JPH05106947A - Engine-driven heat pump device - Google Patents

Engine-driven heat pump device

Info

Publication number
JPH05106947A
JPH05106947A JP26497691A JP26497691A JPH05106947A JP H05106947 A JPH05106947 A JP H05106947A JP 26497691 A JP26497691 A JP 26497691A JP 26497691 A JP26497691 A JP 26497691A JP H05106947 A JPH05106947 A JP H05106947A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor
engine
temperature
defrosting operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26497691A
Other languages
Japanese (ja)
Inventor
Hidemasa Takahashi
秀雅 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP26497691A priority Critical patent/JPH05106947A/en
Publication of JPH05106947A publication Critical patent/JPH05106947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an engine-driven heat pump device equipped with an engine- driven indoor fan capable of preventing cold airflow in defrosting operation nicely. CONSTITUTION:When the adhesion of frost to an outdoor side heat exchanger 4 is detected by a frost detecting means 19 upon heating operation, defrosting operation is started and a damper control means 50 switches a switching damper 12, annexed to an indoor side heat exchanger 8 upon defrosting operation to the outflow side to direct the outflow stream of the indoor side heat exchanger 8 toward outdoor to prevent the inflow of outflow stream, whose temperature is reduced to a low temperature due to the reduction of the temperature of pipelines for the indoor side heat exchanger 8. Further, the damper control means 50 switches the switching damper 12 to indoor outflow after the temperature of air blown from the indoor side heat exchanger 4 is sufficiently increased after finishing the defrosting operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジン駆動式のヒ−
トポンプ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine-driven heat
Pump device.

【0002】[0002]

【従来の技術】従来、エンジン駆動式の冷房装置が多く
実用されており、このようなエンジン駆動式の冷房装置
では、エンジンが室内側又は室外側熱交換器のファンを
直接に駆動する場合も多い。
2. Description of the Related Art Conventionally, many engine-driven air conditioners have been put into practical use. In such engine-driven air conditioners, even when the engine directly drives a fan of an indoor heat exchanger or an outdoor heat exchanger. Many.

【0003】[0003]

【発明が解決しようとする課題】従来から、このような
エンジン駆動式の冷房装置のヒ−トポンプ化を図りたい
という要望があったが、この場合、室内側熱交換器のフ
ァン(以下、室内ファンともいう)がエンジンによる機
械駆動であるためエンジン運転中は常時、このファンが
回転しており、そのため、暖房運転による室外側熱交換
器の着霜を除去するために除霜運転を行うと、室内ファ
ンが冷風を吹き出してしまうという問題があった。
Conventionally, there has been a demand for a heat pump of such an engine-driven air conditioner. In this case, however, a fan of an indoor heat exchanger (hereinafter referred to as an indoor heat exchanger) is required. Since the fan (also called a fan) is mechanically driven by the engine, this fan is constantly rotating during engine operation. Therefore, when performing defrosting operation to remove frost on the outdoor heat exchanger due to heating operation, There was a problem that the indoor fan blows out cold air.

【0004】この問題を解決するために、本発明者は最
初、エンジンと室内ファンとの間にクラッチ装置を新設
し、除霜運転中はこのクラッチ装置を切断してファンを
停止することを考えた。しかしながら、除霜運転終了
後、暖房運転を再開し、室内ファンの駆動を開始した場
合、室内側熱交換器の配管温度はまだ低温であるので、
この配管が暖まるまで室内側熱交換器から冷風が吹き出
すという不具合が残ることが判明した。この問題を解決
するために、タイマにより除霜運転終了後、所定時間遅
れてクラッチ装置を接続することも考えた。
In order to solve this problem, the present inventor first considered to install a new clutch device between the engine and the indoor fan, and disconnect the clutch device to stop the fan during the defrosting operation. It was However, when the heating operation is restarted and the indoor fan drive is started after the defrosting operation is completed, the piping temperature of the indoor heat exchanger is still low.
It was revealed that the problem remains that cold air blows out from the indoor heat exchanger until this pipe warms up. In order to solve this problem, it was considered to connect the clutch device with a predetermined time delay after the defrosting operation was completed by the timer.

【0005】しかしながらこの方式では、遅延時間が一
律であるので、室内側熱交換器の配管温度は運転パラメ
−タ即ち運転環境により多様であり、まだ配管温度が充
分に暖まっていないのに冷風が吹き出したり、また、配
管温度が充分に暖まったのに、温風が吹き出さなかった
りする不具合を生じる。また、電磁クラッチの設置及び
シャフト改造などの費用が無視できず、電磁クラッチ設
置のためのスペ−ス上の問題もある。
However, in this method, since the delay time is uniform, the piping temperature of the indoor heat exchanger varies depending on the operating parameters, that is, the operating environment, and the cold air is generated even though the piping temperature is not yet sufficiently warm. There is a problem that the air is blown out, or the warm air is not blown out even though the pipe temperature is sufficiently warmed. Further, the cost of installing the electromagnetic clutch and modifying the shaft cannot be ignored, and there is a space problem for installing the electromagnetic clutch.

【0006】本発明は、上記問題に鑑みなされたもので
あり、除霜運転における冷風を良好に防止可能なエンジ
ン駆動式室内ファン付きエンジン駆動式のヒ−トポンプ
装置を提供することを、その目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide an engine-driven heat pump device with an engine-driven indoor fan capable of favorably preventing cold air during defrosting operation. I am trying.

【0007】[0007]

【課題を解決するための手段】本発明は、エンジンによ
り駆動されて圧縮機、室内側熱交換器、エキスパンダ及
び室外側熱交換器を冷媒循環させヒ−トポンプサイクル
を実施する冷凍サイクル装置と、前記エンジンによる前
記室内側熱交換器のファンへの駆動を断続制御するクラ
ッチ装置と、前記室外側熱交換器に配設されて前記室外
側熱交換器への着霜を検出する着霜検出手段と、前記冷
凍サイクル装置の運転を制御して前記暖房運転時に前記
着霜が検出された場合に除霜運転に切り換え、前記除霜
運転終了後に暖房運転を再開させるコントロ−ラとを備
えるエンジン駆動式のヒ−トポンプ装置において、室内
側熱交換器の吹き出し温度を検出する室内側吹き出し温
度検出手段と、前記暖房運転再開後に前記吹き出し温度
が所定基準温度へ上昇したことをを判別する室内側吹き
出し温度上昇判別手段と、前記室内側熱交換器に配設さ
れ前記室内側熱交換器の吹き出し先を室内および戸外の
どちらかに切り換える切り換えダンパと、前記除霜運転
時に前記ダンパを戸外吹き出し側に切り換え、前記吹き
出し温度上昇を判別した場合に前記ダンパを室内吹き出
し側に切り換えるダンパ制御手段とを備えることを特徴
としている。
The present invention relates to a refrigeration cycle apparatus which is driven by an engine to circulate a refrigerant through a compressor, an indoor heat exchanger, an expander and an outdoor heat exchanger to implement a heat pump cycle. A clutch device for intermittently controlling driving of the indoor heat exchanger by the engine to a fan; and frost detection for detecting frost on the outdoor heat exchanger, which is disposed in the outdoor heat exchanger. An engine including means for controlling the operation of the refrigeration cycle apparatus, switching to a defrosting operation when the frost formation is detected during the heating operation, and restarting the heating operation after the defrosting operation ends In the drive-type heat pump device, an indoor-side outlet temperature detecting means for detecting the outlet temperature of the indoor-side heat exchanger, and the outlet temperature to a predetermined reference temperature after restarting the heating operation. An indoor-side blow-out temperature rise determination means that determines that the temperature has risen, a switching damper that is disposed in the indoor-side heat exchanger and that switches the blowing destination of the indoor-side heat exchanger to either indoors or outdoors, and the removal It is characterized by comprising a damper control means for switching the damper to the outdoor blowing side during the frost operation, and for switching the damper to the indoor blowing side when the rise in the blowing temperature is determined.

【0008】[0008]

【作用】コントロ−ラは冷凍サイクル装置の運転を制御
し、暖房運転時に着霜検出手段が室外側熱交換器への着
霜を検出すると除霜運転に切り換え、除霜運転終了後に
暖房運転を再開させる。室内側吹き出し温度検出手段は
室内側熱交換器の吹き出し温度を検出し、室内側吹き出
し温度上昇判別手段は暖房運転再開後における吹き出し
温度の所定基準温度への上昇を判別する。
The controller controls the operation of the refrigeration cycle device, and when the frost formation detecting means detects the frost formation on the outdoor heat exchanger during the heating operation, it switches to the defrosting operation, and after the defrosting operation ends, the heating operation is started. Resume. The indoor blowout temperature detection means detects the blowout temperature of the indoor heat exchanger, and the indoor blowout temperature rise determination means determines whether the blowout temperature has risen to a predetermined reference temperature after the heating operation is restarted.

【0009】ダンパ制御手段は除霜運転時に切り換えダ
ンパ装置を戸外吹き出し側に切り換えて室内側熱交換器
の吹き出し流れを戸外に向け、除霜運転による室内側熱
交換器の配管温度の低下により低温となった吹き出し流
が室内に流入するのを防止する。更にダンパ制御手段
は、除霜運転終了後、室内側熱交換器の吹き出し温度が
充分上昇するのを待って、切り換えダンパを室内吹き出
し側に切り換える。
The damper control means is switched during the defrosting operation to switch the damper device to the outdoor blowing side to direct the blowing flow of the indoor heat exchanger to the outside, and the defrosting operation lowers the piping temperature of the indoor heat exchanger to lower the temperature. To prevent the blowout flow from flowing into the room. Further, after the defrosting operation is completed, the damper control means waits for the blowing temperature of the indoor heat exchanger to rise sufficiently and switches the switching damper to the indoor blowing side.

【0010】[0010]

【発明の効果】以上説明したように、本発明のエンジン
駆動式のヒ−トポンプ装置は、除霜運転時に切り換えダ
ンパを戸外吹き出し側に切り換えて室内側熱交換器から
吹き出す冷風を戸外に排出し、除霜運転が終了して再度
暖房運転を再開した後、室内側熱交換器の吹き出し温度
が充分に上昇したことを確認して切り換えダンパを室内
吹き出し側に切り換える構成としているので、除霜運転
時及びその終了後、室内側熱交換器の吹き出し温度が上
昇するまでの期間、冷風を室内に吹き出すのを防止する
ことができる。
As described above, in the engine-driven heat pump device of the present invention, the switching damper is switched to the outdoor blowing side during the defrosting operation to discharge the cool air blown out from the indoor heat exchanger to the outside. After the defrosting operation is completed and the heating operation is restarted, the switching damper is switched to the indoor blowing side after confirming that the blowing temperature of the indoor heat exchanger has risen sufficiently. It is possible to prevent the cold air from being blown into the room until the temperature of the indoor heat exchanger rises after the time and after that.

【0011】また、除霜運転終了後、室内側熱交換器の
吹き出し温度が適当な温度まで達したら遅滞なく確実に
室内ファンの運転を開始することができる。
Further, after the defrosting operation is completed, when the blowout temperature of the indoor heat exchanger reaches an appropriate temperature, the operation of the indoor fan can be reliably started without delay.

【0012】[0012]

【実施例】以下、本発明の具体的な実施例を例示の図面
について説明する。この実施例に用いた空調装置は大容
量定置型のものであって、図1に示すように、エンジン
1により駆動される圧縮機2は冷暖切り換え用の四方弁
3に高圧の冷媒ガスを吐出し、四方弁3からアキューム
レ−タ10を通じて低圧の冷媒ガスを吸入している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the accompanying drawings. The air conditioner used in this embodiment is of a large-capacity stationary type, and as shown in FIG. 1, the compressor 2 driven by the engine 1 discharges high-pressure refrigerant gas to the four-way valve 3 for switching between cooling and heating. However, low-pressure refrigerant gas is sucked from the four-way valve 3 through the accumulator 10.

【0013】四方弁3には冷媒ガス用の配管31、32
が接続されており、配管31は室外側熱交換器4、暖房
時エキスパンダ16、ス−パ−ク−ラ6、冷房時エキス
パンダ15、室内側熱交換器8を通じて四方弁3に接続
されている。また、室外側熱交換器4と暖房時エキスパ
ンダ16とを接続する配管33は逆止弁17を通じてレ
シ−バ9に接続され、同様に室内側熱交換器8と冷房用
エキスパンダ15とを接続する配管34は逆止弁20を
通じてレシ−バ9に接続されている。更に、レシ−バ9
は、暖房用エキスパンダ16とス−パ−ク−ラ6とを接
続する配管35に冷媒液供給可能に接続されている。こ
のようにして、冷凍サイクル装置が構成されている。
The four-way valve 3 has refrigerant gas pipes 31, 32.
The pipe 31 is connected to the four-way valve 3 through the outdoor heat exchanger 4, the heating expander 16, the super cooler 6, the cooling expander 15, and the indoor heat exchanger 8. ing. The pipe 33 connecting the outdoor heat exchanger 4 and the heating expander 16 is connected to the receiver 9 through the check valve 17, and similarly the indoor heat exchanger 8 and the cooling expander 15 are connected. The connecting pipe 34 is connected to the receiver 9 through the check valve 20. In addition, receiver 9
Is connected to the pipe 35 connecting the expander 16 for heating and the super cooler 6 so that the refrigerant liquid can be supplied. In this way, the refrigeration cycle device is configured.

【0014】また、エンジンを冷却する冷却水は2個の
二方弁40、41により適宜、ラジエ−タ5又はリヒ−
トコア7のどちらかに循環される。なお、このリヒ−ト
コア7は室内側熱交換器8へ流入する室内空気を予熱す
るための熱交換器である。ここで、エンジンの駆動軸に
は増速ギヤ装置25及び室外ファン11が装備されてお
り、増速ギヤ装置25の従動軸は連結軸13を介して室
内側熱交換器8に付設された室内ファン14に直結され
ている。なお、室外ファン11は室外熱交換器4に送風
するファンである。
The cooling water for cooling the engine is appropriately supplied by the two two-way valves 40 and 41 to the radiator 5 or the reach.
It is circulated to either of the tocoa 7. The reheat core 7 is a heat exchanger for preheating indoor air flowing into the indoor heat exchanger 8. Here, the drive shaft of the engine is equipped with the speed increasing gear device 25 and the outdoor fan 11, and the driven shaft of the speed increasing gear device 25 is a room attached to the indoor heat exchanger 8 via the connecting shaft 13. It is directly connected to the fan 14. The outdoor fan 11 is a fan that blows air to the outdoor heat exchanger 4.

【0015】室内側熱交換器8の吹き出し側には、吹き
出しダクト30が設けられており、この吹き出しダクト
30は、戸外設置エンジンと一体の室内側熱交換器8か
ら室内に延設されている。このダクト30の途中から短
い戸外排出ダクト32が分岐しており、この部位におい
て、ダクト32内に切り換えダンパ12が配設されてい
る。
A blow-out duct 30 is provided on the blow-out side of the indoor heat exchanger 8, and the blow-out duct 30 extends from the indoor heat exchanger 8 integrated with the outdoor engine to the room. .. A short outdoor discharge duct 32 branches off in the middle of the duct 30, and the switching damper 12 is disposed in the duct 32 at this portion.

【0016】この切り換えダンパ12はコントロ−ラ5
0により制御されるサ−ボモ−タ(図示せず)により駆
動されて、室内側吹き出し(戸外側閉鎖)位置と、戸外
側吹き出し(室内側閉鎖)位置との間で揺動するように
なっている。室外側熱交換器4の暖房時出口配管部分に
はサ−ミスタ(本発明でいう着霜検出手段)19が配設
され、室内側熱交換器8の吹き出し部にはサ−ミスタ
(本発明でいう室内側吹き出し温度検出手段)18が配
設されている。
This switching damper 12 is a controller 5
Driven by a servo motor (not shown) controlled by 0, it swings between an indoor side blowing (outdoor closed) position and an outdoor blowing (indoor closed) position. ing. A thermistor (frost formation detecting means in the present invention) 19 is disposed in the heating outlet pipe portion of the outdoor heat exchanger 4, and a thermistor (invention of the present invention) is provided in the blowing portion of the indoor heat exchanger 8. The indoor-side blown-out temperature detecting means) 18 is provided.

【0017】更に、上述した各部を電気制御するために
マイクロコンピュ−タ装置を(図示せず)含むコントロ
−ラ(本発明でいう室内側吹き出し温度上昇判別手段、
ダンパ制御手段)50が設けられており、このコントロ
−ラ50は図示しない各種センサからの信号に応じて通
常の冷暖房運転の各種制御を行い、更に、この実施例の
特徴をなす除霜運転制御を行う。
Further, a controller including a microcomputer device (not shown) for electrically controlling the above-mentioned respective parts (indoor-side blown-out temperature rise judging means in the present invention,
A damper control means) 50 is provided, and the controller 50 performs various controls of normal cooling and heating operation according to signals from various sensors (not shown), and further, defrost operation control which is a feature of this embodiment. I do.

【0018】なお、上述した冷凍サイクル装置の構成及
び作動は周知であるので、その暖房運転モ−ド及び除霜
運転モ−ドについてだけ簡略に説明を加える。図1は暖
房運転モ−ドを示すものであって、エンジン1により圧
縮機2が駆動され、同時に室外ファン11及び室内ファ
ン14が駆動される。また、エンジン1から出た高温の
冷却水は二方弁40閉、二方弁41開によりリヒ−トコ
ア7に送られ、リヒ−トコア7は室内側熱交換器8の吸
い込み空気を予熱する。この暖房モ−ドでは暖房用エキ
スパンダ16が開かれ、冷房用エキスパンダ15が閉じ
られている。
Since the structure and operation of the refrigeration cycle apparatus described above are well known, only the heating operation mode and the defrosting operation mode will be briefly described. FIG. 1 shows a heating operation mode in which a compressor 2 is driven by an engine 1 and at the same time an outdoor fan 11 and an indoor fan 14 are driven. Further, the high-temperature cooling water discharged from the engine 1 is sent to the reheat core 7 by closing the two-way valve 40 and opening the two-way valve 41, and the reheat core 7 preheats the intake air of the indoor heat exchanger 8. In this heating mode, the heating expander 16 is opened and the cooling expander 15 is closed.

【0019】圧縮機2から出た高圧の冷媒ガスは四方弁
3により室内側熱交換器8に送られて室内側熱交換器8
で凝縮し、室内側熱交換器8は温風を吹き出す。凝縮し
た冷媒液は逆止弁20、レシ−バ9を通じて暖房用エキ
スパンダ16で断熱膨張し、室外側熱交換器4で大気か
ら吸熱して蒸発し、低圧の冷媒ガスとなって四方弁3、
アキュームレ−タ10を通じて圧縮機2の吸入側にリタ
−ンする。
The high-pressure refrigerant gas discharged from the compressor 2 is sent to the indoor heat exchanger 8 by the four-way valve 3 and is sent to the indoor heat exchanger 8.
And the indoor heat exchanger 8 blows out warm air. The condensed refrigerant liquid adiabatically expands in the heating expander 16 through the check valve 20 and the receiver 9, absorbs heat from the atmosphere in the outdoor heat exchanger 4 and evaporates to become a low-pressure refrigerant gas, and thus the four-way valve 3 ,
It returns to the suction side of the compressor 2 through the accumulator 10.

【0020】ここで、除霜運転モ−ドにおいては、四方
弁3を切り換えて冷媒循環経路を逆とし、暖房用エキス
パンダ16を閉じ、冷房用エキスパンダ15を開き、更
に、電磁切り換えダンパ12の切断により室内ファン1
4を停止して室外側熱交換器8から冷風を吹き出すのを
防ぐ。その結果、圧縮機2から出た高圧の冷媒ガスは四
方弁3により室外側熱交換器4に送られて凝縮し、室外
側熱交換器4を加熱して室外側熱交換器4に着霜した霜
を除去する。室外側熱交換器4で凝縮した冷媒液は逆止
弁17、レシ−バ9を通じてス−パ−ク−ラ6に送られ
て完全に液化される。この冷媒液は、冷房用エキスパン
ダ15により断熱膨張し、室内側熱交換器8で吸熱して
蒸発し、低圧の冷媒ガスとなって四方弁3、アキューム
レ−タ10を通じて圧縮機2の吸入側にリタ−ンする。
In the defrosting operation mode, the four-way valve 3 is switched to reverse the refrigerant circulation path, the heating expander 16 is closed, the cooling expander 15 is opened, and the electromagnetic switching damper 12 is used. Indoor fan 1 by cutting
4 is stopped to prevent blowing cold air from the outdoor heat exchanger 8. As a result, the high-pressure refrigerant gas discharged from the compressor 2 is sent to the outdoor heat exchanger 4 by the four-way valve 3 and condensed, and heats the outdoor heat exchanger 4 to frost the outdoor heat exchanger 4. Remove the frost. The refrigerant liquid condensed in the outdoor heat exchanger 4 is sent to the super cooler 6 through the check valve 17 and the receiver 9 and is completely liquefied. This refrigerant liquid adiabatically expands by the cooling expander 15, absorbs heat in the indoor heat exchanger 8 and evaporates, and becomes a low-pressure refrigerant gas through the four-way valve 3 and the accumulator 10 on the suction side of the compressor 2. Return to.

【0021】次に、本実施例の特徴をなすコントロ−ラ
50による除霜運転サブル−チンを図4のフロ−チャ−
トを参照して説明する。まず、電源入力とともに切り換
えダンパ12を室内吹き出し側(即ち、戸外側を閉鎖)
して暖房運転を開始するとともに、コントロ−ラ50内
蔵のタイマAをスタ−トし(100)、タイマAのカウ
ント時間、すなわち圧縮機2すなわちエンジン1の起動
からの経過時間t1が60分になる迄、この除霜運転は
不必要であるとして待機し(102)、経過したら、サ
−ミスタ19により検出した室外側熱交換器4の出口部
配管温度Toが所定のしきい値温度T1以下になるまで
待機し(104)、ToがT1以下になれば室外側熱交
換器4の冷媒配管に所定量の着霜が生じたものとして、
四方弁3の除霜側への切り換えるとともに、切り換えダ
ンパ12を戸外吹き出し側(即ち、室内側を閉鎖)に切
り換え、更にタイマAをリセットし、コントロ−ラ50
内蔵のタイマBをスタ−トする(106)。なお、室外
側熱交換器4に着霜すると、伝熱効率の低下により室外
側熱交換器4の出口部配管温度Toが低下するので、そ
れにより着霜が検出される。
Next, the defrosting operation subroutine by the controller 50 which characterizes the present embodiment is shown in the flow chart of FIG.
It will be described with reference to FIG. First, the switching damper 12 is switched to the power supply input side and the damper 12 is blown indoors (that is, the outdoor side is closed).
Then, the heating operation is started, and the timer A built in the controller 50 is started (100), and the count time of the timer A, that is, the elapsed time t1 from the start of the compressor 2, that is, the engine 1 is set to 60 minutes. Until this time, the defrosting operation is waited as unnecessary (102), and after the passage, the outlet pipe temperature To of the outdoor heat exchanger 4 detected by the thermistor 19 is equal to or lower than a predetermined threshold temperature T1. (104), and when To becomes T1 or less, it is determined that a predetermined amount of frost has formed in the refrigerant pipe of the outdoor heat exchanger 4,
The four-way valve 3 is switched to the defrosting side, the switching damper 12 is switched to the outdoor blowing side (that is, the indoor side is closed), the timer A is reset, and the controller 50.
The built-in timer B is started (106). When frost forms on the outdoor heat exchanger 4, the outlet pipe temperature To of the outdoor heat exchanger 4 decreases due to a decrease in heat transfer efficiency, so that frost is detected.

【0022】次に、再び室外側熱交換器の出口部配管温
度Toが所定のしきい値温度T2以上になったかどうか
を判別し(108)、ToがT2以上になっていれば室
外側熱交換器4の冷媒配管は除霜されたものとしてステ
ップ112に進み、なっていなければダンパ切り換え尚
早として、タイマBのカウント時間、すなわち除霜運転
時間t2が12分に達するまで待機し(110)、12
分経過すれば、これ以上の暖房中断は不快であるとして
ステップ112に進む。
Next, it is judged again whether the outlet pipe temperature To of the outdoor heat exchanger has become equal to or higher than a predetermined threshold temperature T2 (108). If To is equal to or higher than T2, the outdoor heat It is assumed that the refrigerant pipe of the exchanger 4 has been defrosted, and the process proceeds to step 112. If not, the damper switching is prematurely waited until the count time of the timer B, that is, the defrosting operation time t2 reaches 12 minutes (110). , 12
After the lapse of minutes, it is determined that it is uncomfortable to stop heating any more, and the process proceeds to step 112.

【0023】ステップ112では、四方弁3を暖房側へ
切り換え、タイマBをリセットする。次に、サ−ミスタ
18により検出した室内側熱交換器8の吹き出し温度T
aが所定のしきい値温度T3以上になるまで待機し(1
14)、ToがT3以上になれば、室内側熱交換器8の
吹き出し温度は充分暖かい温風を吹き出しているものと
して切り換えダンパ12を室内吹き出し側(即ち、戸外
側を閉鎖)に切り換え(116)、ステップ102にリ
タ−ンする。
In step 112, the four-way valve 3 is switched to the heating side and the timer B is reset. Next, the blow-out temperature T of the indoor heat exchanger 8 detected by the thermistor 18
Wait until a becomes equal to or higher than a predetermined threshold temperature T3 (1
14) If To becomes equal to or higher than T3, the blowing temperature of the indoor heat exchanger 8 is considered as blowing sufficiently warm hot air, and the switching damper 12 is switched to the indoor blowing side (that is, the outdoor side is closed) (116). ), And returns to step 102.

【0024】ここで、ステップ114は本発明でいう室
内側熱交換器吹き出し温度上昇判別手段を構成し、ステ
ップ106、116は本発明でいうダンパ制御手段を構
成している。 なお、上記実施例では室内側熱交換器8
の吹き出し温度を直接検出しているが、室内側熱交換器
8の冷媒配管温度によりその吹き出し温度を推定しても
よい。 図2に除霜運転時における室内側熱交換器8の
吹き出し温度の変化を示す。除霜運転時の冷風は戸外に
排出され、室内の人間に不快感を与えなることはない。
図1では押し込みファン方式の室内側熱交換器(室内
側空調器)8を示したが、吸い込みファン方式の室内側
熱交換器(室内側空調器)8にこの実施例の特徴である
切り換えダンパ12を付設した例を図3に示す。
Here, step 114 constitutes the indoor heat exchanger blowout temperature rise determination means in the present invention, and steps 106 and 116 constitute the damper control means in the present invention. In the above embodiment, the indoor heat exchanger 8
Although the blowout temperature is directly detected, the blowout temperature may be estimated from the temperature of the refrigerant pipe of the indoor heat exchanger 8. FIG. 2 shows changes in the blowing temperature of the indoor heat exchanger 8 during the defrosting operation. The cold air during the defrosting operation is discharged to the outside, and does not cause discomfort to the people in the room.
FIG. 1 shows an indoor heat exchanger (indoor air conditioner) 8 of a forced draft fan type, but the indoor heat exchanger (indoor air conditioner) 8 of a suction fan type has a switching damper which is a feature of this embodiment. An example in which 12 is attached is shown in FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示すブロック図、FIG. 1 is a block diagram showing an embodiment of the present invention,

【図2】 この実施例の除霜運転モ−ドにおける室内側
熱交換器の吹き出し温度の時間推移を示す図、
FIG. 2 is a diagram showing the time transition of the blowing temperature of the indoor heat exchanger in the defrosting operation mode of this embodiment,

【図3】 室内側熱交換器の他の態様を示すブロック
図、
FIG. 3 is a block diagram showing another aspect of the indoor heat exchanger,

【図4】 この実施例の除霜運転モ−ドを示すフロ−チ
ャ−ト、
FIG. 4 is a flow chart showing a defrosting operation mode of this embodiment,

【符号の説明】[Explanation of symbols]

1はエンジン、2は圧縮機、8は室内側熱交換器、1
5、16はエキスパンダ、4は室外側熱交換器、14は
室内ファン(ファン)、12は切り換えダンパ、19は
サ−ミスタ(着霜検出手段)、50はコントロ−ラ(室
内側吹き出し温度上昇判別手段、ダンパ制御手段)、1
8はサ−ミスタ(室内側吹き出し温度検出手段)、
1 is an engine, 2 is a compressor, 8 is an indoor heat exchanger, 1
Reference numerals 5 and 16 are expanders, 4 is an outdoor heat exchanger, 14 is an indoor fan (fan), 12 is a switching damper, 19 is a thermistor (frost forming detection means), and 50 is a controller (indoor side blowing temperature). Rise determination means, damper control means), 1
Numeral 8 is a thermistor (inside air temperature detecting means),

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エンジンにより駆動されて圧縮機、室内側
熱交換器、エキスパンダ及び室外側熱交換器を冷媒循環
させヒ−トポンプサイクルを実施する冷凍サイクル装置
と、前記エンジンによる前記室内側熱交換器のファンへ
の駆動を断続制御するクラッチ装置と、前記室外側熱交
換器に配設されて前記室外側熱交換器への着霜を検出す
る着霜検出手段と、前記冷凍サイクル装置の運転を制御
して前記暖房運転時に前記着霜が検出された場合に除霜
運転に切り換え、前記除霜運転終了後に暖房運転を再開
させるコントロ−ラとを備えるエンジン駆動式のヒ−ト
ポンプ装置において、 室内側熱交換器の吹き出し温度を検出する室内側吹き出
し温度検出手段と、 前記暖房運転再開後に前記吹き出し温度が所定基準温度
へ上昇したことをを判別する室内側吹き出し温度上昇判
別手段と、 前記室内側熱交換器に配設され前記室内側熱交換器の吹
き出し先を室内および戸外のどちらかに切り換える切り
換えダンパと、 前記除霜運転時に前記ダンパを戸外吹き出し側に切り換
え、前記吹き出し温度上昇を判別した場合に前記ダンパ
を室内吹き出し側に切り換えるダンパ制御手段とを備え
ることを特徴とするエンジン駆動式のヒ−トポンプ装
置。
1. A refrigeration cycle apparatus driven by an engine to circulate a refrigerant through a compressor, an indoor heat exchanger, an expander and an outdoor heat exchanger to perform a heat pump cycle, and the indoor heat by the engine. A clutch device for intermittently controlling the drive of the exchanger to the fan, a frost detection unit disposed in the outdoor heat exchanger to detect frost on the outdoor heat exchanger, and the refrigeration cycle device. In an engine-driven heat pump device including a controller that controls operation to switch to defrosting operation when the frost formation is detected during the heating operation, and restarts heating operation after completion of the defrosting operation. An indoor side outlet temperature detecting means for detecting the outlet temperature of the indoor heat exchanger, and determining that the outlet temperature has risen to a predetermined reference temperature after restarting the heating operation. Inside blowout temperature rise determination means, a switching damper disposed in the indoor side heat exchanger for switching the blowing destination of the indoor side heat exchanger to either indoors or outdoors, and blowing the damper out during the defrosting operation. And a damper control means for switching the damper to the indoor blowing side when the rise in the blowing temperature is discriminated, and an engine-driven heat pump device.
JP26497691A 1991-10-14 1991-10-14 Engine-driven heat pump device Pending JPH05106947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26497691A JPH05106947A (en) 1991-10-14 1991-10-14 Engine-driven heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26497691A JPH05106947A (en) 1991-10-14 1991-10-14 Engine-driven heat pump device

Publications (1)

Publication Number Publication Date
JPH05106947A true JPH05106947A (en) 1993-04-27

Family

ID=17410831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26497691A Pending JPH05106947A (en) 1991-10-14 1991-10-14 Engine-driven heat pump device

Country Status (1)

Country Link
JP (1) JPH05106947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040431A (en) * 2015-08-19 2017-02-23 三菱重工業株式会社 Heat pump system, control device, control method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040431A (en) * 2015-08-19 2017-02-23 三菱重工業株式会社 Heat pump system, control device, control method, and program

Similar Documents

Publication Publication Date Title
JP3888403B2 (en) Method and apparatus for controlling air conditioner
JP4782941B2 (en) Air conditioner for vehicles
JP4273956B2 (en) How to operate the dehumidifier
KR101203995B1 (en) Air conditioner and Defrosting Driving Method thereof
JPH0914727A (en) Air conditioner
JPH11230646A (en) Engine driven heat pump
JP4830399B2 (en) Air conditioner
JP4802602B2 (en) Air conditioner
JPH04131668A (en) Defrosting operation controller for air-conditioning apparatus
JPH04214156A (en) Engine-driven heat pump
JPH06265242A (en) Engine driven heat pump
JP2002098451A (en) Heat pump type air conditioner
JPH0673667U (en) Pressure equalizer in multi-room air conditioning type heat pump system
JPH05106947A (en) Engine-driven heat pump device
JPH0620039Y2 (en) Air conditioner
JPH0413037A (en) Controlling method for air conditioner
JPH08121842A (en) Controlling method for prevention of freezing of hot water type air conditioner
JPH0359358A (en) Air conditioner
KR20070064908A (en) Air conditioner and driving method thereof
JPH043843A (en) Method of controlling air conditioner
JPH08285393A (en) Air conditioner for multi-room
JP2002061994A (en) Air conditioner
JP3564212B2 (en) Engine driven air conditioner
JPH09138024A (en) Air conditioner
JPH10148379A (en) Radiation air-conditioning system