh 1・1self-・neeto1

Claims (8)

【特許請求の範囲】[Claims] (1)一般式 A〔M_xS_y〕 (式中、Mはニオブ、ジルコニウム、バナジウム、タン
タルあるいはチタンを示し、A はリチウム、テトラフェニルホスホニウム、テトラフェ
ニルアルソニウムあるいはテト ラアルキルアンモニウムを示す。また、x、yは正の実
数を示す。) で表わされる前周期遷移金属ポリスルフィド錯体。
(1) General formula A [M_xS_y] (wherein M represents niobium, zirconium, vanadium, tantalum, or titanium; A represents lithium, tetraphenylphosphonium, tetraphenylarsonium, or tetraalkylammonium; x, (y is a positive real number.) An early transition metal polysulfide complex represented by:
(2)一般式MX^1_m(式中、Mはニオブ、ジルコ
ニウム、バナジウム、タンタルあるいはチタンを示し、
X^1はハロゲン原子を示す。mはMの原子価を示す。 )で表わされるハロゲン化金属および一般式Li_2S
a(式中、aは1〜5の実数を示す。)で表わされるリ
チウムポリスルフィドを反応させることを特徴とする 一般式 Li〔M_xS_y〕 (式中、Mは前記と同じであり、x、yは正の実数を示
す。) で表わされる前周期遷移金属ポリスルフィド錯体の製造
方法。
(2) General formula MX^1_m (where M represents niobium, zirconium, vanadium, tantalum or titanium,
X^1 represents a halogen atom. m indicates the valence of M. ) and the general formula Li_2S
General formula Li[M_xS_y] characterized by reacting lithium polysulfide represented by a (wherein a represents a real number of 1 to 5) (wherein M is the same as above, x, y is a positive real number.) A method for producing an early period transition metal polysulfide complex.
(3)反応をアセトニトリルの存在下で行なう特許請求
の範囲第2項記載の製造方法。
(3) The manufacturing method according to claim 2, wherein the reaction is carried out in the presence of acetonitrile.
(4)一般式MX^1_m(式中、Mはニオブ、ジルコ
ニウム、バナジウム、タンタルあるいはチタンを示し、
X^1はハロゲン原子を示す。mはMの原子価を示す。 )で表わされるハロゲン化金属、一般式Li_2Sa(
式中、aは1〜5の実数を示す。)で表わされるリチウ
ムポリスルフィドおよび一般式QX^2(式中、Qはテ
トラフェニルホスホニウム、テトラフェニルアルソニウ
ムまたはテトラアルキルアンモニウムを示し、X^2は
ハロゲン原子を示す。)で表わされるハロゲン化合物を
反応させることを特徴とする。 一般式 Q〔M_xS_Y〕 (式中、Q、Mは前記と同じであり、x、yは正の実数
を示す。) で表わされる前周期遷移金属ポリスルフィド錯体の製造
方法。
(4) General formula MX^1_m (where M represents niobium, zirconium, vanadium, tantalum or titanium,
X^1 represents a halogen atom. m indicates the valence of M. ), a metal halide represented by the general formula Li_2Sa (
In the formula, a represents a real number from 1 to 5. ) and a halogen compound represented by the general formula QX^2 (wherein, Q represents tetraphenylphosphonium, tetraphenylarsonium, or tetraalkylammonium, and X^2 represents a halogen atom). It is characterized by causing A method for producing an early transition metal polysulfide complex represented by the general formula Q [M_xS_Y] (wherein Q and M are the same as above, and x and y represent positive real numbers).
(5)反応をアセトニトリルの存在下で行なう特許請求
の範囲第4項記載の製造方法。
(5) The manufacturing method according to claim 4, wherein the reaction is carried out in the presence of acetonitrile.
(6)一般式QX^2で表わされるハロゲン化合物が、
一般式(C_6H_5)_4PX^2で表わされるハロ
ゲン化テトラフェニルホスホニウムである特許請求の範
囲第4項記載の製造方法。
(6) The halogen compound represented by the general formula QX^2 is
The manufacturing method according to claim 4, which is a halogenated tetraphenylphosphonium represented by the general formula (C_6H_5)_4PX^2.
(7)一般式QX^2で表わされるハロゲン化合物が、
一般式(C_6H_5)_4AsX^2で表わされるハ
ロゲン化テトラフェニルアルソニウムである特許請求の
範囲第4項記載の製造方法。
(7) The halogen compound represented by the general formula QX^2 is
The manufacturing method according to claim 4, which is a tetraphenylarsonium halide represented by the general formula (C_6H_5)_4AsX^2.
(8)一般式QX^2で表わされるハロゲン化合物が、
一般式R_4NX^2(式中、Rはアルキル基を示す。 )で表わされるハロゲン化テトラアルキルアンモニウム
である特許請求の範囲第4項記載の製造方法。
(8) The halogen compound represented by the general formula QX^2 is
The manufacturing method according to claim 4, which is a halogenated tetraalkylammonium represented by the general formula R_4NX^2 (wherein R represents an alkyl group).
JP10319386A 1986-05-07 1986-05-07 Production of transition metal polysulfide complex of former period and production thereof Pending JPS62260719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10319386A JPS62260719A (en) 1986-05-07 1986-05-07 Production of transition metal polysulfide complex of former period and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319386A JPS62260719A (en) 1986-05-07 1986-05-07 Production of transition metal polysulfide complex of former period and production thereof

Publications (1)

Publication Number Publication Date
JPS62260719A true JPS62260719A (en) 1987-11-13

Family

ID=14347678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319386A Pending JPS62260719A (en) 1986-05-07 1986-05-07 Production of transition metal polysulfide complex of former period and production thereof

Country Status (1)

Country Link
JP (1) JPS62260719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148432A1 (en) * 2013-03-18 2014-09-25 独立行政法人産業技術総合研究所 Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278793A (en) * 1975-12-17 1977-07-02 Exxon Research Engineering Co Chalcogenite and its manufacturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278793A (en) * 1975-12-17 1977-07-02 Exxon Research Engineering Co Chalcogenite and its manufacturing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148432A1 (en) * 2013-03-18 2014-09-25 独立行政法人産業技術総合研究所 Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide
JP6011989B2 (en) * 2013-03-18 2016-10-25 国立研究開発法人産業技術総合研究所 Lithium titanium sulfide, lithium niobium sulfide and lithium titanium niobium sulfide
US10090524B2 (en) 2013-03-18 2018-10-02 National Institute Of Advanced Industrial Science And Technology Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide

Similar Documents

Publication Publication Date Title
Tiecco et al. New synthesis of vinyl selenides nucleophilic substitutions of unactivated vinyl halides by selenide anions
JPS6325207A (en) Manufacture of metallic oxide having no halide and metallic oxide
US3071605A (en) Process for producing cyclopentadienyl-type metallic compounds
Solari et al. Organometallic chemistry of vanadium (III) based on the vanadium-dibenzotetramethyltetraaza [14] annulene moiety: synthesis, structural studies by x-ray and proton NMR spectroscopy, and reactivity of vanadium-carbon functionalities
JPS5819604B2 (en) Method for producing phosphazene oligomer
Uhl et al. Formation of the Digallium Compound [(C5C6) 2N3](R) Ga–Ga (R)[N3 (C6H5) 2] with Two Bis (trimethylsilyl) methyl Groups and Two Terminal Chelating Diphenyltriazenido Ligands
JPS62260719A (en) Production of transition metal polysulfide complex of former period and production thereof
JPH06157513A (en) Production of 1-acetylbenzo(b)thiophene
Sellmann et al. Transition-metal complexes with sulfur ligands. 50. Sulfur bond cleavage in organosulfur ligands induced by PPh3/NO substitution reactions at [Ru (PPh3) 2 ('L4')] centers. Synthesis and reactions of various (vinylthio) arenethiolate and related [Ru (NO)(Y)('L4')](Y= PPh3, Cl) complexes. X-ray structure analysis of nitrosyl (triphenylphosphine)(1, 2-benzenedithiolato)(1-(vinylthio)-2-benzenethiolato) ruthenium (III)
Goher et al. 1D polymeric copper (II) complexes containing bridging tridentate pyrazinato and terminal chloro or azido anions. Synthesis, spectral, structural and thermal study of [CuCl (pyrazinato)(H2O)] n and [Cu (N3)(pyrazinato)(H2O)] n complexes
KR930005258B1 (en) Process for producing vanadium-arenes
Vaartstra et al. A comparison of heterometallic alkoxide molecules containing copper (I) or copper (II) and zirconium
EP0270490B1 (en) Process for the preparation of organo-metallic compounds
Klein et al. Silyl-, stannyl-and plumbyl-copper compounds containing chelating and monodentate phosphine ligands
JPH0519489B2 (en)
US3278258A (en) Preparation of partially reduced transition metal bromides
JPS6284091A (en) Production of electrically conductive inorganic high polymer containing group v metal
JPH06107668A (en) Tetrathiafulvalene derivative precursor, tetrathiafulvalene derivative, production of tetrathiafulvalene derivative precursor and production of tetrathiafulvalene derivative
US2794824A (en) Preparation of tetracyanoethylene
Fowles et al. Reaction of dimethylzinc with tantalum (V) chloride and some co-ordination compounds of methyltantalum (V) chloride, dimethyltantalum (V) chloride and methylniobium (V) chloride
KR102409622B1 (en) Chromium compound and method for preparing the same
Fumagalli et al. Mixed rhodium-osmium carbonyl clusters. Synthesis of the anions [OsRh5 (CO) 16]-and [OsRh3 (CO) 12]-and crystal structures of their (. mu.-nitrido) bis (triphenylphosphorus)(1+) salts
JPH0451557B2 (en)
Higham et al. Synthesis and structure of bis [2, 2′-methylenebis (2, 4-di-t-butylphenoxo)] niobium chloride
Klein et al. Dichlorodinickel (i) Complexes with μ2‐CO or μ2‐CS Bridges and Trimethylphosphane Ligands: Homologous Composition, but Different Frameworks