JPH04137469A - Fused carbonate fuel cell - Google Patents

Fused carbonate fuel cell

Info

Publication number
JPH04137469A
JPH04137469A JP2257115A JP25711590A JPH04137469A JP H04137469 A JPH04137469 A JP H04137469A JP 2257115 A JP2257115 A JP 2257115A JP 25711590 A JP25711590 A JP 25711590A JP H04137469 A JPH04137469 A JP H04137469A
Authority
JP
Japan
Prior art keywords
lialo2
electrolyte
specific surface
holding material
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2257115A
Other languages
Japanese (ja)
Inventor
Hideyuki Ozu
秀行 大図
Yoshihiro Akasaka
芳浩 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2257115A priority Critical patent/JPH04137469A/en
Publication of JPH04137469A publication Critical patent/JPH04137469A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To maintain excellent power generation characteristic for a long time by using LiAlO2, on whose surface zirconia is partially made, as holding material. CONSTITUTION:An electrolyte layer for a fused carbonate fuel cell is formed of LiAlO2, on whose surface zirconia is partially made, being used as holding material, and porous matrix being made by mixing LiAlO2 or ZrO2 and being impregnated with fused alkali carbonate which is to be electrolyte, being used as reinforcing material. And it is desirable for LiAlO2 to have specific surface of 8m<2>/g or more at the state before its surface is treated. On the other hand it is desirable for the reinforcing material to be mixed at a rate of 40% or less against the holding material. Thereby it is possible to obtain excellent power generation characteristic for a long hour.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、溶融炭酸塩型燃料電池に係わり、特に電解質
板の材質を改良した溶融炭酸塩型燃料電池に関する (従来の技術) 近年、開発が進められている溶融炭酸塩型燃料電池は、
アルカリ炭酸塩からなる電解質を高温下で溶融状態にし
、電極反応を起こさせるもので、リン酸型、固体電解質
型等の他の燃料電池に較べて電極反応が起こり易く、発
電熱効率が高いという利点を有する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Application Field) The present invention relates to a molten carbonate fuel cell, and particularly relates to a molten carbonate fuel cell in which the material of the electrolyte plate is improved (conventional). Technology) Molten carbonate fuel cells, which have been under development in recent years, are
The electrolyte made of alkali carbonate is molten at high temperature to cause an electrode reaction.Compared to other fuel cells such as phosphoric acid type and solid electrolyte type, the electrode reaction occurs more easily and the heat generation efficiency is higher. has.

この溶融炭酸塩型燃料電池の主要部は、通常、電解質と
なるアルカリ炭酸塩と、セラミックス系保持材と、補強
材とを混合し平板状に成形した電解質板の両面に、二・
Zケル合金等のガス拡散極(陽極および陰極)を密着さ
せて単位電池を構成し、この単位電池の複数個を相互間
に双極性隔離板を介在させて積層した構造を有する。
The main part of this molten carbonate fuel cell is usually an electrolyte plate made of a mixture of an alkali carbonate as an electrolyte, a ceramic support material, and a reinforcing material and formed into a flat plate.
Gas diffusion electrodes (anode and cathode) such as Z-Kel alloy are brought into close contact to form a unit cell, and a plurality of these unit cells are stacked with bipolar separators interposed between them.

ここで、電解質板を構成する保持材としては、たとえば
粒径0.1−0.5μm1比表面積1゜−23rr?/
gのγ相を主な構成相とし、α相を不純物相として数%
含むLiAlO.が用いられている。このL i A 
I O2は溶融炭酸塩中では比較的安定な化合物である
が、長時間、溶融炭酸塩との共存下に置かれると、粒成
長が生じ、比表面積が著しくて低下し、骨格となる多孔
質マトリックスの孔径が粗大化するため、電解質保持性
が劣化する。
Here, the holding material constituting the electrolyte plate has a particle size of 0.1-0.5 μm and a specific surface area of 1°-23rr, for example. /
The γ phase of g is the main constituent phase, and the α phase is a few percent as an impurity phase.
containing LiAlO. is used. This L i A
I O2 is a relatively stable compound in molten carbonate, but if it coexists with molten carbonate for a long time, grain growth occurs, the specific surface area decreases significantly, and the porous structure that forms the skeleton Since the pore size of the matrix becomes coarse, electrolyte retention deteriorates.

特に保持材の比表面積が低下し、5d/g以゛となると
電解質保持特性が急激に劣化し、電解1の漏洩、揮散が
生じ、内部抵抗を増加させるけコなく、電解質の局部的
な散逸に伴うクロスオーノーの原因ともなり、発電特性
を著しく低下させ2という問題がある。
In particular, when the specific surface area of the holding material decreases and becomes 5 d/g or more, the electrolyte holding property deteriorates rapidly, causing leakage and volatilization of the electrolyte 1, which increases the internal resistance and causes local dissipation of the electrolyte. This also causes cross-oh-nos caused by the oxidation, and significantly deteriorates the power generation characteristics, resulting in problem 2.

一方、溶融炭酸塩に対して比較的安定な物質としてZr
O2あるいは部分安定化Zr02(イ・ントリア、カル
シア、マグネシア等を少量混入さゼで安定化させたもの
)が知られており、溶融炭酒塩に対する長期に亘る安定
性が立証されている。
On the other hand, Zr is a relatively stable substance against molten carbonate.
O2 or partially stabilized Zr02 (stabilized with a small amount of intrium, calcia, magnesia, etc.) is known, and its long-term stability against molten carbonate salts has been proven.

しかし、ZrO2、部分安定化ZrO2は溶融炭酸塩に
対する濡れ性に乏しいため、やはり電解質保持特性が悪
く、単独では保持材として用いることはできない。
However, since ZrO2 and partially stabilized ZrO2 have poor wettability with respect to molten carbonate, they still have poor electrolyte retention properties and cannot be used alone as a retention material.

(発明が解決しようとする問題点) 本発明は上記問題を解決するためになされたものであり
、比表面積の低下が抑制されて電解質保持特性が劣化し
ない保持材を用い、長時間にゎたって良好な発電特性を
持続することができる溶融炭酸塩燃料電池用電解質板を
提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above problems, and uses a retaining material that suppresses a decrease in specific surface area and does not deteriorate electrolyte retention properties, and can be used for a long time. An object of the present invention is to provide an electrolyte plate for a molten carbonate fuel cell that can maintain good power generation characteristics.

[発明の構成コ (課題を解決するための手段) 本発明は上記課題を解決するため、保持材として表面を
部分的にジル2コニア化したLiAIozを用いるとい
う手段を講じた。ここでL i A I O2の表面を
部分的にジルコニア化するとはLiAlO□の表面にZ
rO2あるいはLi2ZrOs相を部分的に生成させる
ことを意味する。この部分的ジルコニア化はジルコニウ
ム金属の溶液、たとえばアルコキシドあるいは塩基性溶
液に保持材を浸漬等によりコーテングし、ついで熱処理
し、Li A 102の表面にZrをZrO2あるいは
Li2Zr0.の形で10重量%程度、被着させること
により、おこなうことができる。
[Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention takes a measure of using LiAIoz whose surface is partially made into zirconia as a holding material. Here, to partially zirconia the surface of Li A I O2 means that Z on the surface of LiAlO□
This means that rO2 or Li2ZrOs phase is partially generated. This partial zirconia formation is achieved by coating the holding material by dipping it in a solution of zirconium metal, such as an alkoxide or basic solution, followed by heat treatment, and adding Zr to the surface of Li A 102 as ZrO2 or Li2Zr0. This can be done by depositing about 10% by weight in the form of.

したがって、本発明に係わる溶融炭酸塩燃料電池用電解
質層は保持材として表面を部分的にジルコニア化したL
iAlO2と、補強材としてLiAlO2或いはZ r
 O2とを混合してなる多孔質マトリックスに、電解質
となるアルカリ炭酸塩を溶融含浸して形成される。
Therefore, the electrolyte layer for a molten carbonate fuel cell according to the present invention is made of L having a partially zirconia surface as a holding material.
iAlO2 and LiAlO2 or Zr as a reinforcing material
It is formed by melting and impregnating an alkali carbonate serving as an electrolyte into a porous matrix mixed with O2.

本発明の保持材を構成するLiAlO2は上記表面処理
を施す前の状態において、比表面積が8m 2 / g
以上(好ましくは20m2/g以下、より好ましくは9
−9−1l/Hの範囲)が好ましいことが、溶融炭酸塩
との反応試験等の結果、見出だされた。すなわち、8m
2/g以下では反応時の保持性が劣り、一方、20m2
/g以上の高比表面積となると、多孔質体の形成が著し
く困難となる。またLiAlO2は、理想的にはγ−L
iAlO2単独であることが好ましいが、通常、少量の
α−LiAlO2を不純物相として自存する。このα−
LiAlO□の含有量が0.5重量%以上含まれると溶
融炭酸塩との反応により容易にα−LiAlO2への相
変態を生じ、粒成長を著しく加速する。
LiAlO2 constituting the holding material of the present invention has a specific surface area of 8 m 2 / g before the above surface treatment.
or more (preferably 20 m2/g or less, more preferably 9
As a result of reaction tests with molten carbonate, etc., it was found that a range of -9-1 l/H) is preferable. That is, 8m
2/g or less, the retention during reaction is poor;
When the specific surface area is as high as /g or more, it becomes extremely difficult to form a porous body. Moreover, LiAlO2 is ideally γ-L
Although iAlO2 alone is preferred, a small amount of α-LiAlO2 usually exists as an impurity phase. This α-
When the content of LiAlO□ is 0.5% by weight or more, phase transformation to α-LiAlO2 is easily caused by reaction with molten carbonate, and grain growth is significantly accelerated.

一方、補強材は保持材に対し4096以下(通常20−
30%)の割合で混入することが好ましい。
On the other hand, the reinforcing material is 4096 or less (usually 20-
30%) is preferable.

すなわち、40%を超えると保持材含存比率が低いため
電解質の保持性か不十分となる。また、補強材粒子とし
ては、材質的には溶融塩に対し安定なL i A I 
O2、Z r O2、L L 2 Z r Osが好ま
しく、耐熱サイクル性の観点から通常平均粒径は10μ
m以上、50μm以下が良い、これは10μmより小さ
いとクラック伝播の阻止効果が、不十分であり、50μ
mを超えるとかえって異物として成形時の割れの起点と
なる虞がある。
That is, if it exceeds 40%, the electrolyte retention will be insufficient due to the low retaining material content ratio. In addition, as the reinforcing material particles, L i A I which is stable against molten salt in terms of material is used.
O2, ZrO2, L L2 ZrOs are preferable, and the average particle size is usually 10μ from the viewpoint of heat cycle resistance.
m or more and 50 μm or less is better; if it is smaller than 10 μm, the effect of preventing crack propagation is insufficient;
If it exceeds m, there is a risk that the foreign matter may become a starting point for cracks during molding.

このように、比表面積8m2/g以上、含有α−L I
 A l 02.0. 5重量%以下のLiAlO2を
保持材として用い、平均粒径20μmのLiAlO2を
補強材として用いた場合でも、溶融炭酸塩との反応によ
り2000〜3000時間程度で保持材は粒成長し、電
解質の保持機能が低下する。この粒成長には保持材間で
生じる場合と保持材、補強材間の食い合いの結果生じる
場合があり、特に保持材、補強材が同素材の場合は、溶
解、再析出の過程が加速され、保持材間の粒成長と、保
持材、補強材間の粒成長が同時に生じるために比較的単
時間で比表面積が低下し、電解質の保持機能が低下する
In this way, the specific surface area is 8 m2/g or more, and the content α-L I
A l 02.0. Even when 5% by weight or less of LiAlO2 is used as a retaining material and LiAlO2 with an average particle size of 20 μm is used as a reinforcing material, the retaining material undergoes grain growth in about 2000 to 3000 hours due to reaction with molten carbonate, and the electrolyte retention is impaired. Function deteriorates. This grain growth may occur between the retaining materials or as a result of cannibalism between the retaining material and the reinforcing material.In particular, if the retaining material and the reinforcing material are made of the same material, the process of dissolution and reprecipitation will be accelerated. Since the grain growth between the retaining material and the grain growth between the retaining material and the reinforcing material occur simultaneously, the specific surface area decreases in a relatively short period of time, and the electrolyte retention function decreases.

そこで、本発明の保持材は不純物成分としてのα−Li
AIO2量を0.5%以下としたLiAlO□の表面上
にZr金属のアルコキシドあるいは塩基性溶液でコーテ
ングし、熱処理することにより、L i A 102上
にZr、02あるいはLiAlO2相を部分的に生成さ
せることを特徴とする。
Therefore, the holding material of the present invention contains α-Li as an impurity component.
Zr, 02 or LiAlO2 phase is partially generated on LiA 102 by coating the surface of LiAlO□ with an AIO2 content of 0.5% or less with Zr metal alkoxide or basic solution and heat-treating it. It is characterized by causing

このような表面処理を施すことによりLiAlO2の溶
解、あるいは再析出の場所が低減化され、保持材間の粒
成長を抑制すると同時に、保持材、補強材間の食い合い
が抑制され、比表面積の低下は抑制される。特に、補強
材としてL i A I O2にZrO2を複合添加す
ることにより、保持材、補強材間の食い合いによる粒成
長は著しく抑制される。
By applying such surface treatment, the areas where LiAlO2 dissolves or re-precipitates are reduced, suppressing grain growth between the retaining materials, and at the same time suppressing the meshing between the retaining materials and reinforcing materials, increasing the specific surface area. The decline is suppressed. In particular, by adding ZrO2 to L i A I O2 as a reinforcing material, grain growth due to interlocking between the retaining material and the reinforcing material is significantly suppressed.

(作用) 以上のように表面を部分的にジルコニア化したL i 
A 102を保持材として用い、LiAl0□あるいは
ZrO2を補強材として用いた多孔質体を電解質マトリ
ックスとして用いれば、長M 間ニ亘って、電解質保持
性が維持され、発電特性の劣化の少ない溶融炭酸塩燃料
電池用電解質板を提供することができる。
(Function) Li whose surface is partially zirconiaized as described above
If a porous body using A102 as a retaining material and LiAl0□ or ZrO2 as a reinforcing material is used as an electrolyte matrix, the electrolyte retaining property will be maintained for a long time, and the molten carbonate will have less deterioration in power generation characteristics. An electrolyte plate for a salt fuel cell can be provided.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1 比表面積10m”/g、a−LiAIO□含有率0.2
%のLiAlO2をジルコニウムアルコキシド溶液に浸
漬し、乾燥後、大気中900℃で熱処理を施し、表面が
部分的にジルコニア化した保持材を合成した。なお、合
成前後で比表面積の低下はなかった。一方、補強材とし
ては平均粒径20μmのLiAlO2とZrO2を各5
096づつ混合した混合粉末を用いた。
Example 1 Specific surface area 10 m”/g, a-LiAIO□ content 0.2
% LiAlO2 was immersed in a zirconium alkoxide solution, dried, and then heat-treated at 900° C. in the air to synthesize a holding material whose surface was partially zirconia-ized. Note that there was no decrease in specific surface area before and after synthesis. On the other hand, 55 each of LiAlO2 and ZrO2 with an average particle size of 20 μm were used as reinforcing materials.
A mixed powder of 0.096 and 0.096 was used.

この保持材70gと補強材30gを30gの成形用バイ
ンダーとともに100gの有機溶剤中でボールミルによ
り混合し、取り出したスラリーを脱泡後フィルム上に展
開し、割れのないシートを成形した。得られたグリーン
シートを脱脂し、気孔率および平均細孔径を測定したと
ころ、気孔率53%の平均細孔径0,23μmの多孔質
マトリックスシートが得られたことかを分かった。
70 g of this holding material and 30 g of reinforcing material were mixed together with 30 g of a molding binder in 100 g of an organic solvent using a ball mill, and the slurry taken out was defoamed and spread on a film to form a crack-free sheet. When the obtained green sheet was degreased and its porosity and average pore diameter were measured, it was found that a porous matrix sheet with a porosity of 53% and an average pore diameter of 0.23 μm was obtained.

実施例2 比表面積10rrf/g、 a−L i A 102含
有率0.1%のLiAl0.を実施例1の同様な方法で
熱処理し、表面が部分的にジルコニア化した保持材を合
成した。さらに、同様な方法でシート化し、割れのない
良好なグリーンシート(多孔質マトリックスシート)を
得た。
Example 2 LiAl0.1 with a specific surface area of 10rrf/g and a-L i A 102 content of 0.1%. was heat-treated in the same manner as in Example 1 to synthesize a retaining material whose surface was partially zirconia-ized. Furthermore, it was made into a sheet using the same method to obtain a good green sheet (porous matrix sheet) with no cracks.

実施例3 比表面積9rrr/g、a−L iA 102含有率o
Example 3 Specific surface area 9rrr/g, a-L iA 102 content o
.

2%のL i A 102を実施例1の同様な方法で熱
処理し、表面が部分的にジルコニア化した保持材を合成
した。さらに、同様な方法でシート化し、割れのない良
好なグリーンシートを得た。
2% Li A 102 was heat treated in the same manner as in Example 1 to synthesize a retaining material whose surface was partially zirconia. Furthermore, a good green sheet with no cracks was obtained by forming it into a sheet using the same method.

実施例4 比表面積10ゴ/g、α−L i A I O2含を率
0.2%のL i A 102を実施例1の同様な方法
で熱処理し、表面が部分的にジルコニア化した保持材を
合成した。さらに、この保持材60gと補強材40gを
30gの成形用バインダーとともに100gの有機溶剤
中でボールミルのより混合し、取り比したスラリーを脱
泡後、フィルム上に展開し割れのないシートを成形した
Example 4 Li A 102 with a specific surface area of 10 g/g and an α-Li A I O2 content of 0.2% was heat treated in the same manner as in Example 1, and the surface was partially zirconiaized. The materials were synthesized. Further, 60 g of this holding material and 40 g of reinforcing material were mixed together with 30 g of a molding binder in 100 g of an organic solvent using a ball mill, and the mixed slurry was defoamed and spread on a film to form a crack-free sheet. .

実施例5 比表面積11rrf/g、 a−L i A I O□
含有率0.2%のLiAlO2を実施例1の同様な方法
で熱処理し、表面が部分的にジルコニア化した保持材を
合成した。さらに、実施例1と同様な方法でシート化し
、割れのない良好なグリーンシートを得た。
Example 5 Specific surface area 11rrf/g, a-L i AIO□
LiAlO2 having a content of 0.2% was heat treated in the same manner as in Example 1 to synthesize a holding material whose surface was partially zirconia. Furthermore, the green sheet was formed into a sheet in the same manner as in Example 1, and a good green sheet without cracks was obtained.

実施例6 比表面積10rri”/g、 a−L i A I O
□含有率0.2%のL i A 102を実施例1の同
様な方法で熱処理し、表面が部分的にジルコニア化した
保持材を合成した。さらに、保持材80gと補強材20
gを30gの成形用バインダーとともに100gの有機
溶剤中でボールミルのより混合し、取り比したスラリー
を脱泡後、フィルム上に展開し割れのないシートを成形
した。
Example 6 Specific surface area 10rr”/g, a-L i AIO
□L i A 102 with a content of 0.2% was heat treated in the same manner as in Example 1 to synthesize a holding material whose surface was partially zirconia-ized. Furthermore, 80g of holding material and 20g of reinforcing material
The slurry was mixed with 30 g of a molding binder in 100 g of an organic solvent using a ball mill, and the resulting slurry was defoamed and spread on a film to form a crack-free sheet.

比較例1 比表面積7ゴ/g、α−LiAlO□含有率0゜2%の
L iA 102を実施例1の同様な方法て熱処理し、
表面が部分的にジルコニア化した保持材を合成した。さ
らに、同様な方法でシート化し、割れのない良好なグリ
ーンシートを得た。
Comparative Example 1 LiA 102 with a specific surface area of 7g/g and an α-LiAlO□ content of 0°2% was heat treated in the same manner as in Example 1,
A holding material with a partially zirconia surface was synthesized. Furthermore, a good green sheet with no cracks was obtained by forming it into a sheet using the same method.

比較例2 比表面積10rrIt/g、a−LLA102含有率0
.2%のLiAlO2を実施例1の同様な方法で熱処理
し、表面が部分的にジルコニア化した保持材を合成した
。さらに、保持材50gと補強材50gを30gの成形
用バインダーとともに100gの有機溶剤中でボールミ
ルのより混合し、取り出したスラリーを脱泡後、フィル
ム上に展開し割れのないシートを成形した。
Comparative Example 2 Specific surface area 10rrIt/g, a-LLA102 content 0
.. 2% LiAlO2 was heat treated in the same manner as in Example 1 to synthesize a retaining material whose surface was partially zirconia. Further, 50 g of the retaining material and 50 g of the reinforcing material were mixed together with 30 g of a molding binder in 100 g of an organic solvent using a ball mill, and the slurry taken out was defoamed and spread on a film to form a crack-free sheet.

比較例3 比表面el 0rrf/g、 a−L i A l 0
2含有率0.6%のLiAlO□を実施例1の同様な方
法て熱処理し、表面が部分的にジルコニア化した保持材
を合成した。さらに、同様な方法でシート化し、割れの
ない良好なグリーンシートを得た。
Comparative Example 3 Specific surface el 0rrf/g, a-L i A l 0
2 content of 0.6% was heat-treated in the same manner as in Example 1 to synthesize a holding material whose surface was partially zirconia-formed. Furthermore, a good green sheet with no cracks was obtained by forming it into a sheet using the same method.

比較例4 比表面積10ゴ/g、α−L L A 102含有率0
.2%のL i A 10270 gと補強材30gを
30gの成形用バインダーとともに100gの有機溶剤
中でボールミルのより混合し、取り出したスラリーを脱
泡後、・フィルム上に展開し割れのないシートを成形し
た。
Comparative Example 4 Specific surface area 10g/g, α-LLA 102 content 0
.. 10270 g of 2% L i A and 30 g of reinforcing material were mixed together with 30 g of molding binder in 100 g of organic solvent using a ball mill, and the slurry was defoamed and spread on a film to form a crack-free sheet. Molded.

各側で得られた割れのないグリーンシートを4(1)角
に切断し、これにL i 2 COs /に2 C05
(62/38mol)の共晶塩を溶融含浸し、安定性評
価用電解質板とした。安定性試験は空気/co2−70
/30容量%、1気圧のカソード雰囲気下、650℃の
炉内でおこなった。また、5000時間経過後の電解質
板から炭酸塩を酸洗、除去し、BET法で試験後の比表
面積および水銀圧入法により、マトリックスの平均細孔
径を測定した。
The crack-free green sheet obtained on each side was cut into 4 (1) squares, and this was coated with L i 2 COs / 2 C05
(62/38 mol) of eutectic salt was melted and impregnated to prepare an electrolyte plate for stability evaluation. Stability test is air/co2-70
/30% by volume in a cathode atmosphere of 1 atm in a furnace at 650°C. Further, carbonate was removed from the electrolyte plate after 5000 hours by pickling, and the specific surface area after testing by BET method and the average pore diameter of the matrix were measured by mercury porosimetry.

試験の結果を表1に示す。The test results are shown in Table 1.

上記表1から明らかなように保持材の比表面積は500
0時間の溶融炭酸塩との反応でいずれも低下しているが
、これはSEMの観察により、保持材の一次粒子の粒成
長の結果であることが確認された。表面にジルコニア処
理を施し、α量が0゜5%以下であり、比表面積9rr
r/g以上、保持材配合比60%以上の実施例1−6の
サンプルはいずれも試験後の比表面積は5rf/g以上
であり、電解質除去後の平均孔径も0.5μm以下であ
り、十分な保持性を有することが分かった。また、粒成
長の傾向はα量が少なく(実施例2)、保持材の配合比
率が高いほど(実施例6)、抑制される傾向にある。一
方、初期の比表面積が7r+f/g以下と低い比較例1
、保持材配合比が50%以下と低い比較例2、α量が0
.6%以上と多い比較例3および表面のジルコニア処理
が未処理の比較例4では、いづれも試験後の比表面積が
5rf/g以下に低下し、平均細孔径も0.5μm以上
となり、十分な保持性を有しないことが分かった。
As is clear from Table 1 above, the specific surface area of the holding material is 500
All of them decreased after 0 hours of reaction with molten carbonate, but it was confirmed by SEM observation that this was the result of grain growth of the primary particles of the holding material. The surface is treated with zirconia, the α amount is 0°5% or less, and the specific surface area is 9rr.
The samples of Examples 1-6 with r/g or more and retaining material blending ratio of 60% or more have a specific surface area of 5 rf/g or more after the test, and an average pore diameter of 0.5 μm or less after electrolyte removal. It was found that it had sufficient retention. Furthermore, the tendency of grain growth tends to be suppressed as the amount of α is smaller (Example 2) and the blending ratio of the retaining material is higher (Example 6). On the other hand, comparative example 1 has a low initial specific surface area of 7r+f/g or less.
, Comparative Example 2 where the holding material blending ratio is low at 50% or less, α amount is 0
.. In Comparative Example 3, which has a large amount of 6% or more, and Comparative Example 4, in which the surface is not treated with zirconia, the specific surface area after the test decreases to 5 rf/g or less, and the average pore diameter also becomes 0.5 μm or more, which is sufficient. It was found that it had no retention properties.

表 電解質板の熱サイクル性および安定性評価結果〔発明の
効果] 以上、詳述した如く、本発明によれば電解質板中の保持
材の粒成長、比表面積の低下が抑制され、電解質の保持
特性が劣化しない保持材が用いられるため、長時間に亘
って良好な発電特性を得ることができる溶融炭酸塩電池
用電解質板を提供できる。
Results of thermal cycling and stability evaluation of surface electrolyte plate [Effects of the invention] As detailed above, according to the present invention, grain growth and reduction in specific surface area of the retaining material in the electrolyte plate are suppressed, and electrolyte retention is Since a holding material whose properties do not deteriorate is used, it is possible to provide an electrolyte plate for a molten carbonate battery that can obtain good power generation properties over a long period of time.

Claims (1)

【特許請求の範囲】[Claims] (1)多孔質成形体からなる陰極及び陽極と、これら陰
極及び陽極の間に配置され、電解質、保持材及び補強材
を含む電解質板とを具備した溶融炭酸塩型燃料電池にお
いて、 該保持材として、表面を部分的にジルコニア化したLi
AlO_2を用いたことを特徴とする溶融炭酸塩型燃料
電池。
(1) A molten carbonate fuel cell comprising a cathode and an anode made of a porous molded body, and an electrolyte plate disposed between the cathode and the anode and containing an electrolyte, a holding material, and a reinforcing material, the holding material Li with a partially zirconia surface
A molten carbonate fuel cell characterized by using AlO_2.
JP2257115A 1990-09-28 1990-09-28 Fused carbonate fuel cell Pending JPH04137469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2257115A JPH04137469A (en) 1990-09-28 1990-09-28 Fused carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2257115A JPH04137469A (en) 1990-09-28 1990-09-28 Fused carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH04137469A true JPH04137469A (en) 1992-05-12

Family

ID=17301943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2257115A Pending JPH04137469A (en) 1990-09-28 1990-09-28 Fused carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH04137469A (en)

Similar Documents

Publication Publication Date Title
JP5306726B2 (en) Fuel cell electrode-electrolyte composite powder and preparation method thereof
US8304128B2 (en) Solid oxide cell and solid oxide cell stack
EP0448517B1 (en) Carbonate fuel cell anodes
JPH0258744B2 (en)
JP3170509B2 (en) Fuel cell tape, fuel cell electrode, method for sintering this type of electrode, and fuel cell provided with this type of electrode
JP3079098B2 (en) Method for producing positive electrode for molten carbonate fuel cell
JPH05275094A (en) Fused carbonate type fuel cell
JPH076622A (en) Crystal phase stabilized solid electrolyte material
JPH0869804A (en) Anode for fused carbonate fuel cell and its preparation
JPH04137469A (en) Fused carbonate fuel cell
JP3323029B2 (en) Fuel cell
CN117352706A (en) Positive electrode material, preparation method thereof and lithium ion battery
JP3233807B2 (en) Substrate material for solid oxide fuel cells
JP2020167092A (en) Material for formation of support body of solid oxide fuel cell, and utilization thereof
JPS58129781A (en) Fused salt type fuel cell
JP2003022821A (en) Scandia stabilized zirconia electrolyte
JP2004259594A (en) Electrode, its manufacturing method, and fuel cell
JP2585226B2 (en) Electrolyte matrix for molten carbonate fuel cells
JP2001118590A (en) High conductivity solid electrolyte film and method for manufacturing the same
CN113675381A (en) Lithium ion battery positive electrode material, positive electrode plate and lithium ion battery
KR20150042001A (en) electrolyte matrix manufacturing method for stack of Molten Carbon Fuel Cell
JPH09132459A (en) Porous ceramic sintered compact
US20240162567A1 (en) Electrolyte membrane for lithium-air battery, method of manufacturing same and lithium-air battery comprising same
JPH11349333A (en) Production of nickel/oxide composite film
JPH05275095A (en) Fused carbonate type fuel cell