JPH05106792A - Hydrogen storage device - Google Patents

Hydrogen storage device

Info

Publication number
JPH05106792A
JPH05106792A JP3267744A JP26774491A JPH05106792A JP H05106792 A JPH05106792 A JP H05106792A JP 3267744 A JP3267744 A JP 3267744A JP 26774491 A JP26774491 A JP 26774491A JP H05106792 A JPH05106792 A JP H05106792A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage device
storage alloy
plate fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3267744A
Other languages
Japanese (ja)
Other versions
JP3327564B2 (en
Inventor
Kuninobu Ichikawa
国延 市川
Ko Wada
香 和田
Tokuichi Mineo
徳一 峰尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26774491A priority Critical patent/JP3327564B2/en
Publication of JPH05106792A publication Critical patent/JPH05106792A/en
Application granted granted Critical
Publication of JP3327564B2 publication Critical patent/JP3327564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a hydrogen storage device having improved responsiveness to storage/release of hydrogen. CONSTITUTION:Since a plate fin 12 provided with a corrugated fin 14 in which hydrogen storage alloy 11 having a particle diameter of 1mum-100mum is filled and a passage 13 to heat or cool the plate fin 12 from both surfaces of this plate fin 12 are laminated alternately upon each other, responsiveness to storage/ release of hydrogen is improved, so that a device is suitable as a hydrogen supply device, for example, as a fuel cell for a hydrogen engine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素貯蔵装置に関し、特
に、水素の貯蔵、放出の応答性が良好となるように工夫
したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage device, and in particular, it is devised so that the response of hydrogen storage and release is good.

【0002】[0002]

【従来の技術】金属が水素を吸蔵することは古くから知
られており、金属材料における水素脆性はそのために起
こる。ここで金属が水素を貯蔵するとは、ある温度の水
素圧下で水素を貯蔵し、一定の平衡水素圧をもつ金属水
素化物となり、それがその平衡水素圧よりも低い水素圧
の環境におかれると、貯蔵した水素を放出し、もとの金
属に戻ることをいう。
2. Description of the Related Art It has long been known that metals occlude hydrogen, and hydrogen embrittlement in metal materials is caused by this. Here, when metal stores hydrogen, it means that hydrogen is stored under hydrogen pressure at a certain temperature and becomes a metal hydride having a constant equilibrium hydrogen pressure, and when it is placed in an environment of hydrogen pressure lower than the equilibrium hydrogen pressure. , Releasing stored hydrogen and returning to the original metal.

【0003】上述した水素貯蔵特性の優れた素材として
は、例えばLaNi5 ,FeTiなどがあり、上記La
Ni5 の例では、室温で気圧の水素と平衡し、水素を貯
蔵してLaNi5 2 となった金属水素化物を、100
℃で加熱すると、平衡圧が10気圧であるから、10気
圧の水素ガスを放出することとなる。このほかの水素貯
蔵金属としては、マグネシウム水素化物、リチウム水素
化物などがある。
Examples of the above-mentioned materials having excellent hydrogen storage characteristics include LaNi 5 and FeTi.
In the example of Ni 5 , a metal hydride that equilibrates with hydrogen at atmospheric pressure at room temperature and stores hydrogen to become LaNi 5 H 2 is
When heated at 0 ° C., the equilibrium pressure is 10 atm, so that hydrogen gas at 10 atm is released. Other hydrogen storage metals include magnesium hydride and lithium hydride.

【0004】従来ではこのような水素貯蔵合金を用い
て、図3に示すようなボンベ01内に該水素貯蔵合金を
充填し、水素貯蔵装置としている。尚、従来では、例え
ばボンベの内容積が2lの場合には水素貯蔵合金の充填
量としては約1Lとしている。
Conventionally, such a hydrogen storage alloy is used to fill a cylinder 01 as shown in FIG. 3 with the hydrogen storage alloy to form a hydrogen storage device. Conventionally, for example, when the internal volume of the cylinder is 2 liters, the filling amount of the hydrogen storage alloy is about 1 L.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来技
術に係る水素貯蔵装置では、以下のような問題がある。 水素に例えば水,CO2 ,CO,O2 等の不純物
(ガス)成分が入った場合、吸収能が無くなる。 水素の貯蔵又は放出を繰り返していくうちに、1〜
5mm位の大きさのものが1μmぐらいの大きさまで割れ
て微粉化するという欠陥がある。 水素の貯蔵時には反応熱を取り、又放出時には加熱
する必要があるが、粉体化した水素貯蔵合金に、伝熱す
ることが困難である。 例えば車載用に利用する場合など伝熱が早くなけれ
ば応答性が悪くなり利用できないという問題がある。
However, the hydrogen storage device according to the prior art has the following problems. When hydrogen (for example) contains impurities (gas) such as water, CO 2 , CO, O 2 and the like, the absorption capacity is lost. During repeated storage or release of hydrogen,
There is a defect that a material having a size of about 5 mm is cracked to a size of about 1 μm and pulverized. It is necessary to take heat of reaction when storing hydrogen and to heat it when releasing hydrogen, but it is difficult to transfer heat to the powdered hydrogen storage alloy. For example, there is a problem that if the heat transfer is not fast, such as when it is used in a vehicle, the responsiveness deteriorates and it cannot be used.

【0006】本発明は、以上述べた事情に鑑み、水素の
貯蔵、放出の応答性が良好な水素貯蔵装置を提供するこ
とを目的とする。
In view of the above-mentioned circumstances, it is an object of the present invention to provide a hydrogen storage device having a good response of hydrogen storage and release.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明に係る水素貯蔵装置の構成は、粒径1μm〜100μ
mの粉体化水素貯蔵合金が充填されてなる水素貯蔵合金
充填室と、この水素貯蔵合金充填室を加温又は冷却する
通路とを積層して形成してなることを特徴とする。
Means for Solving the Problems The hydrogen storage device according to the present invention which achieves the above object has a particle size of 1 μm to 100 μm.
The hydrogen storage alloy filling chamber filled with the powdered hydrogen storage alloy of m and the passage for heating or cooling the hydrogen storage alloy filling chamber are laminated.

【0008】[0008]

【作用】前記構成において、粒径1μm〜100μmと
した水素貯蔵合金を充填した充填室を挾むように加熱又
は冷却する通路を設けているので、伝熱面積が大幅に増
大する結果、充填時,放出時の応答性が大幅に改善され
る。また、最初から1μm〜100μm程度の粒径とし
ているので、これ以上細かくなりにくい。
In the above structure, since the passage for heating or cooling is inserted so as to sandwich the filling chamber filled with the hydrogen storage alloy having a particle size of 1 μm to 100 μm, the heat transfer area is greatly increased, and as a result, the discharge is made during filling. Time responsiveness is greatly improved. Further, since the particle size is about 1 μm to 100 μm from the beginning, it is difficult to make the particle size smaller than this.

【0009】[0009]

【実施例】以下、本発明の好適な一実施例を図面を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は本実施例に係る水素貯蔵装置の一部
断面概略図である。同図に示すように、水素貯蔵装置1
0は粒径1μm〜100μmとした水素貯蔵合金11を
充填する水素貯蔵合金充填室としてのプレートフィン1
2と、このプレートフィン12の上面側及び下面側から
加温又は冷却する通路13とが交互に積層されてなるも
のである。
FIG. 1 is a schematic partial cross-sectional view of a hydrogen storage device according to this embodiment. As shown in the figure, the hydrogen storage device 1
0 is a plate fin 1 as a hydrogen storage alloy filling chamber filled with the hydrogen storage alloy 11 having a particle size of 1 μm to 100 μm.
2 and the passages 13 for heating or cooling from the upper surface side and the lower surface side of the plate fin 12 are alternately laminated.

【0011】上記プレートフィン12は本実施例におい
ては内部にコルゲートフィン14を内在しており、粉体
の水素貯蔵合金11への熱の伝達の向上を図っている。
またコルゲートフィン14の代りとしてハニカムフィン
又は平状のフィンを内在させるようにしてもよい。また
その材質としては、アルミニウム合金等熱伝達の良好な
ものが好ましい。
In the present embodiment, the plate fins 12 internally include the corrugated fins 14 to improve the transfer of heat to the powder hydrogen storage alloy 11.
Further, instead of the corrugated fins 14, honeycomb fins or flat fins may be incorporated. Further, as a material thereof, a material having good heat transfer such as an aluminum alloy is preferable.

【0012】またプレートフィン12内に充填する水素
貯蔵合金11の粒径を1〜100μmとするのは、1μ
m未満とすると水素充填時圧力が高くなり水素充填がで
きないからである。また、100μmを超える場合に
は、更に細かく劣化する場合があり、好ましくないから
である。
The particle size of the hydrogen storage alloy 11 to be filled in the plate fins 12 is set to 1 μm to 1 μm.
This is because if it is less than m, the pressure at the time of filling with hydrogen becomes high and hydrogen cannot be filled. On the other hand, when it exceeds 100 μm, it may deteriorate further finely, which is not preferable.

【0013】この粉末の水素貯蔵合金11をプレートフ
ィン12内に充填する際の充填率は約80容量%程度と
することが好ましい。これは完全に詰め込むと水素充填
時に圧力が高くなり水素が入らなくなり、空孔を確保す
るためである。
The filling ratio of the powdery hydrogen storage alloy 11 into the plate fin 12 is preferably about 80% by volume. This is because when the gas is completely filled, the pressure becomes high at the time of filling the hydrogen, hydrogen does not enter, and vacancies are secured.

【0014】なお、粒径50μmとして表面をパーフル
オロスルホン酸ポリマー膜(例えば「ナフィオン11
7」商品名:デュポン社製)でコーティングして、劣化
(粒体化)を防止し、空孔率を80%程度に確保するよ
うにしてもよい。
A perfluorosulfonic acid polymer film having a particle size of 50 μm (for example, “Nafion 11”) is used.
7 ”Product name: manufactured by DuPont) to prevent deterioration (granulation) and secure a porosity of about 80%.

【0015】一方、従来においては、水素ナットにH2
O,CO,CO2 ,O2 などの不純物の混入があると吸
収能が不能となっていたが、本実施例のようにプレート
フィン12内に1〜100μmの粉状の水素貯蔵合金を
充填してなる水素貯蔵装置では、ある程度許容できる。
On the other hand, in the prior art, the hydrogen nut is replaced with H 2
Absorption capacity was impaired when impurities such as O, CO, CO 2 , and O 2 were mixed, but the plate fin 12 was filled with a powdery hydrogen storage alloy of 1 to 100 μm as in the present embodiment. The hydrogen storage device formed in this way is acceptable to some extent.

【0016】次に、本実施例に係る水素貯蔵装置10を
用いた燃料電池システムの一例を、図2を参照して説明
する。
Next, an example of a fuel cell system using the hydrogen storage device 10 according to this embodiment will be described with reference to FIG.

【0017】図2中、21は水蒸気改質反応器であり、
原料となるメタノールと水蒸気とを混合して導入するた
めの原料供給管22が連結されている。また、水蒸気改
質反応器21は改質反応に必要な熱源となる燃焼触媒室
23を具えている。そして、燃料触媒室23には定常運
転時の触媒反応の原料となるメタノールを供給するため
の配管24が連結されている。
In FIG. 2, 21 is a steam reforming reactor,
A raw material supply pipe 22 for mixing and introducing the raw material methanol and steam is connected. Further, the steam reforming reactor 21 includes a combustion catalyst chamber 23 which serves as a heat source necessary for the reforming reaction. A pipe 24 is connected to the fuel catalyst chamber 23 to supply methanol, which is a raw material for catalytic reaction during steady operation.

【0018】水蒸気改質反応器21へ供給されたメタノ
ール及び水蒸気は水蒸気改質反応により主に水素及び二
酸化炭素に分解され、一酸化炭素を二酸化炭素へ転化す
るCO変成器5へ送られる。
The methanol and steam supplied to the steam reforming reactor 21 are mainly decomposed into hydrogen and carbon dioxide by the steam reforming reaction and sent to the CO shift converter 5 which converts carbon monoxide into carbon dioxide.

【0019】図中26は固体高分子電解質型燃料電池
(以下、燃料電池という)であり、水素極27及び空気
極28を有している。ここで、水素極27へは上記CO
変成器25で二酸化炭素及び水素に転化された水素ガス
が導入され、また、空気極28へはブロワ29を介して
空気が導入されており、水素極27へ導入された水素ガ
ス及び空気極28へ導入された空気が反応することによ
り発電する。
Reference numeral 26 in the drawing denotes a solid polymer electrolyte fuel cell (hereinafter referred to as a fuel cell), which has a hydrogen electrode 27 and an air electrode 28. Here, to the hydrogen electrode 27, the CO
Hydrogen gas converted into carbon dioxide and hydrogen in the transformer 25 is introduced, and air is introduced into the air electrode 28 via a blower 29. The hydrogen gas introduced into the hydrogen electrode 27 and the air electrode 28 are introduced. Electric power is generated by reacting the air introduced into the.

【0020】燃料電池26の水素極27からの排ガスは
配管30により燃焼触媒室23に導入されるようになっ
ているが、この配管30の途中には前述した水素貯蔵装
置10が介装されている。そして、水素の貯蔵を行う時
以外には、水素極27からの排ガスはバイパス配管31
を介して燃焼触媒室23へ送られるようになっている。
なお、燃焼触媒室23へはブロワ29からの空気が空気
供給管32を介して供給されており、また、燃焼触媒室
23からの燃焼排ガスは、燃焼排ガス配管33から排出
される。
Exhaust gas from the hydrogen electrode 27 of the fuel cell 26 is introduced into the combustion catalyst chamber 23 through a pipe 30, and the hydrogen storage device 10 described above is interposed in the middle of the pipe 30. There is. Except for the time of storing hydrogen, the exhaust gas from the hydrogen electrode 27 is bypass pipe 31.
And is sent to the combustion catalyst chamber 23 via.
The air from the blower 29 is supplied to the combustion catalyst chamber 23 via the air supply pipe 32, and the combustion exhaust gas from the combustion catalyst chamber 23 is discharged from the combustion exhaust gas pipe 33.

【0021】次に、上述した燃料電池システムの起動方
法を説明する。まず、建設時の起動は、予め水素を蓄え
た水素貯蔵装置10からの水素を配管30を介して燃焼
触媒室23へ供給することにより燃焼触媒を加熱する。
そして、燃焼触媒の温度が500℃以上となったところ
で徐々にメタノールを配管24を介して供給し、水素か
らメタノールの切り換えを行う。水蒸気改質反応器21
が所定温度になった後、該水蒸気改質反応器21内に原
料メタノールと原料水蒸気とを原料供給管22から供給
し、システムを安定させる。そして、低負荷時又はシス
テム停止時に水素貯蔵装置10に水素を蓄えて次回の起
動用とし、他の運転時には水素極27からの排ガスはバ
イパス配管31を介して燃焼触媒室23へ供給される。
このシステムの稼働において、本実施例に係る水素貯蔵
装置10を用いているので、その応答性が従来のボンベ
形式のものに比べて向上していた。
Next, a method for starting the above-mentioned fuel cell system will be described. First, in the start-up at the time of construction, the combustion catalyst is heated by supplying hydrogen from the hydrogen storage device 10 in which hydrogen is stored in advance to the combustion catalyst chamber 23 through the pipe 30.
Then, when the temperature of the combustion catalyst reaches 500 ° C. or higher, methanol is gradually supplied through the pipe 24 to switch from hydrogen to methanol. Steam reforming reactor 21
After the temperature reaches a predetermined temperature, the raw material methanol and the raw material steam are supplied into the steam reforming reactor 21 through the raw material supply pipe 22 to stabilize the system. Then, when the load is low or the system is stopped, hydrogen is stored in the hydrogen storage device 10 for the next start, and the exhaust gas from the hydrogen electrode 27 is supplied to the combustion catalyst chamber 23 via the bypass pipe 31 during the other operation.
Since the hydrogen storage device 10 according to the present embodiment is used in the operation of this system, its responsiveness is improved as compared with the conventional cylinder type.

【0022】[0022]

【発明の効果】以上実施例と共に説明したように、本発
明の水素貯蔵装置は、水素の貯蔵,放出の応答性が向上
し、例えば燃料電池、水素エンジンの水素供給装置とし
て用いて好適である。
As described above with reference to the embodiments, the hydrogen storage device of the present invention has an improved response to storage and release of hydrogen, and is suitable for use as a hydrogen supply device for fuel cells and hydrogen engines. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る水素貯蔵装置の概略図である。FIG. 1 is a schematic view of a hydrogen storage device according to this embodiment.

【図2】一実施例に係る燃料電池システムの構成図であ
る。
FIG. 2 is a configuration diagram of a fuel cell system according to an embodiment.

【図3】従来技術に係る貯蔵容器である。FIG. 3 is a storage container according to the related art.

【符号の説明】[Explanation of symbols]

10 水素貯蔵装置 11 水素貯蔵合金 12 プレートフィン 13 通路 14 コルゲートフィン 10 Hydrogen Storage Device 11 Hydrogen Storage Alloy 12 Plate Fin 13 Passage 14 Corrugated Fin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒径1μm〜100μmの粉体化水素貯
蔵合金が充填されてなる水素貯蔵合金充填室と、この水
素貯蔵合金充填室を加温又は冷却する通路とを積層して
形成してなることを特徴とする水素貯蔵装置。
1. A hydrogen storage alloy filling chamber filled with a powdered hydrogen storage alloy having a particle size of 1 μm to 100 μm, and a passage for heating or cooling the hydrogen storage alloy filling chamber are formed by stacking them. Hydrogen storage device characterized by the following.
JP26774491A 1991-10-16 1991-10-16 Hydrogen storage device Expired - Fee Related JP3327564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26774491A JP3327564B2 (en) 1991-10-16 1991-10-16 Hydrogen storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26774491A JP3327564B2 (en) 1991-10-16 1991-10-16 Hydrogen storage device

Publications (2)

Publication Number Publication Date
JPH05106792A true JPH05106792A (en) 1993-04-27
JP3327564B2 JP3327564B2 (en) 2002-09-24

Family

ID=17448974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26774491A Expired - Fee Related JP3327564B2 (en) 1991-10-16 1991-10-16 Hydrogen storage device

Country Status (1)

Country Link
JP (1) JP3327564B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604573B2 (en) * 1999-12-17 2003-08-12 Denso Corporation Hydrogen occluding core
US6708546B2 (en) * 2002-05-09 2004-03-23 Texaco Ovonic Hydrogen Systems Llc Honeycomb hydrogen storage structure with restrictive neck
US6709497B2 (en) * 2002-05-09 2004-03-23 Texaco Ovonic Hydrogen Systems Llc Honeycomb hydrogen storage structure
DE102004014144B4 (en) * 2003-03-25 2008-01-10 Kabushiki Kaisha Toyota Jidoshokki, Kariya Process for producing a gas storage tank
US7431756B2 (en) * 2002-05-09 2008-10-07 Ovonic Hydrogen Systems Llc Modular metal hydride hydrogen storage system
JP2013194507A (en) * 2012-03-15 2013-09-30 Denso Corp Fuel supply system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604573B2 (en) * 1999-12-17 2003-08-12 Denso Corporation Hydrogen occluding core
DE10063067B4 (en) * 1999-12-17 2009-05-14 Denso Corp., Kariya-shi Hydrogen Okklusionskern
US6708546B2 (en) * 2002-05-09 2004-03-23 Texaco Ovonic Hydrogen Systems Llc Honeycomb hydrogen storage structure with restrictive neck
US6709497B2 (en) * 2002-05-09 2004-03-23 Texaco Ovonic Hydrogen Systems Llc Honeycomb hydrogen storage structure
US7431756B2 (en) * 2002-05-09 2008-10-07 Ovonic Hydrogen Systems Llc Modular metal hydride hydrogen storage system
DE102004014144B4 (en) * 2003-03-25 2008-01-10 Kabushiki Kaisha Toyota Jidoshokki, Kariya Process for producing a gas storage tank
US7418782B2 (en) 2003-03-25 2008-09-02 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a gas storage tank
US7946446B2 (en) 2003-03-25 2011-05-24 Toyota Jidosha Kabushiki Kaisha Gas storage tank and method of manufacturing the same
JP2013194507A (en) * 2012-03-15 2013-09-30 Denso Corp Fuel supply system

Also Published As

Publication number Publication date
JP3327564B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US6742650B2 (en) Metal hydride storage canister design and its manufacture
CA2473449C (en) Solid oxide fuel cell system
US6318453B1 (en) Hydrogen cooled hydrogen storage unit having maximized cooling efficiency
TW463023B (en) A hydrogen cooled hydride storage unit
CN105244519A (en) Metal hydride hydrogen storage and fuel cell combination system
EP3208877B1 (en) Solid state hydrogen storage device
US6099811A (en) Self-heating metal-hydride hydrogen storage system
JP2007521619A (en) Metal hydride heating element
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
JP3032461B2 (en) Solid polymer fuel cell power generator, method of operating the same, and reformer
JPH08138721A (en) High temperature fuel cell
JP2002124280A (en) Fuel cell power-generating system
TW533262B (en) Fuel cell hydrogen supply system using secondary fuel to release stored hydrogen
JP3327564B2 (en) Hydrogen storage device
EP1286406B1 (en) Metal hydride storage canister and its manufacture
JP2004273164A (en) Fuel cell system
JPS6249703B2 (en)
JP2001289397A (en) Hydrogen storage alloy storing container
JPH05231242A (en) Hydrogen storage alloy having compound thermoelectric element
JP4663845B2 (en) Quick-release hydrogen storage alloy storage container
JP2000340242A (en) Heat pump type hydrogen purification device using waste heat of fuel cell
JPH02132767A (en) Stopping method for fuel cell system
JP3626371B2 (en) Hydrogen supply device for fuel cell
US20040013921A1 (en) Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
JPH0758623B2 (en) Fuel cell power system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees