JPH05109420A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH05109420A
JPH05109420A JP4066829A JP6682992A JPH05109420A JP H05109420 A JPH05109420 A JP H05109420A JP 4066829 A JP4066829 A JP 4066829A JP 6682992 A JP6682992 A JP 6682992A JP H05109420 A JPH05109420 A JP H05109420A
Authority
JP
Japan
Prior art keywords
holding material
lial
fuel cell
molten carbonate
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4066829A
Other languages
Japanese (ja)
Inventor
Yoshihiro Akasaka
芳浩 赤坂
Hideyuki Ozu
秀行 大図
Hiroshi Tateishi
浩史 立石
Kazuaki Nakagawa
和明 中川
Morohiro Tomimatsu
師浩 富松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4066829A priority Critical patent/JPH05109420A/en
Publication of JPH05109420A publication Critical patent/JPH05109420A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To suppress a reduction in specific surface area by the grain growth of a holding material in an electrolytic plate in a molten carbonate fuel cell, use the holding material never deteriorated in electrolyte holding characteristic, and provide a molten carbonate fuel cell having satisfactory generating characteristic over a long time. CONSTITUTION:In a molten carbonate fuel cell, LiAlXOY (4.5<=X<=5.5, 7.25<=Y<=8.75) is contained in a holding material in an electrolytic plate. Further, a mixed phase of LiAlXOY (4.5<=X<=5.5, 7.25<=Y<=8.75) and gamma-LiAlO2 is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解質板の材質を改善
し、電池性能を向上した溶融炭酸塩型燃料電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell having an improved electrolyte plate material and improved cell performance.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、燃料電池の中
でも、りん酸型、固体電解質型などに比べて、電極反応
が起こりやすく、発電効率が高くなり、また、炭酸ガス
の発生量を火力電力の80%以下に抑えることができる
などの点から省エネ、環境問題で、時代のニーズにもあ
っていることから注目を集めている。
2. Description of the Related Art Molten carbonate fuel cells are more susceptible to electrode reactions than other types of fuel cells, such as phosphoric acid type and solid electrolyte type, and have higher power generation efficiency. It is attracting attention because it can be reduced to 80% or less of thermal power and it is energy saving and environmental problem, and it meets the needs of the times.

【0003】溶融炭酸塩型燃料電池は、基本的には、酸
化剤極と燃料極の二つの電極と、アルカリ炭酸塩の電解
質を含浸する電解質板からなる。電解質板は、充填材と
してのセラミック系の保持材と補強材とを混合し、シー
ト状および平板状に成形した多孔質マトリックスシート
に(Li2 CO3 ,K2 CO3 及びNa2 CO3 のうち
の2種又は3種から選ばれる混合)アルカリ炭酸塩の電
解質を含浸させて得る。保持材は、電解質を保持するた
めに用いられているものである。また、補強材は、電解
質板のクラックや、つぶれを防ぐために用いられている
ものである。
A molten carbonate fuel cell basically comprises two electrodes, an oxidizer electrode and a fuel electrode, and an electrolyte plate impregnated with an alkali carbonate electrolyte. The electrolyte plate is a mixture of a ceramic-based holding material as a filler and a reinforcing material, and a porous matrix sheet formed into a sheet shape or a flat plate shape (of Li 2 CO 3 , K 2 CO 3 and Na 2 CO 3 ). It is obtained by impregnating with an electrolyte of a mixed carbonate carbonate selected from two or three of them. The holding material is used to hold the electrolyte. The reinforcing material is used to prevent cracks and crushing of the electrolyte plate.

【0004】従来、電解質板を構成する充填材として
は、例えば、単粒子の粒径が0.1μm乃至0.5μm
で、比表面積が5m2 /g乃至25m2 /gのLiAl
2 や部分安定化ジルコニアなどからなる保持材が含ま
れていた。また、従来用いられているLiAlO2 は、
γ相を主な構成相とし、α相を数wt%不純物として含む
ものが用いられている。
Conventionally, as a filler constituting an electrolyte plate, for example, the particle size of a single particle is 0.1 μm to 0.5 μm.
And the specific surface area is 5m 2 / G to 25m 2 / G of LiAl
A holding material made of O 2 or partially stabilized zirconia was included. In addition, LiAlO 2 conventionally used is
The one containing γ phase as a main constituent phase and α phase as a few wt% impurity is used.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記に示した
従来用いられている充填材は、溶融炭酸塩中では、比較
的安定な化合物であるとして用いられていたが、長時間
に亙り、高温で腐食性の強い溶融炭酸塩と共に置かれる
と、単粒子同志が焼結したり、単粒子がいったん溶かさ
れてそれが再析出することなどにより単粒子が凝集し、
粒成長を生じてしまう。そのため比表面積が著しく低下
し、電解質保持のための骨格となる多孔質マトリックス
の粒径が粗大化する。
However, the above-mentioned conventionally used fillers have been used as a relatively stable compound in molten carbonate, but they are used at high temperatures for a long time. When placed with a highly corrosive molten carbonate, the single particles will sinter, or the single particles will once be melted and re-precipitated, causing the single particles to aggregate,
Grain growth will occur. Therefore, the specific surface area is remarkably reduced, and the particle size of the porous matrix that serves as a skeleton for retaining the electrolyte becomes coarse.

【0006】とくに、従来のLiAlO2 は、前述のよ
うに少量のα−LiAlO2 を不純物相として含有して
いるが、α−LiAlO2 が0.5wt%以上含まれると
γ−LiAlO2 と溶融炭酸塩との反応により容易にα
−LiAlO2 への相変態を生じて、粒成長を著しく加
速し、比表面積を低下させる。
In particular, conventional LiAlO 2 contains a small amount of α-LiAlO 2 as an impurity phase as described above, but when α-LiAlO 2 is contained in an amount of 0.5 wt% or more, it melts with γ-LiAlO 2. Α easily by reaction with carbonate
Caused a phase transformation to -LiAlO 2, significantly accelerate grain growth, reduces the specific surface area.

【0007】以上のように保持材の比表面積が低下し、
5m2 /gより小さくなると電解質保持特性が急激に劣
化し、電解質の漏洩や、揮散を生じ、それにより内部抵
抗を増加させるだけでなく、電解質の局部的な散逸に伴
うガスクロスオーバーの原因ともなり、発電特性を著し
く低下させるという問題があった。
As described above, the specific surface area of the holding material decreases,
5m 2 If it is less than / g, the electrolyte retention property deteriorates rapidly, causing electrolyte leakage and volatilization, which not only increases the internal resistance, but also causes gas crossover due to local dissipation of the electrolyte. There is a problem that the power generation characteristics are significantly deteriorated.

【0008】本発明は上記の問題に鑑み、溶融炭酸塩中
においても、比表面積の低下が抑制されて、電解質保持
特性が劣化しない充填材を用い、長時間に亙り良好な発
電特性を持続する溶融炭酸塩型燃料電池を提供すること
を目的とする。
In view of the above problems, the present invention uses a filler that suppresses the decrease in specific surface area even in molten carbonate and does not deteriorate electrolyte retention characteristics, and maintains good power generation characteristics for a long time. An object is to provide a molten carbonate fuel cell.

【0009】[0009]

【課題を解決するための手段および作用】本発明は、電
解質と充填材とを含む電解質板を介して燃料極と酸化剤
極とが対向している溶融炭酸型燃料電池において、前記
充填材がLiAlX Y (4.5 ≦X≦5.5 ,7.25≦Y≦
8.75)を含むことを特徴とする溶融炭酸塩型燃料電池で
ある。また、本発明は溶融炭酸型燃料電池において、前
記充填材がLiAlX Y(4.5 ≦X≦5.5 ,7.25≦Y
≦8.75)とγ−LiAlO2 の混合相であることを特徴
とする溶融炭酸塩型燃料電池である。
The present invention provides a molten carbon dioxide fuel cell in which a fuel electrode and an oxidizer electrode are opposed to each other via an electrolyte plate containing an electrolyte and a filler, and the filler is LiAl X O Y (4.5 ≤ X ≤ 5.5, 7.25 ≤ Y ≤
8.75), which is a molten carbonate fuel cell. In the molten carbon dioxide fuel cell according to the present invention, the filler is LiAl X O Y (4.5 ≤ X ≤ 5.5, 7.25 ≤ Y).
A molten carbonate fuel cell, characterized in that it is a mixed phase of ≦ 8.75) and γ-LiAlO 2 .

【0010】以下、本発明の溶融炭酸塩型燃料電池の保
持材、補強材等の充填材中に含まれるLiAlX
Y (4.5 ≦X≦5.5 ,7.25≦Y≦8.75)を、その組成の
一例であるLiAl5 8 として説明する。
Hereinafter, LiAl X O contained in the filler such as the holding material and the reinforcing material of the molten carbonate fuel cell of the present invention.
Y (4.5 ≦ X ≦ 5.5, 7.25 ≦ Y ≦ 8.75) will be described as an example of its composition, LiAl 5 O 8 .

【0011】本発明者らはLiAl5 8 を含んだ充填
材は、LiAlO2 や部分安定化ジルコニアなどの従来
の充填材に比べて溶融炭酸塩中にあっても、容易に相変
態を生じないという性質を見出した。
The present inventors have found that the filler containing LiAl 5 O 8 easily undergoes phase transformation even in the molten carbonate as compared with the conventional fillers such as LiAlO 2 and partially stabilized zirconia. I found that there is no property.

【0012】本発明における充填材はLiAl5 8
含んでいれば良く、保持材、補強材の少なくとも一方が
LiAl5 8 を含んでいても良いし、又LiAl5
8 とLiAlO2 や部分安定化ジルコニアなどとの混合
相を用いることもできる。さらに、LiAlO2 と部分
安定化ジルコニアとLiAl5 8 の3種の混合相でも
構わない。
The filler in the present invention only needs to contain LiAl 5 O 8, and at least one of the holding material and the reinforcing material may contain LiAl 5 O 8 , or LiAl 5 O 8.
It is also possible to use a mixed phase of 8 and LiAlO 2 , partially stabilized zirconia, or the like. Further, a mixed phase of three kinds of LiAlO 2 , partially stabilized zirconia and LiAl 5 O 8 may be used.

【0013】なお、LiAlO2 とLiAl5 8 の混
合相である充填材を用いる場合は、充填材中にLiAl
5 8 が0.1wt%以上含まれればよく、好ましくは、
1wt%以上含まれることが望ましい。
When a filler which is a mixed phase of LiAlO 2 and LiAl 5 O 8 is used, LiAl is included in the filler.
5 O 8 may be contained in an amount of 0.1 wt% or more, and preferably,
It is desirable that the content be 1 wt% or more.

【0014】一方、LiAlO2 とLiAl5 8 との
混合相において、特にLiAl5 8 とγ−LiAlO
2 との混合相を用いることにより、溶融炭酸塩中にあっ
ても容易にα−LiAlO2 への相変態を生じず、粒成
長が抑制されるという性質がある。ただしこのとき充填
材中にはα−LiAlO2 を不純物として含まないこと
が好ましい。
On the other hand, in the mixed phase of LiAlO 2 and LiAl 5 O 8 , especially LiAl 5 O 8 and γ-LiAlO
The use of the mixed phase with 2 has a property that the phase transformation to α-LiAlO 2 does not easily occur even in the molten carbonate and grain growth is suppressed. However, at this time, it is preferable that the filler does not contain α-LiAlO 2 as an impurity.

【0015】前記のようなLiAl5 8 とγ−LiA
lO2 の混合相である充填材を保持材として用いる場
合、保持材中にLiAl5 8 が0.1wt%以上50wt
%以下の範囲で含まれていればよく、好ましくは、1wt
%以上50wt%以下の範囲で含まれているとよい。
LiAl 5 O 8 and γ-LiA as described above
When a filler that is a mixed phase of 10 2 is used as a holding material, LiAl 5 O 8 is contained in the holding material in an amount of 0.1 wt% to 50 wt%.
%, And the content is preferably 1 wt.
% Or more and 50 wt% or less.

【0016】また、保持材として用いる際は、その結晶
粒の比表面積が、5m2 /g以上、25m2 /g以下が
好ましく、9m2 /g以上11m2 /g以下の範囲なら
ばより好ましい。5m2 /g以下では、電解質保持特性
が劣り、25m2 /g以上の高比表面積になると、多孔
質体の形成が著しく困難となる。本発明の充填材中に含
まれるLiAlX Y は4.5 ≦X≦5.5 ,7.25≦Y≦8.
75であれば保持材の粒成長が抑制される。
When used as a holding material, the specific surface area of the crystal grains is 5 m 2 / G or more, 25m 2 / G or less is preferable, 9 m 2 / G or more 11m 2 It is more preferably in the range of / g or less. 5m 2 / G or less, electrolyte retention characteristics are poor, 25m 2 When the specific surface area is higher than / g, it becomes extremely difficult to form a porous body. LiAl X O Y contained in the filler of the present invention is 4.5≤X≤5.5, 7.25≤Y≤8.
When it is 75, the grain growth of the holding material is suppressed.

【0017】また、電解質板中の補強材としてもLiA
5 8を用いることにより溶融炭酸塩中でも補強材の
粒成長が抑えられ、電解質板のつぶれやクラックを防止
する上で好ましい。
LiA is also used as a reinforcing material in the electrolyte plate.
The use of l 5 O 8 is preferable in that the grain growth of the reinforcing material can be suppressed even in the molten carbonate and the crushing and cracking of the electrolyte plate can be prevented.

【0018】なお、補強材として用いる際は、耐熱サイ
クルの観点から通常平均粒径は、10μm以上50μm
以下が好ましい。10μm未満の場合はクラックの防止
効果が不十分であり、50μmを越えると逆に異物とし
て割れの起点となるためである。次に本発明に係る、L
iAl5 8 の製造方法について説明する。
When used as a reinforcing material, the average particle diameter is usually 10 μm or more and 50 μm or more from the viewpoint of heat resistance cycle.
The following are preferred. This is because if it is less than 10 μm, the effect of preventing cracks is insufficient, and if it exceeds 50 μm, on the contrary, it becomes a starting point of cracking as foreign matter. Next, L according to the present invention
A method of manufacturing iAl 5 O 8 will be described.

【0019】本発明の溶融炭酸塩型燃料電池において電
解質板をつくる際は、通常上記の保持材と補強材と有機
系のバインダーとを混合して、有機溶剤と共にスラリー
状にする。それをシート状にし、乾燥して、グリーンシ
ートとする。得られたグリーンシートを脱脂することに
より製造する。
When forming an electrolyte plate in the molten carbonate fuel cell of the present invention, the above-mentioned holding material, reinforcing material and organic binder are usually mixed and made into a slurry with an organic solvent. It is made into a sheet and dried to give a green sheet. It is manufactured by degreasing the obtained green sheet.

【0020】γ−Al2 3 とLi2 CO3 粉末を4対
1の割合で、アセトンを用い湿式混合を行ない、均一な
スラリーとした後、乾燥させ粉末化する。次に得られた
粉末をアルミナボート中に充填した後、空気中で100
0℃、100時間保持し熱処理した。得られた粉末をX
線回折及び化学分析により評価したところLiAl5
8 が約80wt%、γ−LiAlO2 が約20wt%含まれ
た粉末であることが確認された。
The γ-Al 2 O 3 and Li 2 CO 3 powders were wet-mixed with acetone in a ratio of 4: 1 to form a uniform slurry, which was then dried and powdered. Next, the obtained powder is filled in an alumina boat, and then 100% in air.
It was kept at 0 ° C. for 100 hours for heat treatment. The obtained powder is X
When evaluated by line diffraction and chemical analysis, LiAl 5 O
8 is about 80wt%, γ-LiAlO 2 it was confirmed that the powder contained about 20 wt%.

【0021】上記LiAl5 8 を80wt%とγ−Li
AlO2 を20wt%含む粉末を70℃で塩酸中に1時間
浸漬保持した。そして次に浸漬液を瀘過した後の残渣を
乾燥し、粉末を得た。得られた粉末をX線回折及び化学
分析により評価したところLiAl5 8 単相であるこ
とが確認された。また、保持材の比表面積は10m2
gであった。
The above LiAlFiveO880 wt% and γ-Li
AlO2Powder containing 20wt% of H2O2 in hydrochloric acid at 70 ℃ for 1 hour
It was kept immersed. And then the residue after filtering the immersion liquid
It was dried to obtain a powder. The powder obtained is subjected to X-ray diffraction and chemical analysis.
When evaluated by analysis, LiAlFiveO8Being a single phase
Was confirmed. Moreover, the specific surface area of the holding material is 10 m.2 /
It was g.

【0022】LiAl5 8 のみを使用する際には前述
の酸処理後のものを、又LiAl58 とγ−LiAl
2 との混合相を用いる場合には酸処理前のものを用い
ることができる。なお、前述の酸処理としては使用する
酸は濃塩酸または王水が好ましい。
When only LiAl 5 O 8 is used, the one after the above-mentioned acid treatment is used, and LiAl 5 O 8 and γ-LiAl are also used.
When a mixed phase with O 2 is used, the one before acid treatment can be used. The acid used for the above-mentioned acid treatment is preferably concentrated hydrochloric acid or aqua regia.

【0023】300ccのビーカーに濃塩酸を200c
c入れた後65〜70℃に加熱保持し、次に試料(Li
AlX Y とγ−LiAlO2 混合充填材)2gを上記
加熱保持された塩酸中に分散させ、1時間撹拌した後、
放冷する。そして、得られた溶液を濾過し、残渣をアル
カリ溶液により洗浄することが望ましい。
Add 200 ml of concentrated hydrochloric acid to a 300 cc beaker.
c and then heated and held at 65 to 70 ° C., and then the sample (Li
2 g of Al X O Y and γ-LiAlO 2 mixed filler) was dispersed in the hydrochloric acid kept heated and stirred for 1 hour,
Allow to cool. Then, it is desirable to filter the obtained solution and wash the residue with an alkaline solution.

【0024】また上記塩酸温度は、室温付近では、γ−
LiAlO2 を完全に溶解除去することが困難であり、
100℃と高温の場合は、LiAl5 8 を溶かしてし
まうため好ましくない。
The above-mentioned hydrochloric acid temperature is γ-
It is difficult to completely dissolve and remove LiAlO 2 .
When the temperature is as high as 100 ° C., LiAl 5 O 8 is dissolved, which is not preferable.

【0025】また、塩酸中に入れる試料量は塩酸100
ccに対し、1gの割合より多い場合は、溶液が過飽和
となり、放冷した際、LiAlCl4 、LiAl4 4
Cl5 等の塩化物を形成するため好ましくない。
The amount of the sample put in hydrochloric acid is 100% hydrochloric acid.
When the ratio is more than 1 g with respect to cc, the solution becomes supersaturated, and when cooled, LiAlCl 4 , LiAl 4 O 4
It is not preferable because it forms chlorides such as Cl 5 .

【0026】電解質板中の補強材は、保持材の重量に対
して多くとも40wt%以下の割合で含まれることが望ま
しい。40wt%を越えると電解質板中の保持材含有率が
低いため電解質保持特性が不十分になる。得られた電解
質板としての多孔質マトリックスシートは、気孔率50
%から60%であるものが望ましい。
The reinforcing material in the electrolyte plate is preferably contained at a ratio of at most 40 wt% with respect to the weight of the holding material. If it exceeds 40 wt%, the electrolyte holding property becomes insufficient because the content of the holding material in the electrolyte plate is low. The obtained porous matrix sheet as an electrolyte plate has a porosity of 50.
% To 60% is desirable.

【0027】[0027]

【実施例】【Example】

(実施例1) (Example 1)

【0028】LiAl5 8 を1.0wt%含むLiAl
2 の粉末を保持材とし、同様の組成で平均粒径40μ
mを補強材として用いた。保持材の比表面積は10m2
/gであった。この保持材70gと補強材30gを成型
用バインダー30gと共に有機溶剤100gと加えて、
ボールミルにより混合し、取り出したスラリーをシート
成型できる程度の粘性に調整し、脱泡後フィルム状に展
開し、グリーンシートを成型した。得られたグリーンシ
ートを脱脂し、気孔率50%、平均細孔径0.23μm
の多孔質マトリックスシートが得られた。 (実施例2)
LiAl containing 1.0 wt% of LiAl 5 O 8
O 2 powder is used as a holding material, and the average particle size is 40μ with the same composition.
m was used as a reinforcing material. The specific surface area of the holding material is 10 m 2
/ G. 70 g of the holding material and 30 g of the reinforcing material are added to 100 g of the organic solvent together with 30 g of the molding binder,
The slurry taken out by mixing with a ball mill was adjusted to a viscosity such that a sheet could be molded, defoamed and spread into a film to mold a green sheet. The obtained green sheet was degreased to have a porosity of 50% and an average pore diameter of 0.23 μm.
A porous matrix sheet of was obtained. (Example 2)

【0029】LiAl5 8 を1.0wt%含むLiAl
2 の粉末を保持材とし、同様の組成で平均粒径40μ
m粉末を補強材として用いた。保持材の比表面積は8m
2 /gであった。この保持材70gと補強材30gを成
型用バインダー30gと共に有機溶剤100gと加え
て、実施例1と同様にグリーンシートを成型した。得ら
れたグリーンシートを脱脂し、気孔率50%、平均細孔
径0.25μmの多孔質マトリックスシートが得られ
た。 (実施例3)
LiAl containing 1.0 wt% of LiAl 5 O 8
O 2 powder is used as a holding material, and the average particle size is 40μ with the same composition.
m powder was used as a reinforcing material. Specific surface area of the holding material is 8m
2 / G. 70 g of the holding material and 30 g of the reinforcing material were added to 100 g of the organic solvent together with 30 g of the molding binder, and a green sheet was molded in the same manner as in Example 1. The obtained green sheet was degreased to obtain a porous matrix sheet having a porosity of 50% and an average pore diameter of 0.25 μm. (Example 3)

【0030】LiAl5 8 を3.0wt%含むLiAl
2 の粉末を保持材とし、同様の組成で平均粒径40μ
m粉末を補強材として用いた。保持材の比表面積は10
2 /gであった。この保持材70gと補強材30gを
成型用バインダー30gと共に有機溶剤100gと加え
て、実施例1と同様の方法でグリーンシートを成型し
た。得られたグリーンシートを脱脂し、気孔率53%、
平均細孔径0.23μmの多孔質マトリックスシートが
得られた。 (実施例4)
LiAlFiveO8LiAl containing 3.0 wt%
O2With the same composition and an average particle size of 40μ
m powder was used as a reinforcing material. The specific surface area of the holding material is 10
m2 / G. 70g of this holding material and 30g of reinforcing material
Add 100g of organic solvent together with 30g of molding binder
And form a green sheet in the same manner as in Example 1.
It was The obtained green sheet was degreased to have a porosity of 53%,
A porous matrix sheet with an average pore size of 0.23 μm
Was obtained. (Example 4)

【0031】LiAl5 8 を3.0wt%含むLiAl
2 の粉末を保持材とし、同様の組成で平均粒径40μ
m粉末を補強材として用いた。保持材の比表面積は10
2 /gであった。この保持材80gと補強材20gを
成型用バインダー30gと共に有機溶剤100gと加え
て、実施例1と同様の方法でグリーンシートを成型し
た。得られたグリーンシートを脱脂し、気孔率55%、
平均細孔径0.21μmの多孔質マトリックスシートが
得られた。 (実施例5)
LiAlFiveO8LiAl containing 3.0 wt%
O2With the same composition and an average particle size of 40μ
m powder was used as a reinforcing material. The specific surface area of the holding material is 10
m2 / G. 80g of this holding material and 20g of reinforcing material
Add 100g of organic solvent together with 30g of molding binder
And form a green sheet in the same manner as in Example 1.
It was The obtained green sheet was degreased to have a porosity of 55%,
A porous matrix sheet with an average pore size of 0.21 μm
Was obtained. (Example 5)

【0032】LiAl5 8 とγ−LiAlO2 との混
合相で、LiAl5 8 の含有量は5.0wt%である粉
末を保持材とし、同様の組成で平均粒径40μm粉末を
補強材として用いた。保持材の比表面積は10m2 /g
であった。この保持材70gと補強材30gを成型用バイ
ンダー30gと共に有機溶剤100gと加えて、実施例
1と同様の方法でグリーンシートを成型した。得られた
グリーンシートを脱脂し、気孔率53%、平均細孔径
0.23μmの多孔質マトリックスシートが得られた。 (実施例6)
A powder having a mixed phase of LiAl 5 O 8 and γ-LiAlO 2 and a LiAl 5 O 8 content of 5.0 wt% was used as a holding material, and a powder having an average particle size of 40 μm and a similar composition was used as a reinforcing material. Used as. The specific surface area of the holding material is 10 m 2 / G
Met. 70 g of the holding material and 30 g of the reinforcing material were added to 100 g of the organic solvent together with 30 g of the molding binder, and a green sheet was molded in the same manner as in Example 1. The obtained green sheet was degreased to obtain a porous matrix sheet having a porosity of 53% and an average pore diameter of 0.23 μm. (Example 6)

【0033】LiAl5 8 とγ−LiAlO2 との混
合相でLiAl5 8 の含有量は5.0wt%である粉末
を保持材とし、同様の組成で平均粒径40μm粉末を補
強材として用いた。保持材の比表面積は8m2 /gであ
った。この保持材70gと補強材30gを成型用バイン
ダー30gと共に有機溶剤100gと加えて、実施例1
と同様にグリーンシートを成型した。得られたグリーン
シートを脱脂し、気孔率50%、平均細孔径0.25μ
mの多孔質マトリックスシートが得られた。 (実施例7)
A powder having a LiAl 5 O 8 content of 5.0 wt% in a mixed phase of LiAl 5 O 8 and γ-LiAlO 2 was used as a holding material, and a powder having the same composition and an average particle diameter of 40 μm was used as a reinforcing material. Using. The specific surface area of the holding material is 8m 2 / G. Example 1 was prepared by adding 70 g of the holding material and 30 g of the reinforcing material together with 30 g of the molding binder and 100 g of the organic solvent.
A green sheet was molded in the same manner as in. The obtained green sheet was degreased, porosity 50%, average pore size 0.25μ
m porous matrix sheet was obtained. (Example 7)

【0034】LiAL5 8 とγ−LiAlO2 との混
合相でLiAl5 8 の含有量は3.0wt%である。粉
末を保持材とし、同様の組成で平均粒径40μm粉末を
補強材として用いた。保持材の比表面積は10m2 /g
であった。この保持材70gと補強材30gを成型用バ
インダー30gと共に有機溶剤100gと加えて、実施
例1と同様にグリーンシートを成型した。得られたグリ
ーンシートを脱脂し、気孔率53%、平均細孔径0.2
3μmの多孔質マトリックスシートが得られた。 (実施例8)
The content of LiAl 5 O 8 in the mixed phase of LiAL 5 O 8 and γ-LiAlO 2 is 3.0 wt%. The powder was used as a holding material, and the powder having the same composition and an average particle diameter of 40 μm was used as a reinforcing material. The specific surface area of the holding material is 10 m 2 / G
Met. 70 g of the holding material and 30 g of the reinforcing material were added to 100 g of the organic solvent together with 30 g of the molding binder, and a green sheet was molded in the same manner as in Example 1. The obtained green sheet was degreased to have a porosity of 53% and an average pore diameter of 0.2.
A 3 μm porous matrix sheet was obtained. (Example 8)

【0035】LiAl5 8 とγ−LiAlO2 との混
合相でLiAl5 8 の含有量が1.0wt%である粉末
を保持材とし、同様の組成で平均粒径40μm粉末を補
強材として用いた。保持材の比表面積は10m2 /gで
あった。この保持材70gと補強材30gを成型用バイ
ンダー30gと共に有機溶剤100gと加えて、実施例
1と同様にグリーンシートを成型した。得られたグリー
ンシートを脱脂し、気孔率53%、平均細孔径0.23
μmの多孔質マトリックスシートが得られた。 (実施例9)
A powder having a LiAl 5 O 8 content of 1.0 wt% in a mixed phase of LiAl 5 O 8 and γ-LiAlO 2 was used as a holding material, and a powder having the same composition and an average particle diameter of 40 μm was used as a reinforcing material. Using. The specific surface area of the holding material is 10 m 2 / G. 70 g of the holding material and 30 g of the reinforcing material were added to 100 g of the organic solvent together with 30 g of the molding binder, and a green sheet was molded in the same manner as in Example 1. The obtained green sheet was degreased to have a porosity of 53% and an average pore diameter of 0.23.
A μm porous matrix sheet was obtained. (Example 9)

【0036】LiAl5 8 とγ−LiAlO2 との混
合相でLiAl5 8 を5.0wt%含む粉末を保持材と
し、同様の組成で平均粒径40μm粉末を補強材として
用いた。保持材の比表面積は10m2 /gであった。こ
の保持材80gと補強材20gを成型用バインダー30
gと共に有機溶剤gと加えて、実施例1と同様にグリー
ンシートを成型した。得られたグリーンシートを脱脂
し、気孔率55%、平均細孔径0.21μmの多孔質マ
トリックスシートが得られた。 (比較例1)
A powder containing 5.0 wt% of LiAl 5 O 8 in a mixed phase of LiAl 5 O 8 and γ-LiAlO 2 was used as a holding material, and a powder having the same composition and an average particle size of 40 μm was used as a reinforcing material. The specific surface area of the holding material is 10 m 2 / G. 80 g of this holding material and 20 g of the reinforcing material are added to the binder 30 for molding.
An organic solvent g was added together with g to form a green sheet in the same manner as in Example 1. The obtained green sheet was degreased to obtain a porous matrix sheet having a porosity of 55% and an average pore diameter of 0.21 μm. (Comparative Example 1)

【0037】LiAlO2 の粉末を保持材とし、同様の
組成で平均粒径40μm粉末を補強材として用いた。保
持材の比表面積は10m2 /gであった。この保持材7
0gと補強材30gを成型用バインダー30gと共に有
機溶剤100gと加えて、実施例1と同様にグリーンシ
ートを成型した。 (比較例2)
LiAlO2The powder of
A powder having an average particle size of 40 μm was used as a reinforcing material. Protection
Specific surface area of holding material is 10m2 / G. This holding material 7
0g and reinforcing material 30g with molding binder 30g
In addition to 100 g of machine solvent
Molded a box. (Comparative example 2)

【0038】α−LiAlO2 を3.0wt%含む、γ−
LiAlO2 の粉末を保持材とし、同様の組成で平均粒
径40μm粉末を補強材として用いた。保持材の比表面
積は10m2 /gであった。この保持材70gと補強材
30gを成型用バインダー30gと共に有機溶剤100
gと加えて、実施例1と同様にグリーンシートを成型し
た。 (比較例3)
Γ-containing 3.0 wt% of α-LiAlO 2.
LiAlO 2 powder was used as a holding material, and powder having an average particle size of 40 μm and having the same composition was used as a reinforcing material. The specific surface area of the holding material is 10 m 2 / G. 70 g of the holding material and 30 g of the reinforcing material together with 30 g of the molding binder are used for the organic solvent 100.
In addition to g, a green sheet was molded as in Example 1. (Comparative example 3)

【0039】α−LiAlO2 を3.0wt%含むγ−L
iAlO2 の粉末を保持材とし、同様の組成で平均粒径
40μm粉末を補強材として用いた。保持材の比表面積
は10m2 /gであった。この保持材50gと補強材5
0gを成型用バインダー30gと共に有機溶剤100g
と加えて、実施例1と同様にグリーンシートを成型し
た。
Γ-L containing 3.0% by weight of α-LiAlO 2
A powder of iAlO 2 was used as a holding material, and a powder having the same composition and an average particle diameter of 40 μm was used as a reinforcing material. The specific surface area of the holding material is 10 m 2 / G. 50 g of this holding material and the reinforcing material 5
0g together with 30g molding binder 100g organic solvent
In addition, a green sheet was molded in the same manner as in Example 1.

【0040】各実施例で得られたグリーンシートを4cm
×4cmの正方形に切断した。Li2CO3 /K2 CO
3(62/32mol )の共晶塩を溶融し、上記グリーン
シートに含浸させ安定性評価用電解質板とした。安定性
試験は実際の発電試験により行った。
4 cm of the green sheet obtained in each example
Cut into 4 cm squares. Li 2 CO 3 / K 2 CO
A eutectic salt of 3 (62/32 mol) was melted and impregnated into the green sheet to prepare an electrolyte plate for stability evaluation. The stability test was performed by an actual power generation test.

【0041】溶融炭酸塩型燃料電池ホルダーに上記電解
質板を組み込んだ後、陰極に燃料ガスとして、水素80
vol %と二酸化炭素20vol %の混合ガスを、陽極に酸
化剤ガスとしてAir70vol %と二酸化炭素30vol
%の混合ガスをそれぞれ供給し、不活性ガス(窒素ガ
ス)で満たされた気密容器内でヒータパネルにより65
0℃まで昇温した後、150mA/cm2 の負荷条件で50
00時間の発電試験を行った。
After the above electrolyte plate was assembled in a molten carbonate fuel cell holder, hydrogen was used as a fuel gas at the cathode.
A mixed gas of vol% and carbon dioxide of 20 vol% is used as an oxidant gas at the anode of 70 vol% of Air and 30 vol of carbon dioxide.
% Of each mixed gas and 65% by a heater panel in an airtight container filled with an inert gas (nitrogen gas).
After heating up to 0 ℃, 150mA / cm 2 50 under load conditions
A power generation test for 00 hours was performed.

【0042】また、5000時間経過後の電解質板から
炭酸塩を酸洗除去し、BET法で試験後の保持材の比表
面積および水銀圧入法により、マトリックスの平均細孔
径を測定した。それらの結果を表1に示す。
After 5000 hours, the carbonate was removed from the electrolyte plate by pickling, and the specific surface area of the holding material after the test by the BET method and the average pore diameter of the matrix were measured by the mercury penetration method. The results are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】表1で保持材のLiAl5 8 量は、保持
材中に含まれるLiAl5 8 の重量%を示す。保持材
の比表面積は発電試験を行う前の保持材の比表面積を示
す。また、混合比は、グリーンシートを製造する際の保
持材、および補強材の各々の混合比を示す。また、試験
結果の項で比表面積は、発電試験後の保持材の比表面積
を示し、平均細孔径は、発電試験後の多孔質マトリック
スシートの平均細孔径を示す。
In Table 1, the amount of LiAl 5 O 8 in the holding material indicates the weight% of LiAl 5 O 8 contained in the holding material. The specific surface area of the holding material indicates the specific surface area of the holding material before the power generation test. The mixing ratio indicates the mixing ratio of each of the holding material and the reinforcing material when manufacturing the green sheet. Further, in the section of the test result, the specific surface area indicates the specific surface area of the holding material after the power generation test, and the average pore diameter indicates the average pore diameter of the porous matrix sheet after the power generation test.

【0045】表1から明らかなように保持材の比表面積
は5000時間の発電試験中に起こる溶融炭素塩との反
応でいずれも低下しているが、これはSEMの観察によ
り、保持材の粒成長の結果であることが確認された。
As is clear from Table 1, the specific surface area of the holding material was decreased by the reaction with the molten carbon salt that occurred during the power generation test for 5000 hours. This was confirmed by SEM observation. It was confirmed to be the result of growth.

【0046】実施例1から実施例9のサンプルはいずれ
も発電試験後の保持材の比表面積は5m2 /g以上であ
り、電解質除去後測定した平均細孔径も0.5μm以下
で、保持材の劣化は少ないことが確認された。また、粒
成長の傾向は、比表面積と平均細孔径の変化から、保持
材の配合比率が高いほど抑制される傾向にあることがわ
かる。一方、LiAlO2 だけの粉末を用いた場合は発
電試験後の保持材の比表面積が5m2 /gより小さくな
り、平均細孔径も0.5μmより大きくなり劣化が大き
いことが確認された。また、α−LiAlO2 の含有の
多いを粉末を用いた場合は、発電試験後の比表面積が低
下し、平均細孔径も0.5μm以上と劣化が大きいこと
がわかる。
In each of the samples of Examples 1 to 9, the specific surface area of the holding material after the power generation test was 5 m 2 / G or more, the average pore diameter measured after removing the electrolyte was 0.5 μm or less, and it was confirmed that the holding material was less deteriorated. From the changes in the specific surface area and the average pore diameter, it is understood that the tendency of grain growth tends to be suppressed as the mixing ratio of the holding material increases. On the other hand, when only powder of LiAlO 2 was used, the specific surface area of the holding material after the power generation test was 5 m 2 / G and the average pore diameter was larger than 0.5 μm, and it was confirmed that the deterioration was large. Further, it can be seen that when a powder containing a large amount of α-LiAlO 2 is used, the specific surface area after the power generation test is reduced, and the average pore diameter is 0.5 μm or more, which is a large deterioration.

【0047】[0047]

【発明の効果】以上のように、本発明によれば、電解質
板中の保持材の粒成長による比表面積の低下が抑制され
るため、長時間に亙って、良好な発電特性を有する溶融
炭酸塩型燃料電池を得ることができる。
As described above, according to the present invention, since the decrease in the specific surface area due to the grain growth of the holding material in the electrolyte plate is suppressed, the melting having good power generation characteristics for a long time is achieved. A carbonate fuel cell can be obtained.

フロントページの続き (72)発明者 中川 和明 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 富松 師浩 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内Front page continued (72) Inventor Kazuaki Nakagawa 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside Toshiba Research Institute Co., Ltd. Address Company Toshiba Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質と充填材とを含む電解質板を介し
て燃料極と酸化剤極とが対向している溶融炭酸塩型燃料
電池において、前記充填材がLiAlX Y (4.5 ≦X
≦5.5 ,7.25≦Y≦8.75)を含むことを特徴とする溶融
炭酸塩型燃料電池。
1. A molten carbonate fuel cell in which a fuel electrode and an oxidizer electrode face each other through an electrolyte plate containing an electrolyte and a filler, wherein the filler is LiAl X O Y (4.5 ≦ X).
≦ 5.5, 7.25 ≦ Y ≦ 8.75), a molten carbonate fuel cell.
【請求項2】 電解質と保持材とを含む電解質板を介し
て燃料極と酸化剤極とが対向している溶融炭酸型燃料電
池において、前記保持材がLiAlX Y (4.5≦X≦
5.5 ,7.25≦Y≦8.75)とγ−LiAlO2 の混合相で
あること特徴とする溶融炭酸塩型燃料電池。
2. A molten carbon dioxide fuel cell in which a fuel electrode and an oxidizer electrode face each other through an electrolyte plate containing an electrolyte and a holding material, wherein the holding material is LiAl X O Y (4.5 ≦ X ≦
5.5, 7.25 ≦ Y ≦ 8.75) and a mixed phase of γ-LiAlO 2 , a molten carbonate fuel cell.
JP4066829A 1991-04-08 1992-03-25 Molten carbonate fuel cell Pending JPH05109420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4066829A JPH05109420A (en) 1991-04-08 1992-03-25 Molten carbonate fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7345291 1991-04-08
JP3-73452 1991-04-08
JP4066829A JPH05109420A (en) 1991-04-08 1992-03-25 Molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH05109420A true JPH05109420A (en) 1993-04-30

Family

ID=26408030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4066829A Pending JPH05109420A (en) 1991-04-08 1992-03-25 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH05109420A (en)

Similar Documents

Publication Publication Date Title
EP0459351B1 (en) Method of manufacturing electrodes of molten carbonate fuel cell and electrode manufactured thereby
JPH0733257B2 (en) Lanthanum chromite particularly suitable for low temperature firing
US11821091B2 (en) Solvent-free processing of lithium lanthanum zirconium oxide coated-cathodes
US4871437A (en) Cermet anode with continuously dispersed alloy phase and process for making
US20230361339A1 (en) Garnet-mgo composite thin membrane and method of making
JPH0258744B2 (en)
EP0448517A2 (en) Carbonate fuel cell anodes
JP4828714B2 (en) Hydrogen storage alloy, method for producing the same, and negative electrode for nickel metal hydride secondary battery
CN113258073B (en) Coating modified lithium ion battery anode material and preparation method thereof
US20230295049A1 (en) Li-metal oxide/garnet composite thin membrane and method of making
JPH0997620A (en) Molten carbonate fuel cell and manufacture of holding material for molten carbonate fuel cell electrolyte plate
US4828613A (en) Powdery raw material for manufacturing anodes of fuel cells
JP3079098B2 (en) Method for producing positive electrode for molten carbonate fuel cell
US4752500A (en) Process for producing stabilized molten carbonate fuel cell porous anodes
JPH05109420A (en) Molten carbonate fuel cell
Cho et al. Fabrication and Characterization of γ‐LiAlO2 Matrices Using an Aqueous Tape‐Casting Process
JPS58129781A (en) Fused salt type fuel cell
JP3445453B2 (en) Molten carbonate fuel cell
US7604893B2 (en) Electrolyte matrix, particularly for a molten carbonate fuel cell, and method for the production thereof
US20230146412A1 (en) Cathode material and process
JP2585226B2 (en) Electrolyte matrix for molten carbonate fuel cells
JP2820886B2 (en) Matrix plate for molten carbonate fuel cell and method for producing the same
JPH05275095A (en) Fused carbonate type fuel cell
JPH04137469A (en) Fused carbonate fuel cell
US6074783A (en) Hydrogen storage alloys for use in rechargeable electrochemical cells, and methods of producing them