JPH0510514B2 - - Google Patents

Info

Publication number
JPH0510514B2
JPH0510514B2 JP58081149A JP8114983A JPH0510514B2 JP H0510514 B2 JPH0510514 B2 JP H0510514B2 JP 58081149 A JP58081149 A JP 58081149A JP 8114983 A JP8114983 A JP 8114983A JP H0510514 B2 JPH0510514 B2 JP H0510514B2
Authority
JP
Japan
Prior art keywords
gear
tooth
contact point
continuous contact
pitch circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58081149A
Other languages
Japanese (ja)
Other versions
JPS59206689A (en
Inventor
Koji Hotsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP8114983A priority Critical patent/JPS59206689A/en
Publication of JPS59206689A publication Critical patent/JPS59206689A/en
Publication of JPH0510514B2 publication Critical patent/JPH0510514B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Description

【発明の詳細な説明】 本発明は、一対の連続接触歯車を回転子とし、
無脈動でしかも歯車の接触歯面が無負荷であるよ
うにした歯車ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a pair of continuous contact gears as a rotor,
This invention relates to a gear pump that is pulsation-free and has no load on the contact tooth surface of the gear.

従来の歯車ポンプのほとんどのものは、一対の
歯車が同形、同大であり製作上は非常に有利であ
るが、従動車に吐出し圧力による回転トルク即ち
歯面力が発生する欠点がある。
Most conventional gear pumps have a pair of gears of the same shape and size, which is very advantageous in manufacturing, but has the disadvantage that rotational torque, ie tooth surface force, is generated in the driven wheel due to discharge pressure.

本発明は叙上の点に着目して成されたもので、
以下にその理論的根拠を説明する。歯数Z1、Z2
一対の歯車O1、O2がdθ1、dθ2だけ回転したとき
dQだけの容積を吐出したものとすると、一対の
歯車を回転させるに要したエネルギーはdQの流
体にPの圧力を与えるために消費されるものであ
るから次式が成立する。
The present invention has been made by focusing on the above points,
The rationale is explained below. When a pair of gears O 1 and O 2 with number of teeth Z 1 and Z 2 rotate by dθ 1 and dθ 2
Assuming that a volume of dQ is discharged, the energy required to rotate the pair of gears is consumed to apply a pressure of P to the fluid of dQ, so the following equation holds true.

PdQ=T11+T22 ……(1) ∴dQ/dθ1=1/P(T1+Z1/Z2T2) ……(2) (ただし、T1:歯車O1の回転トルク、T2:歯
車O2の回転トルク) 従つて、T1+Z1/Z2T2=constであれば吐出し量 の変動がなく、無脈動条件を満足するが、特に、 T1=const. T2=0 であることが、歯車ポンプの流体力学的理想条件
である。T1=constを満足するには、閉曲線であ
る接触点の軌跡の全体が丁度歯車の歯巾に沿つて
存在することで、ピツチ円半径をR1、R2、歯車
の歯巾をL、捩れ角をβ、i0を整数としたとき tanβ=i0R1/L2π/Z1=i0R2/L2π/Z2=i0
/L……(3) (ただし、m:モジユール) とすればよい。即ち歯形の捩れが歯巾Lに於てピ
ツチmπの整数倍であることが必要である。
PdQ=T 11 +T 22 ...(1) ∴dQ/dθ 1 = 1/P(T 1 +Z 1 /Z 2 T 2 ) ...(2) (However, T 1 : Gear O 1 Rotational torque, T 2 : Rotational torque of gear O 2 ) Therefore, if T 1 + Z 1 /Z 2 T 2 = const, there will be no fluctuation in the discharge amount and the no-pulsation condition is satisfied, but in particular, T 1 = const. T 2 =0 is the ideal hydrodynamic condition for the gear pump. In order to satisfy T 1 = const, the entire locus of the contact point, which is a closed curve, must lie exactly along the tooth width of the gear, so that the radius of the pitch circle is R 1 , R 2 , and the tooth width of the gear is L, When the torsion angle is β and i 0 is an integer, tanβ=i 0 R 1 /L2π/Z 1 =i 0 R 2 /L2π/Z 2 =i 0
/L...(3) (However, m: module) may be used. That is, it is necessary that the torsion of the tooth profile is an integral multiple of the pitch mπ in the tooth width L.

次にT2=0となるための条件を具体的な例を
あげて説明する。
Next, the conditions for T 2 =0 will be explained using a specific example.

連続接触歯形の極限は夫々の外形線及びピツチ
円径を接触線の軌跡とする歯形で、第1図に示す
通りで図中、Aは接触線の軌跡を示している。こ
れは歯形の実質側の関係より「接触線の軌跡の法
線は中心線分内を通らねばならない」ことから容
易に判明することである。第1図より、 cosθa1=(1+Z1/Z22+(Z1/Z22−(R02/R2
2/2Z1/Z2(1+Z1/Z2)……(4) cosθb1=(1+Z2/Z12+(Z2/Z12+(R01/R1
2/2R01/R1(1+Z2/Z1)……(5) cosθa2=(1+Z2/Z12+(Z2/Z12−(R01/R1
2/2Z2/Z1(1+Z2/Z1)……(6) cosθb2=(1+Z1/Z22+(Z1/Z22+(R02/R2
2/2R02/R2(1+Z1/Z2)……(7) である。但し、R01は駆動歯車の歯先円半径、
R02は従動歯車の歯先円半径である。ピツチ円上
の歯厚の含み角を12としたとき 1/2=π/2Z1(1+ε) ……(8) 2/2=π/2Z2(1−ε) ……(9) とするεを定めれば、歯先の含み角12、θa1
を駆動歯車のピツチ円上の接触点移動角度、θb1
を駆動歯車の外径上の接触点移動角度、θa2を従
動歯車のピツチ円上の接触点移動角度、θb2を従
動歯車の外径上の接触点移動角度として次式にで
与えられる。
The limit of a continuous contact tooth profile is a tooth profile whose contact line locus is the respective outline and pitch circle diameter, as shown in FIG. 1, where A indicates the contact line locus. This is easily understood from the fact that ``the normal line of the locus of the contact line must pass within the center line segment'' from the relationship on the substantial side of the tooth profile. From Figure 1, cosθa 1 = (1+Z 1 /Z 2 ) 2 + (Z 1 /Z 2 ) 2 − (R 02 /R 2 )
2 /2Z 1 /Z 2 (1 + Z 1 /Z 2 )...(4) cosθb 1 = (1 + Z 2 /Z 1 ) 2 + (Z 2 /Z 1 ) 2 + (R 01 /R 1 )
2 /2R 01 /R 1 (1+Z 2 /Z 1 )……(5) cosθa 2 = (1 + Z 2 /Z 1 ) 2 + (Z 2 /Z 1 ) 2 − (R 01 /R 1 )
2 /2Z 2 /Z 1 (1 + Z 2 /Z 1 )...(6) cosθb 2 = (1 + Z 1 /Z 2 ) 2 + (Z 1 /Z 2 ) 2 + (R 02 /R 2 )
2 /2R 02 /R 2 (1+Z 1 /Z 2 )...(7). However, R 01 is the tip circle radius of the driving gear,
R 02 is the tip circle radius of the driven gear. When the included angle of the tooth thickness on the pitch circle is 1 and 2 , 1 / 2 = π / 2Z 1 (1 + ε) ... (8) 2 / 2 = π / 2Z 2 (1 - ε) ... (9) If ε is determined, the included angle of the tooth tip 1 , 2 , θa 1
is the moving angle of the contact point on the pitch circle of the driving gear, θb 1
is the moving angle of the contact point on the outer diameter of the driving gear, θa 2 is the moving angle of the contact point on the pitch circle of the driven gear, and θb 2 is the moving angle of the contact point on the outer diameter of the driven gear, which is given by the following equation.

01/2=π/2Z1(1+ε)−Z2/Z1θa2+θb1
…(10) 01/2=π/2Z2(1−ε)−Z1/Z2θa1+θb2
…(11) また、歯形曲線のアデンダム部分の動径をρa1
ρa2、デデンダム部分をρd1、ρd2とすると次式の
通りである。
01 /2=π/2Z 1 (1+ε)−Z 2 /Z 1 θa 2 +θb 1
…(10) 01 /2=π/2Z 2 (1−ε)−Z 1 /Z 2 θa 1 +θb 2
…(11) Also, the radius vector of the addendum part of the tooth profile curve is ρa 1 ,
When ρa 2 and the dedendum parts are ρd 1 and ρd 2 , the following equation is obtained.

(ρa1/R12=1+2Z2/Z1(1+Z2/Z1)(1−cos
θ2) 0θ2θa2……(12) (ρd1/R12=(Rr1/R12+2Z2/Z1R02/R2(1+
Z2/Z1)(1−cosθ2) 0θ2θb2……(13) (ρa2/R22=1+2Z1/Z2(1+Z1/(1−cosθ1
) 0θ1θa1……(14) (ρd2/R22=(Rr2/R22+2Z1/Z2R01/R1(1+
Z1/Z2)(1−cosθ2) 0θ1θb1……(15) 次に、第2図は歯筋方向の接触線(シール線に
なる)の展開図を示すがこれによつて理論回転ト
ルクT1、T2を求めると T1=P/2 R1/tanβi0〔2〓a10 (R2 0−R2 1)dθ1+202/20 (R2 1−R2 r1)Z2/Z12 +2〓a20 0 (R2 01−ρ2 a1)Z2/Z12−2〓b20 (R2 01−ρ2 d1)Z2/Z12〕 =P/2R2 1L{(R01/R12−1}+P/2πZ1R2 1
〔{(R01/R12−1}(θb101/2) −{1−(Rr1/R12}Z2/Z1(θb202/2) −2(Z2/Z12(1+Z2/Z1){θa2−sinθa2−R0
2
/R1(θb2−sinθb2)}〕……(16) T2=P/2 R2/tanβi0〔2〓a20 (R2 02−R2 2)dθ2+202/20 (R2 02−R2 r2)Z1/Z21 +2〓a10 (R2 20−ρ2 a2)Z1/Z21−2〓b10 (R2 02−ρ2 d2)Z1/Z21〕 =P/2R2 2L{(R02/R22−1}+P/2πZ2R2 2
〔{(R02/R22−1}(θb202/2) −{1−(Rr2/R22}Z1/Z2(θb101/2) −2(Z1/Z22(1+Z1/Z2){θa1−sinθa1−R0
1
/R1(θb1−sinθb1)}〕……(17) となる。ここで、T2=0とおき、上式を整理す
ると次式の如くなる。
(ρa 1 /R 1 ) 2 = 1 + 2Z 2 /Z 1 (1 + Z 2 /Z 1 ) (1-cos
θ 2 ) 0θ 2 θa 2 ...(12) (ρd 1 /R 1 ) 2 = (Rr 1 /R 1 ) 2 +2Z 2 /Z 1 R 02 /R 2 (1+
Z 2 /Z 1 ) (1-cosθ 2 ) 0θ 2 θb 2 ...(13) (ρa 2 /R 2 ) 2 = 1+2Z 1 /Z 2 (1+Z 1 /(1-cosθ 1
) 0θ 1 θa 1 ...(14) (ρd 2 /R 2 ) 2 = (Rr 2 /R 2 ) 2 +2Z 1 /Z 2 R 01 /R 1 (1+
Z 1 /Z 2 ) (1-cosθ 2 ) 0θ 1 θb 1 ...(15) Next, Figure 2 shows a developed view of the contact line (which becomes the seal line) in the direction of the tooth trace. To find the theoretical rotational torques T 1 and T 2 , T 1 = P/2 R 1 /tanβi 0 [2〓 a10 (R 2 0 − R 2 1 ) dθ 1 +2 02/20 (R 2 1 − R 2 r1 ) Z 2 /Z 12 +2〓 a20 0 (R 2 01 −ρ 2 a1 )Z 2 /Z 12 −2〓 b20 (R 2 01 −ρ 2 d1 )Z 2 /Z 12 ] = P/2R 2 1 L {(R 01 /R 1 ) 2 −1} + P/2πZ 1 R 2 1 L
[{(R 01 /R 1 ) 2 −1}(θb 101 /2) −{1−(Rr 1 /R 1 ) 2 }Z 2 /Z 1 (θb 202 /2) −2( Z 2 /Z 1 ) 2 (1 + Z 2 /Z 1 ) {θa 2 −sinθa 2 −R 0
2
/R 1 (θb 2 − sinθb 2 )}]……(16) T 2 = P/2 R 2 /tanβi 0 [2〓 a20 (R 2 02 − R 2 2 ) dθ 2 +2 02/20 (R 2 02 −R 2 r2 )Z 1 /Z 21 +2〓 a10 (R 2 20 −ρ 2 a2 )Z 1 /Z 21 −2〓 b10 (R 2 02 − ρ 2 d2 ) Z 1 /Z 21 ] = P/2R 2 2 L {(R 02 /R 2 ) 2 −1} + P/2πZ 2 R 2 2 L
[{(R 02 /R 2 ) 2 −1} (θb 202 /2) −{1−(Rr 2 /R 2 ) 2 }Z 1 /Z 2 (θb 101 /2) −2( Z 1 /Z 2 ) 2 (1 + Z 1 /Z 2 ) {θa 1 −sinθa 1 −R 0
1
/R 1 (θb 1 − sinθb 1 )}]...(17) Here, by setting T 2 =0 and rearranging the above equation, the following equation is obtained.

ε=〔1−{1−Z1/Z2(R01/R1−1)}2〕Z2/Z1θ
a2−{(R02/R22−1}θa1/π/2Z1〔(R02/R2
2−{1−Z1/Z2(R02/R1−1)}2 +2Z1/Z2(1+Z1/Z2){θa1−sinθa1−R01/R1
(θb1−sinθb1}/π/2Z1〔(R02/R22−{1−Z1
/Z2(R02/R1−1)}2−1……(18) 特に、R02/R2=1即ち駆動車は全アデンダム
歯車、従動車は全デデンダム歯車とすると ε=2Z2/πθa2−4Z1/πZ1/Z2(1+Z1/Z2)R01/R
1(θb1−sinθb1)/1−{1−Z1/Z2(R01/R1−1
)}2−1……(19) となる。
ε=[1-{1-Z 1 /Z 2 (R 01 /R 1 -1)} 2 ]Z 2 /Z 1 θ
a 2 − {(R 02 /R 2 ) 2 −1}θa 1 /π/2Z 1 [(R 02 /R 2 )
2 −{1−Z 1 /Z 2 (R 02 /R 1 −1)} 2 +2Z 1 /Z 2 (1+Z 1 /Z 2 ) {θa 1 −sinθa 1 −R 01 /R 1
(θb 1 −sinθb 1 }/π/2Z 1 [(R 02 /R 2 ) 2 −{1−Z 1
/Z 2 (R 02 /R 1 -1)} 2 -1...(18) In particular, if R 02 /R 2 = 1, that is, the driving wheel is all addendum gears and the driven wheel is all addendum gears, ε=2Z 2 /πθa 2 −4Z 1 /πZ 1 /Z 2 (1+Z 1 /Z 2 )R 01 /R
1 (θb 1 −sinθb 1 )/1−{1−Z 1 /Z 2 (R 01 /R 1 −1
)} 2 −1……(19).

第3図は、Z1=6、Z2=3、4、5、6、7と
したときの各場合について求めたもので、◎印は
従動車の歯厚限界を示す。
Figure 3 shows the results obtained for each case when Z 1 = 6 and Z 2 = 3, 4, 5, 6, and 7, and the mark ◎ indicates the tooth thickness limit of the driven wheel.

第4図はZ1=6、Z2=4 R01/R1=1.3 R02
R2=1としたときの夫々の歯形の実際図を示し、
この例では、a〜eの5個の連続接触点を有して
おり、T2=0なるためにはε=0.5758である。
In Figure 4, Z 1 = 6, Z 2 = 4 R 01 /R 1 = 1.3 R 02 /
The actual diagram of each tooth profile when R 2 = 1 is shown,
In this example, there are five consecutive contact points a to e, and for T 2 =0, ε=0.5758.

次に、連続接触点が常に1個所の場合について
説明するが、この場合においても、前記(1)〜(3)式
はそのまま当てはまる。次に、T2=0なるため
の条件について説明すると、この場合、第5図に
於て、接触点の軌跡が従動車の外形R02とピツチ
点Pを中心とした円とする一点連続接触歯形で
R02/R21の場合にのみT2=0であり、これ以
外にない。第5図より、 cosθa2=1+(R02/R22−(Z1/Z2)−12(R01/R1
2/2R02/R2
……(20) 2/2=π/2Z1(1−ε)……(21) 01/2=π/2Z1(1+ε)−Z2/Z1θa2……(2
2) (ρa1/R12=(Rr1/R12+2Z2/Z1R02/R2(1−
cosθ2) ……(23) である。
Next, a case where there is always one continuous contact point will be explained, but even in this case, the above equations (1) to (3) apply as they are. Next, we will explain the conditions for T 2 = 0. In this case, in Fig. 5, there is a one-point continuous contact where the locus of the contact point is a circle centered on the outer shape R 02 of the driven vehicle and the pitch point P. in tooth shape
T 2 =0 only if R 02 /R 2 1, and no other case. From Figure 5, cosθa 2 = 1 + (R 02 /R 2 ) 2 − (Z 1 /Z 2 )−1 2 (R 01 /R 1
) 2 /2R 02 /R 2
...(20) 2 /2=π/2Z 1 (1-ε) ...(21) 01 /2=π/2Z 1 (1+ε)-Z 2 /Z 1 θa 2 ...(2
2) (ρa 1 /R 1 ) 2 = (Rr 1 /R 1 ) 2 +2Z 2 /Z 1 R 02 /R 2 (1-
cosθ 2 ) ...(23).

次に、第6図は歯筋方向の接触線(シール線に
なる)の展開図を示すがこれによつて理論回転ト
ルクT1、T2を求めると T1=P/2R1/tanβi0〔202/20 (R2 r1−R2r1)Z2/Z12+26 a220 (R2 01−ρ2 a1)Z2/Z12〕 P/2R2 1L{(R01/R12−(Rr1/R12}−P/2
πZ1R2 1L〔{R01/R12−(Rr1/R1201/2 +2(Z2/Z12(1+Z2/Z1)R02/R2(θa2−sin
θa2)〕……(24) T2=P/2 R2/tanβi0〔201/2 ∫ ∫0 (R2 02−R2 r2)Z1/Z21〕=P/4πZ1 01R2 2L{
(R02/R22−(Rr2/R2)}……(25) となる。従つて01=0であればT2=0となる。
故に ε=2Z2/πcos-11+(R02/R22−(Z1/Z22(R01
/R1−1)2/2R02/R2−1……(26) となり、特にR02/R2=1であれば ε=2Z2/πcos-1{1−1/2(Z1/Z22(R01/R1
1)2}−1 ……(27) となる。
Next, Fig. 6 shows a developed view of the contact line (which becomes the seal line) in the direction of the tooth trace, and from this, the theoretical rotational torques T 1 and T 2 are determined as T 1 =P/2R 1 /tanβi 0 [2 02/20 (R 2 r1 −R 2 r 1 )Z 2 /Z 12 +2 6 a220 (R 2 01 −ρ 2 a1 )Z 2 /Z 12 ] P/2R 2 1 L {(R 01 /R 1 ) 2 −(Rr 1 /R 1 ) 2 }−P/2
πZ 1 R 2 1 L [{R 01 /R 1 ) 2 − (Rr 1 /R 1 ) 2 } 01 /2 +2(Z 2 /Z 1 ) 2 (1+Z 2 /Z 1 )R 02 /R 2 ( θa 2 −sin
θa 2 )]...(24) T 2 =P/2 R 2 /tanβi 0 [2 01/2 ∫ ∫ 0 (R 2 02 −R 2 r2 )Z 1 /Z 21 ] = P/4πZ 1 01 R 2 2 L {
(R 02 /R 2 ) 2 − (Rr 2 /R 2 )}...(25). Therefore, if 01 = 0, T 2 = 0.
Therefore, ε=2Z 2 /πcos -1 1+(R 02 /R 2 ) 2 −(Z 1 /Z 2 ) 2 (R 01
/R 1 -1) 2 /2R 02 /R 2 -1...(26) In particular, if R 02 /R 2 = 1, ε=2Z 2 /πcos -1 {1-1/2(Z 1 /Z 2 ) 2 (R 01 /R 1
1) 2 }-1 ...(27) becomes.

第7図にZ1=6、Z2=3、4、5、6、7とし
たとの場合について求めたもので図中◎印は従動
車の歯厚限界を示す。
Figure 7 shows the results obtained for the cases where Z 1 = 6 and Z 2 = 3, 4, 5, 6, and 7, and the ◎ mark in the figure indicates the tooth thickness limit of the driven wheel.

第8図はZ1=6、Z2=4 R01/R1=1.4 R02
R2=1としたときの夫々の歯形の実際図を示し、
T2=0なるためにはε=0.5518である。
In Figure 8, Z 1 = 6, Z 2 = 4 R 01 /R 1 = 1.4 R 02 /
The actual diagram of each tooth profile when R 2 = 1 is shown,
For T 2 =0, ε=0.5518.

以上の説明から明らかなように、本発明による
と、歯形の接触部分に全く力がかからないので、
歯形の摩耗、損傷等が全く生じない連続接触歯車
ポンプを提供することができる。
As is clear from the above explanation, according to the present invention, no force is applied to the contact portion of the tooth profile.
It is possible to provide a continuous contact gear pump in which tooth profile wear and damage do not occur at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、本発明の一実施例を説明
するための図、第5図乃至第8図は、本発明の他
の実施例を説明するための図で、第1図及び第5
図は基本歯形図、第2図及び第6図は、歯筋方向
の接触線の展開図、第3図及び第7図は、従動車
の歯圧限界を示す図、第4図及び第8図は、歯形
の実際図を示す図である。 O1……駆動歯車、O2……従動歯車。
1 to 4 are diagrams for explaining one embodiment of the present invention, and FIGS. 5 to 8 are diagrams for explaining other embodiments of the present invention. Fifth
The figure is a basic tooth profile diagram, Figures 2 and 6 are development diagrams of the contact line in the direction of the tooth trace, Figures 3 and 7 are diagrams showing the tooth pressure limit of the driven wheel, and Figures 4 and 8. The figure is a diagram showing an actual view of the tooth profile. O 1 ...driving gear, O 2 ...driven gear.

Claims (1)

【特許請求の範囲】 1 共に歯幅Lおよび捩れ角βでモジユールmの
駆動歯車と従動歯車とからなる連続接触歯形を回
転子とする歯車ポンプにおいて、前記駆動歯車の
歯数をZ1、ピツチ円半径をR1、歯先円半径を
R01、ピツチ円上の歯厚の含み角を1、ピツチ円
上の接触点移動角度をθa1、外径上の接触点移動
角度をθb1とし、前記従動歯車の歯数をZ2、ピツ
チ円半径をR2、歯先円半径をR02、ピツチ円上の
歯厚の含み角を2、ピツチ円上の接触点移動角
度をθa2、外径上の接触点移動角度をθb2としたと
きtanβ=i0mπ/L(i0…整数)の条件で、 1=π/Z1(1+ε)および2=π/Z2(1−ε) を定め、εの値を ε=〔1−{1−Z1/Z2(R01/R1−1)}2〕Z2
/Z1θa2−{(R02/R22−1}θa1/π/2Z1〔(R02
/R22−{1−Z1/Z2(R02/R1−1}2 +2Z1/Z2(1+Z1/Z2){θa1−sinθa1−R
01/R1(θb1−sinθb1}/π/2Z1〔(R02/R22−{
1−Z1/Z2(R02/R1)−1)}2−1 から、流体の吐出し圧力による駆動歯車の理論ト
ルクが常に略一定であり、且つ従動歯車の理論ト
ルクが略零となるごとく定めたことを特徴とする
連続接触歯車ポンプ。 2 前記連続接触点が1箇所乃至複数箇所である
ことを特徴とする特許請求の範囲第1項記載の連
続接触歯車ポンプ。 3 前記連続接触点が常に1箇所であることを特
徴とする特許請求の範囲第1項記載の連続接触歯
車ポンプ。
[Scope of Claims] 1. A gear pump whose rotor is a continuous contact tooth profile consisting of a driving gear and a driven gear of module m, both of which have a face width L and a helix angle β, and the number of teeth of the driving gear is Z 1 and the pitch is The circle radius is R 1 and the tooth tip circle radius is
R 01 , the included angle of the tooth thickness on the pitch circle is 1 , the contact point movement angle on the pitch circle is θa 1 , the contact point movement angle on the outer diameter is θb 1 , the number of teeth of the driven gear is Z 2 , The pitch circle radius is R 2 , the tip circle radius is R 02 , the included angle of the tooth thickness on the pitch circle is 2 , the contact point movement angle on the pitch circle is θa 2 , the contact point movement angle on the outer diameter is θb 2 Then, under the condition of tanβ=i 0 mπ/L (i 0 ...integer), 1 = π/Z 1 (1+ε) and 2 = π/Z 2 (1−ε) are determined, and the value of ε is set as ε= [1-{1-Z 1 /Z 2 (R 01 /R 1 -1)} 2 ]Z 2
/Z 1 θa 2 −{(R 02 /R 2 ) 2 −1}θa 1 /π/2Z 1 [(R 02
/R 2 ) 2 −{1−Z 1 /Z 2 (R 02 /R 1 −1} 2 +2Z 1 /Z 2 (1+Z 1 /Z 2 ) {θa 1 −sinθa 1 −R
01 /R 1 (θb 1 −sinθb 1 }/π/2Z 1 [(R 02 /R 2 ) 2 −{
1-Z 1 /Z 2 (R 02 /R 1 )-1)} 2-1 , the theoretical torque of the driving gear due to the fluid discharge pressure is always approximately constant, and the theoretical torque of the driven gear is approximately zero. A continuous contact gear pump characterized by the following: 2. The continuous contact gear pump according to claim 1, wherein the number of continuous contact points is one or more. 3. The continuous contact gear pump according to claim 1, wherein the continuous contact point is always one.
JP8114983A 1983-05-10 1983-05-10 Continuous contact gear pump Granted JPS59206689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8114983A JPS59206689A (en) 1983-05-10 1983-05-10 Continuous contact gear pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8114983A JPS59206689A (en) 1983-05-10 1983-05-10 Continuous contact gear pump

Publications (2)

Publication Number Publication Date
JPS59206689A JPS59206689A (en) 1984-11-22
JPH0510514B2 true JPH0510514B2 (en) 1993-02-09

Family

ID=13738370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8114983A Granted JPS59206689A (en) 1983-05-10 1983-05-10 Continuous contact gear pump

Country Status (1)

Country Link
JP (1) JPS59206689A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111520454B (en) * 2020-04-26 2022-05-06 宿迁学院 Design method of lightweight gear pair for aerospace low-pulsation micropump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029161A (en) * 1973-07-17 1975-03-25
JPS5389763A (en) * 1977-01-19 1978-08-07 Oval Eng Co Ltd Volumetric flow meter
JPS5424057A (en) * 1977-07-25 1979-02-23 Oval Eng Co Ltd Rotor of positive displacement flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029161A (en) * 1973-07-17 1975-03-25
JPS5389763A (en) * 1977-01-19 1978-08-07 Oval Eng Co Ltd Volumetric flow meter
JPS5424057A (en) * 1977-07-25 1979-02-23 Oval Eng Co Ltd Rotor of positive displacement flowmeter

Also Published As

Publication number Publication date
JPS59206689A (en) 1984-11-22

Similar Documents

Publication Publication Date Title
EP1927752B1 (en) Oil pump rotor
US4210410A (en) Volumetric type flowmeter having circular and involute tooth shape rotors
JP4252614B1 (en) Volumetric flow meter and helical gear
US8282371B2 (en) Screw pump
EP1165938B1 (en) Helical rotor structures for fluid displacement apparatus
US4140026A (en) Conformal gearing
RU2112885C1 (en) Mated rotors
JP2813347B2 (en) High-pressure hydraulic generator for power transmission
EP2469092A1 (en) Rotor for pump and internal gear pump using same
JPH0510514B2 (en)
US3209611A (en) Teeth profiles of rotors for gear pumps of rotary type
JP3529209B2 (en) Helical gear
JP3310239B2 (en) Helical gear type positive displacement flowmeter
JP3451741B2 (en) Gear pump or motor
JPS6374575A (en) Hydraulic type impulse torque generator
JPS5832649B2 (en) Positive displacement flowmeter
JPS60166775A (en) Noncircular gear
JPS59583A (en) Gear pump
JPH0526034B2 (en)
JPS6275086A (en) Radius direction float type gear pump
CN1096573A (en) Tooth profile of helical gear with very few teeth
JPS6229730B2 (en)
US3305167A (en) Tooth profiles of non-pulsating, rotary pistons which are non-circular, spurtoothed and provided with non-circular gears
EP0072636A2 (en) N/N +1 lobed rotary fluid pumps
JPS5815047B2 (en) Positive displacement flow meter