JPH0510695A - Boiling heat transfer tube - Google Patents

Boiling heat transfer tube

Info

Publication number
JPH0510695A
JPH0510695A JP16273891A JP16273891A JPH0510695A JP H0510695 A JPH0510695 A JP H0510695A JP 16273891 A JP16273891 A JP 16273891A JP 16273891 A JP16273891 A JP 16273891A JP H0510695 A JPH0510695 A JP H0510695A
Authority
JP
Japan
Prior art keywords
groove
heat transfer
pipe
grooves
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16273891A
Other languages
Japanese (ja)
Other versions
JP3130078B2 (en
Inventor
Osao Kido
長生 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP03162738A priority Critical patent/JP3130078B2/en
Publication of JPH0510695A publication Critical patent/JPH0510695A/en
Application granted granted Critical
Publication of JP3130078B2 publication Critical patent/JP3130078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably improve a heat transfer rate between refrigerant flowing in a passage in a tube and inner periphery in the tube and to improve performance of a heat exchanger by using a boiling heat transfer tube used for the exchanger to deliver heat between the refrigerant and fluid such as the air for an air conditioner, a refrigerator, an automotive device, etc. CONSTITUTION:Parallel grooves 10 continued substantially parallel to an axial direction (n) of a tube, are provided on the top and the bottom of the inner periphery 8a of the tube, and oblique grooves 11a continued obliquely to the axial direction (n) of the tube, are provided on the side of the periphery 8a of the tube. Further, the pitch P of the grooves 10 is formed larger than the pitch P of the grooves 11, the pitch P of the grooves 10 is set to 0.15-0.25mm, and the depth H of the groove is set to 0.15-0.25mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気調和機や冷凍機器、
自動車機器等の冷媒と空気等の流体間で熱の授受を行う
熱交換器に用いられる沸騰伝熱管に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an air conditioner, a refrigerating machine,
The present invention relates to a boiling heat transfer tube used in a heat exchanger that transfers heat between a refrigerant such as an automobile device and a fluid such as air.

【0002】[0002]

【従来の技術】近年、熱交換器は機器設計の面からコン
パクト化が要求されており、熱交換器の冷媒側流路を形
成する伝熱管についても、実公昭55−14956号公
報や実公昭55−26706号公報のように、管内周面
に螺旋状の溝を設ける等の工夫により高効率化が図られ
ている。
2. Description of the Related Art In recent years, heat exchangers have been required to be compact in view of equipment design, and heat transfer tubes forming a refrigerant side flow path of the heat exchanger are also disclosed in Japanese Utility Model Publication No. 55-14956 and Japanese Utility Model Publication. As disclosed in Japanese Patent No. 55-26706, high efficiency is achieved by devising such as providing a spiral groove on the inner peripheral surface of the pipe.

【0003】以下に従来の沸騰伝熱管について説明を行
う。図4は前記沸騰伝熱管の断面形状を示し、図5と図
6は従来の沸騰伝熱管の造管加工前の伝熱面形状を示し
ている。図4から図6において、1は断面がほぼ円筒状
の沸騰伝熱管で、内側に冷媒の流路2を形成している。
3は沸騰伝熱管1の管内周面1aに設けられた溝で、沸
騰伝熱管1の管軸方向mに対して螺旋状に連続して多数
設けられている。またこの沸騰伝熱管1は、造管及び溶
接加工を経て成形され、造管加工前の平板状の伝熱面4
の段階で溝3を加工した後、平板状から管状に造管さ
れ、更に伝熱面4両端の端面5aと5bを溶接して形成
される。
A conventional boiling heat transfer tube will be described below. FIG. 4 shows the cross-sectional shape of the boiling heat transfer tube, and FIGS. 5 and 6 show the shape of the heat transfer surface of the conventional boiling heat transfer tube before pipe forming. 4 to 6, reference numeral 1 denotes a boiling heat transfer tube having a substantially cylindrical cross section, and a flow path 2 for the refrigerant is formed inside.
Reference numeral 3 denotes a groove provided on the inner peripheral surface 1a of the boiling heat transfer tube 1, and a large number of grooves are continuously provided in a spiral shape in the tube axis direction m of the boiling heat transfer tube 1. The boiling heat transfer tube 1 is formed through a pipe forming process and a welding process, and has a flat plate-shaped heat transfer surface 4 before the pipe forming process.
After the groove 3 is processed at the stage, the flat plate is formed into a tubular shape, and the end surfaces 5a and 5b at both ends of the heat transfer surface 4 are welded to be formed.

【0004】以上のように構成された沸騰伝熱管1は一
般的に熱交換器の一部として用いられる。図8は前記沸
騰伝熱管を用いた熱交換器の一例を示しており、6は熱
交換器で、一定間隔で平行に並べられたフィン7とフィ
ン7に直角に挿入された沸騰伝熱管1とから構成されて
おり、フィン7間を流れる気流と沸騰伝熱管1内の流路
2を水平方向に流れる冷媒との間で熱交換が行なわれ
る。その際、水平な沸騰伝熱管1の流路2の底部を流れ
る液冷媒が重力に逆らって螺旋状の溝3に沿って頂部へ
引き上げられ、管内周面1aと液冷媒とが接する有効伝
熱面積が増大する効果により、管内周面1aと冷媒の間
で見かけ上の熱伝達率の向上を得ていた。
The boiling heat transfer tube 1 constructed as described above is generally used as a part of a heat exchanger. FIG. 8 shows an example of a heat exchanger using the boiling heat transfer tube. Reference numeral 6 denotes a heat exchanger, which is fins 7 arranged in parallel at regular intervals and a boiling heat transfer tube 1 inserted perpendicularly to the fins 7. The heat exchange is performed between the airflow flowing between the fins 7 and the refrigerant flowing horizontally in the flow path 2 in the boiling heat transfer tube 1. At that time, the liquid refrigerant flowing at the bottom of the flow path 2 of the horizontal boiling heat transfer tube 1 is pulled up to the top along the spiral groove 3 against the gravity, and the effective heat transfer at which the tube inner peripheral surface 1a and the liquid refrigerant come into contact with each other. Due to the effect of increasing the area, the apparent heat transfer coefficient between the pipe inner peripheral surface 1a and the refrigerant is improved.

【0005】また具体的に、フロン系の冷媒を使用して
いる一般的な沸騰伝熱管1の溝3の形状は、図7で定義
している溝形状寸法に対して、溝ピッチPが0.3〜
0.4mm、溝深さHが0.1〜0.2mm、また溝3
の連続方向と管軸方向mとずれを示す溝リ−ド角βが1
5〜25゜程度である。
Further, specifically, the shape of the groove 3 of the general boiling heat transfer tube 1 using a freon-based refrigerant has a groove pitch P of 0 with respect to the groove shape dimension defined in FIG. .3 ~
0.4 mm, groove depth H is 0.1 to 0.2 mm, and groove 3
The groove lead angle β, which indicates the difference between the continuous direction and the pipe axis direction m, is 1
It is about 5 to 25 °.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、螺旋状の溝3に沿った冷媒流れだけでな
く、溝3を乗り越える冷媒流れも生じ、液冷媒の一部は
溝3を乗り越えることにより管内周面1aから飛散し、
十分な有効伝熱面積の増大効果が得られていない。特
に、流路2の頂部では、重力の影響を受けるため溝3に
連続して保持できず落下する液冷媒が多く、更に流路2
の底部においても、頂部へ引き上げられる分を除いた余
分な液冷媒は重力の影響を受けて底部に滞留しながら溝
3を乗り越えて流れることとなり、管内周面1aからの
飛散を多く生じることとなる。その結果、管内周面1a
と冷媒の間の熱伝達率向上は小さく、期待される熱交換
器のコンパクト化に対して十分な熱伝達性能が得られて
いないという課題を有していた。
However, in the above-mentioned conventional structure, not only the refrigerant flow along the spiral groove 3 but also the refrigerant flow over the groove 3 occurs, and a part of the liquid refrigerant overruns the groove 3. As a result, it is scattered from the inner peripheral surface 1a of the pipe,
The effect of increasing the effective heat transfer area is not sufficiently obtained. In particular, at the top of the flow path 2, a large amount of liquid refrigerant cannot be continuously held in the groove 3 and falls due to the influence of gravity.
Even at the bottom of the pipe, the excess liquid refrigerant except for the amount pulled up to the top will flow over the groove 3 while staying at the bottom under the influence of gravity, and will often be scattered from the pipe inner peripheral surface 1a. Become. As a result, the pipe inner peripheral surface 1a
There was a problem that the improvement of the heat transfer rate between the refrigerant and the refrigerant was small, and sufficient heat transfer performance was not obtained for the expected size reduction of the heat exchanger.

【0007】本発明は上記従来の課題を解決するもの
で、沸騰伝熱管の管内周面形状を工夫することによっ
て、管内周面と冷媒の間の熱伝達率を大幅に向上させ、
沸騰伝熱管を用いた熱交換器の性能向上を図ることを目
的とする。
The present invention solves the above-mentioned conventional problems. By devising the shape of the inner peripheral surface of the boiling heat transfer tube, the heat transfer coefficient between the inner peripheral surface of the tube and the refrigerant is significantly improved.
The purpose is to improve the performance of a heat exchanger using a boiling heat transfer tube.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の沸騰伝熱管は、管軸方向とほぼ平行に連続す
る平行溝を管内周面の頂部及び底部に、管軸方向に対し
て傾斜して連続する傾斜溝を管内周面の側部に備えた構
成を有している。また、管軸方向とほぼ平行に連続する
平行溝と管軸方向に対して傾斜して連続する傾斜溝とを
管内周面に備え、平行溝の溝ピッチよりも傾斜溝の溝ピ
ッチを大きくした構成を有している。更に、平行溝の溝
ピッチを0.15〜0.25mm、溝深さを0.15〜
0.25mmに限定した構成を有している。
In order to achieve this object, the boiling heat transfer tube of the present invention has parallel grooves continuous substantially parallel to the tube axis direction at the top and bottom of the tube inner peripheral surface with respect to the tube axis direction. And a continuous inclined groove is provided on the side of the inner peripheral surface of the pipe. Further, the inner circumferential surface of the pipe is provided with a parallel groove continuous substantially parallel to the pipe axis direction and a continuous inclined groove inclined with respect to the pipe axis direction, and the groove pitch of the inclined groove is made larger than the groove pitch of the parallel groove. Have a configuration. Furthermore, the groove pitch of the parallel grooves is 0.15 to 0.25 mm and the groove depth is 0.15 to
It has a structure limited to 0.25 mm.

【0009】[0009]

【作用】この構成によって、管内周面の側部に設けた傾
斜溝により液冷媒の流路頂部へのはね上げ効果を従来と
同様に維持しながら、流路頂部では、管内周面の頂部に
設けられた冷媒主流方向とほぼ等しい方向に連続する平
行溝により、液冷媒の平行溝からの落下を少なくして平
行溝に沿った薄い冷媒液膜流が得られ、かつ流路底部で
も、管内周面の底部に設けられた平行溝により、液冷媒
の平行溝からの飛散を少なくして平行溝に沿った薄い冷
媒液膜流が得られ、有効伝熱面積の増大効果を従来より
大幅に高めて見かけの熱伝達率向上をはかると共に、流
路の頂部及び底部での冷媒液膜厚さの減少により実質の
熱伝達率向上もはかることができる。
With this structure, the inclined groove provided on the side of the inner peripheral surface of the pipe maintains the effect of splashing the liquid refrigerant to the top of the flow passage as in the conventional case, while the top of the inner peripheral surface of the pipe is provided at the top of the flow passage. The parallel grooves that are continuous in a direction almost equal to the main flow direction of the refrigerant, reduce the drop of the liquid refrigerant from the parallel grooves, and can obtain a thin refrigerant liquid film flow along the parallel grooves. The parallel grooves provided at the bottom of the surface reduce the scattering of the liquid refrigerant from the parallel grooves and can obtain a thin refrigerant liquid film flow along the parallel grooves, greatly increasing the effective heat transfer area. The apparent heat transfer coefficient can be improved, and the heat transfer coefficient can be substantially improved by reducing the refrigerant liquid film thickness at the top and bottom of the flow path.

【0010】また、平行溝は、連続する方向が冷媒主流
方向とほぼ等しいために、液冷媒の溝への侵入が容易で
あるのに対し、傾斜溝は、連続する方向が冷媒主流方向
とずれているため、液冷媒の溝への侵入は困難であり、
平行溝の溝ピッチよりも傾斜溝の溝ピッチを大きくする
ことにより、平行溝では細かい溝により薄い冷媒液膜流
の形成を可能にし、傾斜溝では粗い溝により液冷媒の飛
散を抑えることができ、平行溝、傾斜溝共にそれぞれの
効果を高めることができる。
Further, since the continuous direction of the parallel groove is substantially the same as the main flow direction of the refrigerant, it is easy for the liquid refrigerant to enter the groove, whereas the inclined groove has a continuous direction deviated from the main flow direction of the refrigerant. Therefore, it is difficult for the liquid refrigerant to enter the groove,
By making the groove pitch of the inclined grooves larger than the groove pitch of the parallel grooves, it is possible to form a thin refrigerant liquid film flow with the fine grooves in the parallel grooves and to suppress the scattering of the liquid refrigerant with the coarse grooves in the inclined grooves. , The parallel groove and the inclined groove can enhance their respective effects.

【0011】更に、平行溝の溝ピッチを0.15〜0.
25mm、溝深さを0.15〜0.25mmに限定する
ことにより、液冷媒の表面張力による溝への保持力を大
幅に高めることができ、有効伝熱面積の増大効果を従来
より大幅に高めると共に、表面張力の増大によっても極
めて薄い冷媒液膜流を形成することもでき、実質の熱伝
達率向上を更にはかることができる。
Further, the groove pitch of the parallel grooves is 0.15 to 0.
By limiting the groove depth to 25 mm and the groove depth to 0.15 to 0.25 mm, the holding force in the groove due to the surface tension of the liquid refrigerant can be significantly increased, and the effect of increasing the effective heat transfer area can be greatly increased compared to the conventional case. In addition to the increase, it is possible to form an extremely thin refrigerant liquid film flow by increasing the surface tension, and it is possible to further improve the substantial heat transfer coefficient.

【0012】[0012]

【実施例】以下本発明の一実施例の沸騰伝熱管について
図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A boiling heat transfer tube according to an embodiment of the present invention will be described below with reference to the drawings.

【0013】図1から図3において、8は断面がほぼ円
筒状の沸騰伝熱管で、内側に冷媒の流路9を形成してい
る。10は沸騰伝熱管8の管内周面8aの底部及び頂部
に形成された平行溝で、管軸方向nと平行な方向に連続
して設けられており、その溝ピッチPは0.15〜0.
25mm、溝深さHは0.15〜0.25mmの寸法に
してある。11は同じく沸騰伝熱管8の管内周面8aの
側部に設けられた傾斜溝で、管軸方向nと一定の傾斜を
もった方向に連続して設けられており、その溝ピッチP
は平行溝10の溝ピッチPよりも大きくしてある。また
この沸騰伝熱管8は、造管及び溶接加工を経て成形さ
れ、造管加工前の平板状の伝熱面12の段階で平行溝1
0及び傾斜溝11が成形された後、平板状から管状に造
管され、更に伝熱面12両端の端面13aと13bを溶
接して形成される。
In FIGS. 1 to 3, reference numeral 8 denotes a boiling heat transfer tube having a substantially cylindrical cross section, and a coolant passage 9 is formed inside. Reference numeral 10 is a parallel groove formed on the bottom and the top of the tube inner peripheral surface 8a of the boiling heat transfer tube 8, which are continuously provided in a direction parallel to the tube axis direction n, and the groove pitch P is 0.15 to 0. .
The groove depth H is 25 mm, and the groove depth H is 0.15 to 0.25 mm. Reference numeral 11 denotes an inclined groove provided on the side of the inner peripheral surface 8a of the boiling heat transfer tube 8, which is continuously provided in a direction having a certain inclination with respect to the tube axis direction n, and the groove pitch P thereof.
Is larger than the groove pitch P of the parallel grooves 10. The boiling heat transfer tube 8 is formed through pipe forming and welding, and the parallel groove 1 is formed at the stage of the flat heat transfer surface 12 before pipe forming.
After the 0 and the inclined groove 11 are formed, the flat plate shape is tubularly formed, and the end surfaces 13a and 13b at both ends of the heat transfer surface 12 are welded.

【0014】以上のように構成された沸騰伝熱管8につ
いてその動作を説明する。まず沸騰伝熱管8は従来例と
同様に熱交換器の一部として用いられ、水平状態で管内
に冷媒を流して使用される。この使用状態において、管
内の流路9を流れる液冷媒の一部は、管内周面8aの側
部に設けられた溝ピッチPの粗い傾斜溝11に容易に入
り込み、重力に逆らって流路9の頂部へはね上げられる
と共に、流路9の頂部へはね上げられた液冷媒は、管軸
方向nに連続しかつ最適寸法化された平行溝10によっ
て冷媒主流方向に連続して保持され、流路9の頂部でも
常に液冷媒が管内周面8aと接触しながら極めて薄い冷
媒液膜流が形成される。
The operation of the boiling heat transfer tube 8 constructed as above will be described. First, the boiling heat transfer tube 8 is used as a part of a heat exchanger as in the conventional example, and is used by flowing a refrigerant in the tube in a horizontal state. In this usage state, a part of the liquid refrigerant flowing in the flow passage 9 in the pipe easily enters the rough inclined groove 11 having the groove pitch P provided on the side portion of the inner peripheral surface 8a of the pipe, and the flow passage 9 is opposed to gravity. The liquid refrigerant that has been splashed to the top of the flow path 9 and is splashed to the top of the flow path 9 is continuously held in the main flow direction of the refrigerant by the parallel grooves 10 that are continuous in the pipe axis direction n and are dimensioned optimally. At the top of the pipe, the liquid refrigerant is always in contact with the inner peripheral surface 8a of the pipe to form an extremely thin refrigerant liquid film flow.

【0015】かつ、流路9の底部でも、平行溝10によ
り液冷媒の平行溝10からの飛散を少なくして平行溝1
0に沿った極めて薄い冷媒液膜流が得られ、有効伝熱面
積の増大効果を従来より大幅に高めて見かけの熱伝達率
向上をはかると共に、流路9の頂部及び底部での冷媒液
膜厚さの減少により実質の熱伝達率向上も更にはかるこ
とができる。
Further, even at the bottom of the flow path 9, the parallel groove 10 reduces the scattering of the liquid refrigerant from the parallel groove 10 and the parallel groove 1
0, an extremely thin refrigerant liquid film flow can be obtained, and the effect of increasing the effective heat transfer area can be significantly increased compared to the conventional case to improve the apparent heat transfer coefficient, and the refrigerant liquid film at the top and bottom of the flow path 9 can be obtained. By reducing the thickness, it is possible to further improve the actual heat transfer coefficient.

【0016】以上のように本実施例によれば、管軸方向
nとほぼ平行に連続する平行溝10を管内周面8aの頂
部及び底部に、管軸方向nに対して傾斜して連続する傾
斜溝11を管内周面8aの側部に備え、更に、平行溝1
0の溝ピッチPよりも傾斜溝11の溝ピッチPを大きく
し、かつ、平行溝10の溝ピッチPを0.15〜0.2
5mm、溝深さHを0.15〜0.25mmの寸法にす
ることにより、管内周面8aの側部に設けた傾斜溝11
により液冷媒の頂部へのはね上げ効果を従来と同様に維
持しながら、流路9の頂部では、管内周面8aの頂部に
設けられた冷媒主流方向とほぼ等しい方向に連続する平
行溝10により、液冷媒の平行溝10からの落下を少な
くして平行溝10に沿った薄い冷媒液膜流が得られる。
As described above, according to the present embodiment, the parallel grooves 10 which are continuous substantially parallel to the pipe axis direction n are connected to the top and bottom of the pipe inner peripheral surface 8a so as to be inclined with respect to the pipe axis direction n. The inclined groove 11 is provided on the side of the inner peripheral surface 8a of the pipe, and the parallel groove 1
The groove pitch P of the inclined groove 11 is made larger than the groove pitch P of 0, and the groove pitch P of the parallel groove 10 is 0.15 to 0.2.
By setting the groove depth H to 5 mm and the groove depth H to 0.15 to 0.25 mm, the inclined groove 11 provided on the side portion of the pipe inner peripheral surface 8a.
While maintaining the splashing effect of the liquid refrigerant to the top in the same manner as in the conventional case, at the top of the flow path 9, by the parallel groove 10 provided in the top of the pipe inner peripheral surface 8a in a direction substantially equal to the main refrigerant flow direction, A thin refrigerant liquid film flow along the parallel groove 10 can be obtained by reducing the drop of the liquid refrigerant from the parallel groove 10.

【0017】かつ、流路9の底部でも、管内周面8の底
部に設けられた冷媒主流方向とほぼ等しい方向に連続す
る平行溝10により、液冷媒の平行溝10からの飛散を
少なくして平行溝10に沿った薄い冷媒液膜流が得ら
れ、有効伝熱面積の増大効果を従来より大幅に高めて見
かけの熱伝達率向上をはかると共に、流路9の頂部及び
底部での冷媒液膜厚さの減少により実質の熱伝達率向上
もはかることができる。
Even at the bottom of the flow passage 9, the parallel grooves 10 provided at the bottom of the inner peripheral surface 8 of the pipe and continuous in a direction substantially equal to the main flow direction of the refrigerant reduce the scattering of the liquid refrigerant from the parallel groove 10. A thin refrigerant liquid film flow along the parallel grooves 10 can be obtained, and the effect of increasing the effective heat transfer area can be significantly increased compared to the conventional case to improve the apparent heat transfer coefficient, and the refrigerant liquid at the top and bottom of the flow passage 9 can be obtained. By reducing the film thickness, it is possible to substantially improve the heat transfer coefficient.

【0018】また、管内周面8aの頂部及び底部に備え
た平行溝10の溝ピッチPよりも管内周面8aの側部に
備えた傾斜溝11の溝ピッチPを大きくすることによ
り、平行溝10では薄い冷媒液膜流を形成するのに適し
た細かい溝を、傾斜溝11では溝への液冷媒の侵入を容
易にして飛散を抑えるのに適した粗い溝を形成すること
ができ、それぞれの効果を高めることができる。更に、
管内周面8aの頂部及び底部に備えた平行溝10の溝ピ
ッチPを0.15〜0.25mm、溝深さHを0.15
〜0.25mmに限定することにより、液冷媒の表面張
力による溝への保持力を大幅に高めることができ、有効
伝熱面積の増大効果を従来より大幅に高めると共に、表
面張力の増大によっても極めて薄い冷媒液膜流を形成す
ることもでき、実質の熱伝達率向上も更にはかることが
でき、この沸騰伝熱管8を用いた熱交換器の性能向上を
図ることができる。
Further, by making the groove pitch P of the inclined grooves 11 provided on the side of the pipe inner peripheral surface 8a larger than the groove pitch P of the parallel grooves 10 provided on the top and bottom of the pipe inner peripheral surface 8a, the parallel grooves are formed. In 10, it is possible to form a fine groove suitable for forming a thin refrigerant liquid film flow, and in the inclined groove 11, it is possible to form a rough groove suitable for facilitating the intrusion of the liquid refrigerant into the groove and suppressing the scattering. The effect of can be enhanced. Furthermore,
The groove pitch P of the parallel grooves 10 provided on the top and bottom of the pipe inner peripheral surface 8a is 0.15 to 0.25 mm, and the groove depth H is 0.15.
By limiting to 0.25 mm, the holding force to the groove due to the surface tension of the liquid refrigerant can be greatly increased, the effect of increasing the effective heat transfer area can be significantly increased compared with the conventional one, and the increase of the surface tension can also be achieved. An extremely thin refrigerant liquid film flow can be formed, and the substantial heat transfer coefficient can be further improved, and the performance of the heat exchanger using the boiling heat transfer tube 8 can be improved.

【0019】[0019]

【発明の効果】以上のように本発明は、管軸方向とほぼ
平行に連続する平行溝を管内周面の頂部及び底部に、管
軸方向に対して傾斜して連続する傾斜溝を管内周面の側
部に備えることにより、管内周面の側部に設けた傾斜溝
により液冷媒の流路頂部へのはね上げ効果を従来と同様
に維持しながら、流路頂部では、管内周面の頂部に設け
られた冷媒主流方向とほぼ等しい方向に連続する平行溝
により、液冷媒の平行溝からの落下を少なくして平行溝
に沿った薄い冷媒液膜流が得られ、かつ流路底部でも、
管内周面の底部に設けられた平行溝により、液冷媒の平
行溝からの飛散を少なくして平行溝に沿った薄い冷媒液
膜流が得られ、有効伝熱面積の増大効果を従来より大幅
に高めて見かけの熱伝達率向上をはかると共に、流路の
頂部及び底部での冷媒液膜厚さの減少により実質の熱伝
達率向上もはかることができ、この沸騰伝熱管を用いた
熱交換器の性能向上を図ることができる。
As described above, according to the present invention, the parallel grooves continuous substantially parallel to the pipe axis direction are provided on the top and bottom of the inner peripheral surface of the pipe, and the inclined grooves continuously inclined with respect to the pipe axial direction are formed on the inner circumference of the pipe. By providing on the side of the surface, the inclined groove provided on the side of the inner peripheral surface of the pipe maintains the effect of splashing the liquid refrigerant to the top of the flow passage in the same manner as before, while at the top of the flow passage, the top of the inner peripheral surface of the pipe is By the parallel groove continuous in the direction substantially equal to the main flow direction of the refrigerant provided, a thin refrigerant liquid film flow along the parallel groove can be obtained by reducing the drop of the liquid refrigerant from the parallel groove, and also at the bottom of the flow path.
The parallel groove provided on the bottom of the inner peripheral surface of the pipe reduces the scattering of the liquid refrigerant from the parallel groove, and a thin refrigerant liquid film flow along the parallel groove can be obtained, greatly increasing the effective heat transfer area than before. It is possible to improve the apparent heat transfer coefficient by increasing the heat transfer coefficient to a higher level and to improve the actual heat transfer coefficient by reducing the refrigerant liquid film thickness at the top and bottom of the flow path. The performance of the container can be improved.

【0020】また、管軸方向とほぼ平行に連続する平行
溝と管軸方向に対して傾斜して連続する傾斜溝とを管内
周面に備え、前記平行溝の溝ピッチよりも傾斜溝の溝ピ
ッチを大きくすることにより、平行溝では、細かい溝に
より液冷媒の保持力を高めて薄い冷媒液膜流の形成を可
能にし、傾斜溝では、粗い溝により液冷媒の溝の乗り越
え及び溝からの飛散を抑えることができ、平行溝、傾斜
溝共にそれぞれの熱伝達率向上効果を高めることができ
る。
Further, the inner peripheral surface of the pipe is provided with parallel grooves which are continuous substantially parallel to the tube axis direction and inclined grooves which are inclined and continuous with respect to the tube axis direction, and the groove pitch of the inclined grooves is larger than the groove pitch of the parallel grooves. By increasing the pitch, in the parallel grooves, the fine grooves enhance the holding power of the liquid refrigerant to enable the formation of a thin refrigerant liquid film flow, and in the inclined grooves, the rough grooves allow the liquid refrigerant to pass over the grooves and from the grooves. The scattering can be suppressed, and the heat transfer coefficient improving effect of each of the parallel groove and the inclined groove can be enhanced.

【0021】更に、平行溝の溝ピッチを0.15〜0.
25mm、溝深さを0.15〜0.25mmに限定する
ことにより、液冷媒の表面張力による溝への保持力を大
幅に高めることができ、有効伝熱面積の増大効果を従来
より大幅に高めると共に、表面張力の増大によっても極
めて薄い冷媒液膜流を形成することもでき、実質の熱伝
達率向上を更にはかることができる。
Further, the groove pitch of the parallel grooves is 0.15 to 0.
By limiting the groove depth to 25 mm and the groove depth to 0.15 to 0.25 mm, the holding force in the groove due to the surface tension of the liquid refrigerant can be significantly increased, and the effect of increasing the effective heat transfer area can be greatly increased compared to the conventional case. In addition to the increase, it is possible to form an extremely thin refrigerant liquid film flow by increasing the surface tension, and it is possible to further improve the substantial heat transfer coefficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における沸騰伝熱管の形状を示
す円周方向断面図
FIG. 1 is a circumferential sectional view showing the shape of a boiling heat transfer tube in an embodiment of the present invention.

【図2】図1の沸騰伝熱管の製造工程における造管工程
前の伝熱面形状を示す平面図
FIG. 2 is a plan view showing the shape of a heat transfer surface before the pipe making step in the process of manufacturing the boiling heat transfer tube shown in FIG.

【図3】図2のB−B線における伝熱面の断面図3 is a cross-sectional view of the heat transfer surface taken along the line BB of FIG.

【図4】従来の沸騰伝熱管の形状を示す円周方向断面図FIG. 4 is a circumferential sectional view showing the shape of a conventional boiling heat transfer tube.

【図5】図4の沸騰伝熱管の製造工程における造管工程
前の伝熱面形状を示す平面図
5 is a plan view showing a heat transfer surface shape before a pipe making step in a process of manufacturing the boiling heat transfer tube shown in FIG. 4;

【図6】図5のA−A線における伝熱面の断面図6 is a cross-sectional view of the heat transfer surface taken along the line AA in FIG.

【図7】従来の沸騰伝熱管の溝形状寸法を説明する円周
方向部分断面図
FIG. 7 is a partial circumferential sectional view for explaining the groove shape dimension of the conventional boiling heat transfer tube.

【図8】従来の沸騰伝熱管を用いた熱交換器を示す斜視
FIG. 8 is a perspective view showing a heat exchanger using a conventional boiling heat transfer tube.

【符号の説明】[Explanation of symbols]

8 沸騰伝熱管 8a 管内周面 10 平行溝 11 傾斜溝 8 boiling heat transfer tube 8a Inner surface of pipe 10 parallel grooves 11 inclined groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管軸方向とほぼ平行に連続する平行溝を
管内周面の頂部及び底部に、管軸方向に対して傾斜して
連続する傾斜溝を管内周面の側部に備えた沸騰伝熱管。
1. Boiling provided with parallel grooves continuous substantially parallel to the pipe axis direction at the top and bottom of the pipe inner peripheral surface, and inclined grooves continuous at an inclination with respect to the pipe axial direction at the side parts of the pipe inner peripheral surface. Heat transfer tube.
【請求項2】 管軸方向とほぼ平行に連続する平行溝と
管軸方向に対して傾斜して連続する傾斜溝とを管内周面
に備え、前記平行溝の溝ピッチよりも傾斜溝の溝ピッチ
を大きくした沸騰伝熱管。
2. A groove on the inner peripheral surface of the pipe, the parallel groove continuing substantially parallel to the pipe axis direction, and the tilt groove continuing to incline with respect to the pipe axis direction, wherein the groove pitch is larger than the groove pitch of the parallel grooves. Boiling heat transfer tube with a large pitch.
【請求項3】 平行溝の溝ピッチを0.15〜0.25
mm、かつ溝深さを0.15〜0.25mmに限定した
請求項1または請求項2記載の沸騰伝熱管。
3. The groove pitch of the parallel grooves is 0.15 to 0.25.
mm, and the boiling heat transfer tube according to claim 1 or 2, wherein the groove depth is limited to 0.15 to 0.25 mm.
JP03162738A 1991-07-03 1991-07-03 Boiling heat transfer tube Expired - Fee Related JP3130078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03162738A JP3130078B2 (en) 1991-07-03 1991-07-03 Boiling heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03162738A JP3130078B2 (en) 1991-07-03 1991-07-03 Boiling heat transfer tube

Publications (2)

Publication Number Publication Date
JPH0510695A true JPH0510695A (en) 1993-01-19
JP3130078B2 JP3130078B2 (en) 2001-01-31

Family

ID=15760326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03162738A Expired - Fee Related JP3130078B2 (en) 1991-07-03 1991-07-03 Boiling heat transfer tube

Country Status (1)

Country Link
JP (1) JP3130078B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542764A (en) * 2012-07-11 2014-01-29 边疆 Duct type guiding flow-increasing radiator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542764A (en) * 2012-07-11 2014-01-29 边疆 Duct type guiding flow-increasing radiator
CN103542764B (en) * 2012-07-11 2017-07-25 边疆 Culvert type is oriented to flow increasing radiator

Also Published As

Publication number Publication date
JP3130078B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
JP2788793B2 (en) Heat transfer tube
US4938282A (en) High performance heat transfer tube for heat exchanger
JPH0510695A (en) Boiling heat transfer tube
JPH05322477A (en) Boiling heat transfer surface
JP3130063B2 (en) Boiling heat transfer tube
JP2006507470A (en) Polyhedral array heat transfer tube
JPH06323778A (en) Heating tube for use in boiling
JPH0579783A (en) Heat transfer tube with inner surface groove
JP3726045B2 (en) Accumulator, heat exchanger and manufacturing method thereof
JPH0949698A (en) Heat exchanger
JP3391167B2 (en) Heat transfer tube for heat sink and method of manufacturing the same
JP2004003733A (en) Heat transfer pipe and heat exchanger, and method of manufacture of heat transfer pipe
JPH08233480A (en) Heat transfer tube with inner surface groove
JP3410211B2 (en) Boiling heat transfer tube
JPH0961013A (en) Absorption refrigerating machine
JPH04126998A (en) Boiling heat transfer tube
JPH1163878A (en) Internal surface grooved heat transfer pipe
JPH05106989A (en) Heat transfer tube
JP2004301495A (en) Cross-fin tube type heat exchanger
JPH09113169A (en) Heat transfer tube
JPH07109354B2 (en) Heat exchanger
JP2002115933A (en) Heat transfer pipe for absorber
JPH05172484A (en) Boiling heat transfer surface
JPH04126999A (en) Boiling heat transfer tube
JPH04283398A (en) Heat transfer conduit with boiling

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees