JPS60166775A - Noncircular gear - Google Patents

Noncircular gear

Info

Publication number
JPS60166775A
JPS60166775A JP2219084A JP2219084A JPS60166775A JP S60166775 A JPS60166775 A JP S60166775A JP 2219084 A JP2219084 A JP 2219084A JP 2219084 A JP2219084 A JP 2219084A JP S60166775 A JPS60166775 A JP S60166775A
Authority
JP
Japan
Prior art keywords
gear
tooth
circular
major
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2219084A
Other languages
Japanese (ja)
Inventor
Hajime Onoda
元 小野田
Yoshio Tanaka
田中 嘉男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINMON SEISAKUSHO KK
Original Assignee
KINMON SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINMON SEISAKUSHO KK filed Critical KINMON SEISAKUSHO KK
Priority to JP2219084A priority Critical patent/JPS60166775A/en
Publication of JPS60166775A publication Critical patent/JPS60166775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Rotary Pumps (AREA)
  • Gears, Cams (AREA)

Abstract

PURPOSE:To reduce the leak amount of fluid and improve the accuracy in flow-rate metering by making the top-part thickness of the gear tooth in the major-axis part of a plurality of noncircular gear bodies larger than that of other gear, and forming a concaved part which is engaged with the gear tooth in the major-axis part, into the minor-axis part. CONSTITUTION:The top part-thickness (a) of the gear tooth 14 at the major- axis part of a noncircular gear body 11 is made larger than the top-part thickness (b) of other gear tooth 15, and the addendum 14a of the gear 14 is formed into circular from having the center 0 of revolution of the noncircular gear body 11 as center of curvature. A concaved part 16 which can be meshed with the gear 14 in the major-axis part 12 is formed into the minor-axis part 13 of the noncircular gear body 11. The gear 14 of the major-axis part 12 shifts along the inner peripheral surface 17a of a casing 17, and a certain gap 18 is formed between the addendum 14a and the inner peripheral suface 17a, and the gap width (c) equal to the top-part thickness (a) can be obtained. Therefore, the flow resistance of the fluid which tends to leak through the gap 18 is increased by the gap width (c), and the leak amount can be reduced.

Description

【発明の詳細な説明】 この発明はポンプ、流体R,量計などのケーシング内ζ
こ設けられ、互いに噛合しながら回転する非円形歯車に
関する。
[Detailed Description of the Invention] This invention provides a
This invention relates to non-circular gears that are provided and rotate while meshing with each other.

ポンプ、流体原動機あるいは流体流量計のゲージング内
に非円形歯止を回転子として設け、この回転子を回転す
ることによりポンプ作用を持たせたもの、流体圧によっ
て回転させることlこより流体流量を計量するようtこ
したものがある。
A non-circular pawl is installed as a rotor in the gauging of a pump, fluid prime mover, or fluid flow meter, and the rotor is rotated to provide a pumping action.The fluid flow rate is measured by rotating the rotor using fluid pressure. There are some things that you should do.

第1図は従来の流体流量計であり、1G1ケーシングで
、このケーシング1の一側には流入口2、他側には流出
口3が設けらnている。このグーシンク1内には回転軸
4.4を中心として回転する一対の非円形歯車5,5が
互いに噛合した状梗に収納されている。したがって、流
入口2から流入する流体圧lこよって非円形歯車5゜5
が回転し、その回転数を積算することlこより流体流量
が計量される。
FIG. 1 shows a conventional fluid flow meter, which has a 1G1 casing, and has an inlet 2 on one side of the casing 1 and an outlet 3 on the other side. A pair of non-circular gears 5, 5 that rotate about a rotating shaft 4.4 are housed in the goosink 1 in a manner that they mesh with each other. Therefore, the fluid pressure l flowing in from the inlet 2 causes the non-circular gear 5°5
rotates, and the fluid flow rate is measured by integrating the number of rotations.

しかしながら、上記非円形歯止5,5は第2図に示すよ
うに、全周が同一歯厚(非転位の場合)の歯に創成され
ている。しかも、この非円形歯車5.5の長径部6にお
ける歯7はケーシング1の内周面1aに沿って移行する
。したがって、歯7の歯先とケーシング1の内周面1a
との間には若干の隙間8があり、この隙間8から流体が
漏洩するという不部会がある。
However, as shown in FIG. 2, the non-circular pawls 5, 5 are created with teeth having the same tooth thickness (in the case of non-dislocation) over the entire circumference. Furthermore, the teeth 7 on the long diameter portion 6 of this non-circular gear 5.5 move along the inner circumferential surface 1a of the casing 1. Therefore, the tip of the tooth 7 and the inner peripheral surface 1a of the casing 1
There is a slight gap 8 between the two, and there is a disadvantage that fluid leaks from this gap 8.

流体のa1洩は上記隙間8のみならず、ケーシング1の
側面と非円形歯JaL5との間および非円形歯亜イ1互
間lこおいても生じるが、隙間8の漏洩mlこ比べれば
若干率さい。したがって、隙間8を、仄くずnば漏洩i
−・が減少し、流量計虚侑度を向上することが可能であ
るが、機械加工祠度および軸受の両柱による隙間8の変
化停船こより一足の制限がある。
Fluid a1 leakage occurs not only in the gap 8, but also between the side surface of the casing 1 and the non-circular tooth JaL5, and between the non-circular teeth JaL5, but the leakage ml in the gap 8 is slightly smaller. Lead. Therefore, if the gap 8 is filled with debris n, leakage i
Although it is possible to improve the accuracy of the flowmeter by reducing the flowmeter, there are some limitations due to the machining accuracy and the change in the gap 8 due to the two pillars of the bearing.

この発明は上記事情に層目してなされたもので、その目
的とするところは、各非円形m車の技fφ部における歯
の頂部歯厚を他の肉より大として′r−シングの内周向
と歯先との間の4間を狭めることなく、流体の漏洩量を
減少することができ、υIL敗計に適用ずわば流−肴計
量精度を同上することができる非円形歯止を提供しよう
とするものである。
This invention has been made in light of the above circumstances, and its purpose is to increase the thickness of the top part of the teeth in the fφ part of each non-circular m wheel to be larger than the other thickness, so that the inside of the 'r-thing is A non-circular pawl that can reduce the amount of fluid leakage without narrowing the gap between the circumferential direction and the tooth tip, and can be applied to υIL failure meters to improve the flow-measuring accuracy. This is what we are trying to provide.

以下、この発明を図面ζこ示す実施例にもとづいて説明
する。
Hereinafter, the present invention will be explained based on an embodiment shown in drawing ζ.

第3図は第1の実施例を示すもので、11は楕円形秋の
非円形歯車本体で、12はその長径部、13は短径部で
ある。この長径部12jこおける歯14はその頂部歯厚
aは他の歯15・・・の頂部歯厚すより大で、この実施
例においては1ケの歯溝を埋めることによって形成され
る歯形としている。そして、この歯14の歯先14aは
非円形歯車本体1)の回転中心0を曲率中心さrる円弧
面に形成さイ1ている。また、上記短径部13には上記
長径部12のrat4と噛合可能な四部16が設けられ
ている。
FIG. 3 shows the first embodiment, in which 11 is a non-circular gear body with an oval shape, 12 is a major diameter portion thereof, and 13 is a minor diameter portion thereof. The tooth 14 in this long diameter portion 12j has a top tooth thickness a larger than that of the other teeth 15, and in this embodiment, the tooth profile is formed by filling one tooth groove. There is. The tips 14a of the teeth 14 are formed into arcuate surfaces with the rotation center 0 of the non-circular gear body 1) as the center of curvature. Further, the short diameter portion 13 is provided with four portions 16 that can mesh with the rat4 of the long diameter portion 12.

このように構成された非円形歯止はポンプ、流体流荷重
なとのケーシング17内に収納され、90°の位相差を
持って噛合するようをこなっている。したがって、各非
円形重亜本体11.11の長径部124こおける歯I4
は上記ケーシング17の内周面17ajこ8って移行し
、その歯14の歯先14.とケーシング17の内周面1
7、との間に一定の隙間18が形成されるが、その頂部
l113厚aをMしているたぬに頂部歯厚aと同一の隙
間幅Cが得られる。この陣間癩Cによって歯先14.と
内周面17aとの間の隙間18を流通(漏(5t)Lよ
うとする侃体の流通抵抗が大きく、漏洩量の減少が−ゎ
、る。
The non-circular pawl configured in this manner is housed in the casing 17 of the pump, fluid flow load, etc., and is engaged with the casing 17 with a phase difference of 90°. Therefore, the tooth I4 in the long diameter portion 124 of each non-circular heavy body 11.11
transfers to the inner circumferential surface 17aj8 of the casing 17, and the tips 14. of the teeth 14. and the inner peripheral surface 1 of the casing 17
7, a certain gap 18 is formed between the top l113 thickness a and the gap width C which is the same as the top tooth thickness a of the tongue whose top l113 thickness a is M. This Jinma leprosy C causes tooth tip 14. The flow resistance of the body trying to flow (leak (5t) L) through the gap 18 between the inner circumferential surface 17a and the inner peripheral surface 17a is large, and the amount of leakage decreases.

この非円形歯車本体1ノの刀□工は一般的に行なわイっ
ているオルダム接手を用いた創成歯切法で歯切りができ
るが、使用するカッタ(ボブあるいはピニオンカッタ)
は長径部12、短径部13をカロエする歯、ずなゎち歯
14および凹部16のみ特殊な歯形とすればよい。また
、プラスチックあるいは焼結金属製の非円形歯車lこお
いてはその成形金型を変更するだけで容易に製作できる
Gear cutting for this non-circular gear body can be done by the commonly used generating gear cutting method using Oldham's joint, but the cutter used (bob or pinion cutter)
In this case, the long diameter portion 12 and the short diameter portion 13 may have curved teeth, and only the zigzag teeth 14 and the recessed portion 16 may have a special tooth shape. Furthermore, non-circular gears made of plastic or sintered metal can be easily manufactured by simply changing the molding die.

韮た、長径部12を(+)、短径部13を(−)に転位
させ、すべての噛合い点で転位攬の和が零になるように
した転位非円形歯Mζこ上記第10′4:飾例を適用す
れば一層の効果がある。
The non-circular teeth Mζ are shifted so that the long diameter part 12 is shifted to (+) and the short diameter part 13 is shifted to (-) so that the sum of the shift forces becomes zero at all meshing points. 4: It will be more effective if you apply decorative examples.

なお、第4図は三乗歯止に適用したものであり、同一構
成部分は同一番号を付して説明を省略する。
In addition, FIG. 4 is applied to a cubic pawl, and the same constituent parts are given the same numbers and the explanation is omitted.

第5図は第2の実施例を示すもので、長径部12におけ
る歯14の歯丈を他の歯15・・・より高くし、その歯
先14aを非円形歯車本体11の回転中心0を曲率中心
とする円弧面に形成したもので漏洩量の減少とともに回
転子一回転の排出凌を増大させることができる。また、
第6図は第2の実施例を三乗歯車に通用したものである
FIG. 5 shows a second embodiment, in which the tooth height of the tooth 14 in the long diameter portion 12 is made higher than the other teeth 15, and the tooth tip 14a is aligned with the rotation center 0 of the non-circular gear body 11. It is formed into a circular arc surface with the center of curvature, which can reduce the amount of leakage and increase the discharge capacity per rotation of the rotor. Also,
FIG. 6 shows the second embodiment applied to a cubic gear.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によゎば、非円形I#軍
の歯先とケーシングの内周面との間の隙間からの漏洩を
大幅に減少させ、容積効率も増大させることができるの
で、流量計に応用すれば、計! <11 Kの向上、ポ
ンプに応用すわば効率の向上が図ねるという効果を萎す
る。
As explained above, according to the present invention, leakage from the gap between the tip of the non-circular I# tooth and the inner peripheral surface of the casing can be significantly reduced, and the volumetric efficiency can also be increased. , if you apply it to a flow meter, it will become a meter! <11 If applied to pumps, the effect of improving efficiency will be diminished.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非円形歯車型流量計の断面図、第2図は従来の
非円形歯車を示す正面図、第3図はこの発明の第1の実
施例を示す正面図、第4図は同変形例を示す正面図、第
5図はこの発明の第2の実施例を示す正面図、第6因は
同変形例を示す正面図である。 11・・・非円形歯車本体、12・・・長径部、13・
・・短径部、14・・・歯、14.・・・歯先、I6・
・・凹部、17・・・ケーシング。 出願人代理人 弁理士 鈴 江 武 彦第3図 第4図 第5図 第6図
Fig. 1 is a sectional view of a non-circular gear type flowmeter, Fig. 2 is a front view showing a conventional non-circular gear, Fig. 3 is a front view showing a first embodiment of the present invention, and Fig. 4 is the same. FIG. 5 is a front view showing the second embodiment of the present invention, and the sixth factor is a front view showing the same modification. 11... Non-circular gear body, 12... Long diameter portion, 13.
...Short diameter portion, 14...Teeth, 14.・・・Tip of tooth, I6・
... recess, 17... casing. Applicant's Representative Patent Attorney Takehiko Suzue Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1) ポンプあるいは流量計などのケーシング内に設
けられ、互いに噛合しながら回転する俵鹸の非円形歯車
において、各非円゛形歯車本体のi(径部をこおける歯
の頂部歯厚を他の歯より大とし、短径部に上記長径部の
歯と噛合する四部を設けたことを%徴とする非円形歯止
(1) In non-circular gears that are installed in the casing of a pump or flow meter and rotate while meshing with each other, the i (top tooth thickness of the teeth passing through the diameter part) of each non-circular gear body is A non-circular pawl characterized by being larger than other teeth and having four parts on the short diameter part that mesh with the teeth on the long diameter part.
(2) 特許請求の範囲第1項ζこおいて、長径部にお
ける歯の歯丈を他の歯より高くするとともに、その歯先
を非円形歯車本体の回転中心を曲尤甲心とする円弧面に
形成したことを特徴とする非円形歯車。
(2) Claim 1 ζ Here, the tooth height of the tooth in the major diameter portion is made higher than other teeth, and the tooth tip is a circular arc whose center of rotation is the center of rotation of the non-circular gear body. A non-circular gear characterized by being formed on a surface.
JP2219084A 1984-02-09 1984-02-09 Noncircular gear Pending JPS60166775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219084A JPS60166775A (en) 1984-02-09 1984-02-09 Noncircular gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219084A JPS60166775A (en) 1984-02-09 1984-02-09 Noncircular gear

Publications (1)

Publication Number Publication Date
JPS60166775A true JPS60166775A (en) 1985-08-30

Family

ID=12075875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219084A Pending JPS60166775A (en) 1984-02-09 1984-02-09 Noncircular gear

Country Status (1)

Country Link
JP (1) JPS60166775A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132118A (en) * 1986-11-21 1988-06-04 Oval Eng Co Ltd Positive displacement flowmeter
JPS6421335U (en) * 1987-07-29 1989-02-02
JP2002116075A (en) * 2000-10-11 2002-04-19 Ckd Corp Gear flowmeter and gear pump
WO2002044590A1 (en) * 2000-11-30 2002-06-06 Kazushi Yanagimoto Method of manufacturing asymmetric gear, asymmetric gear, non-circular and asymmetric gear, gear mechanism, and barrel finishing machine
JP2005017001A (en) * 2003-06-24 2005-01-20 Oval Corp Non-circular gear, and positive-displacement meter using the same
WO2009093342A1 (en) * 2008-01-24 2009-07-30 Oval Corporation Positive displacement flowmeter
EP2551649A1 (en) * 2011-07-27 2013-01-30 Trimec Industries Pty. Ltd. Improved positive displacement flow meter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132118A (en) * 1986-11-21 1988-06-04 Oval Eng Co Ltd Positive displacement flowmeter
JPH083435B2 (en) * 1986-11-21 1996-01-17 オ−バル機器工業株式会社 Volumetric flow meter
JPS6421335U (en) * 1987-07-29 1989-02-02
JPH0438262Y2 (en) * 1987-07-29 1992-09-08
JP2002116075A (en) * 2000-10-11 2002-04-19 Ckd Corp Gear flowmeter and gear pump
WO2002044590A1 (en) * 2000-11-30 2002-06-06 Kazushi Yanagimoto Method of manufacturing asymmetric gear, asymmetric gear, non-circular and asymmetric gear, gear mechanism, and barrel finishing machine
US6991522B2 (en) 2000-11-30 2006-01-31 Kazushi Yanagimoto Method of manufacturing asymmetric gear, asymmetric gear, non-circular and asymmetric gear, gear mechanism, and barrel finishing machine
JP2005017001A (en) * 2003-06-24 2005-01-20 Oval Corp Non-circular gear, and positive-displacement meter using the same
WO2009093342A1 (en) * 2008-01-24 2009-07-30 Oval Corporation Positive displacement flowmeter
US7870785B2 (en) 2008-01-24 2011-01-18 Oval Corporation Positive displacement flowmeter
EP2551649A1 (en) * 2011-07-27 2013-01-30 Trimec Industries Pty. Ltd. Improved positive displacement flow meter

Similar Documents

Publication Publication Date Title
US4210410A (en) Volumetric type flowmeter having circular and involute tooth shape rotors
KR101190393B1 (en) Positive Displacement Flowmeter and Helical Gear
JP6343355B2 (en) Gear pump and manufacturing method thereof
US6644947B2 (en) Wave tooth gears using identical non-circular conjugating pitch curves
US2960884A (en) Rounded tooth tips for pointed rotoid teeth
JPS60166775A (en) Noncircular gear
CN105332914B (en) A kind of complete smooth screw rotor
CN104919181B (en) Gear hydraulic machine and associated gear
JP3827655B2 (en) Volumetric flow meter using non-circular gear and non-circular gear
US20050257371A1 (en) Lobe pump system and method of manufacture
GB1142156A (en) Improvements in or relating to rotary fluid pressure pumps and motors of the internally meshing n and n+1 tooth type
CN100392249C (en) Arc screw tooth shape of large flow double screw pump
JP3310239B2 (en) Helical gear type positive displacement flowmeter
US5135373A (en) Spur gear with epi-cycloidal and hypo-cycloidal tooth shapes
CN100460681C (en) Involute line screw tooth shape of large flow double screw pump
JPS60182379A (en) Noncircular rotor
JPH05296159A (en) Rotor for positive displacement rotating machine
JPS5832649B2 (en) Positive displacement flowmeter
JP3068699U (en) Gear pump gears
CN102928035B (en) Volumetric flow meter provided with multiple layers of scraper plate measuring elements
JP3620997B2 (en) Improvement of non-circular gear and non-circular gear type flow meter using the same
CN202915969U (en) Volumetric flow meter provided with multiple layers of scraper plate measuring elements
JPH0524011Y2 (en)
JP2024507410A (en) Screw assembly for a three-shaft screw pump and a three-shaft screw pump including the assembly
JPS585217Y2 (en) positive displacement flow meter