JPH0510457B2 - - Google Patents

Info

Publication number
JPH0510457B2
JPH0510457B2 JP59163962A JP16396284A JPH0510457B2 JP H0510457 B2 JPH0510457 B2 JP H0510457B2 JP 59163962 A JP59163962 A JP 59163962A JP 16396284 A JP16396284 A JP 16396284A JP H0510457 B2 JPH0510457 B2 JP H0510457B2
Authority
JP
Japan
Prior art keywords
layer
mineral fiber
mineral
ceiling material
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59163962A
Other languages
Japanese (ja)
Other versions
JPS6140946A (en
Inventor
Akio Ko
Kikuji Kumashiro
Sakio Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Trade and Industry Co Ltd
Original Assignee
Daiken Trade and Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Trade and Industry Co Ltd filed Critical Daiken Trade and Industry Co Ltd
Priority to JP16396284A priority Critical patent/JPS6140946A/en
Publication of JPS6140946A publication Critical patent/JPS6140946A/en
Publication of JPH0510457B2 publication Critical patent/JPH0510457B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Panels For Use In Building Construction (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は吸湿時における垂れ下がりを防止した
鉱物質繊維板製天井材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ceiling material made of mineral fiberboard that prevents sagging when moisture is absorbed.

(従来例の構成とその問題点) 従来から、ロツクウール等の鉱物質繊維板を抄
造してなる繊維板で形成した天井材は、断熱性、
防火性、吸音性に優れていることから、ビルその
他の建築物の天井材として広く使用されている。
(Conventional structure and its problems) Conventionally, ceiling materials made of fiberboard made from mineral fiberboard such as rock wool have poor heat insulating properties,
It is widely used as a ceiling material for buildings and other structures due to its excellent fireproofing and sound absorption properties.

しかしながら、鉱物質繊維板で形成した天井板
は、小量の添加量で大きな結合効果が得られるス
ターチを主体とした結合剤を用いているため耐湿
性の点で難点があり、大版の天井板に形成すると
吸湿に伴なつて中央部が自重で垂れ下がる所謂サ
グが生じ易く、特にドロツプイン方式でT形バー
間に天井板を架設、支持させた場合には中央部分
が何ら支持されていないためにサグが大きく生じ
るという欠点があつた。
However, ceiling panels made of mineral fiberboard have difficulty in moisture resistance because they use a binder mainly consisting of starch, which can achieve a large bonding effect with a small amount of addition. If it is formed into a board, the central part tends to sag due to its own weight as it absorbs moisture, and this is especially true when a ceiling board is erected and supported between T-shaped bars using the drop-in method, since the central part is not supported at all. The disadvantage was that large sag occurred.

このような欠点を除去するために、フエノール
樹脂等の耐水性に優れたバインダーを多量に使用
して耐湿強度を高めた鉱物質繊維板製の天井板も
提案されているが、樹脂成分が繊維に多く含有さ
せると防火性に劣るという問題点がある。
In order to eliminate these drawbacks, ceiling panels made of mineral fiberboard have been proposed, which use a large amount of a highly water-resistant binder such as phenolic resin to increase moisture resistance. There is a problem that if it is contained in a large amount, the fire retardant properties will be inferior.

(発明の目的) 本発記は上記従来の問題点に鑑みてなされたも
ので、良好な防火性を有すると共に施工した状態
においては自重による垂れ下がりの発生を防止す
ることを目的とする鉱物質繊維製天井材を提供す
るものである。
(Purpose of the Invention) The present disclosure was made in view of the above-mentioned conventional problems, and the purpose is to provide a mineral fiber that has good fire resistance and prevents the occurrence of sagging due to its own weight when installed. The company provides ceiling materials made of wood.

(発明の構成) 上記目的を達成するために本発明の鉱物質繊維
板製天井材は、上下二層よりなる鉱物質繊維層を
層着一体化して成る鉱物質繊維板製天井材であつ
て、上層の鉱物質繊維層の吸湿線膨脹率が下層の
鉱物質繊維層の吸湿線膨脹率よりも大きく形成し
てなるもので、吸湿時においては上層の鉱物質繊
維層を平面方向に大きく伸びるようにして中央部
が上方に反り上がる作用力を発生させ、その作用
力で自重による垂れ下がり量を吸収、相殺してサ
グの発生を防止したものである。
(Structure of the Invention) In order to achieve the above object, the mineral fiberboard ceiling material of the present invention is a mineral fiberboard ceiling material formed by integrally layering two mineral fiber layers, upper and lower. , the upper mineral fiber layer has a higher hygroscopic expansion coefficient than that of the lower mineral fiber layer, and when moisture is absorbed, the upper mineral fiber layer expands greatly in the plane direction. In this way, an acting force is generated that causes the central portion to warp upward, and this acting force absorbs and offsets the amount of sagging due to its own weight, thereby preventing the occurrence of sag.

本発明において、上下層の鉱物質繊維層の吸湿
線膨脹率を変えて上層の鉱物質繊維層の伸びを大
とするには、吸湿により膨潤、膨脹が生じる材料
を上層の鉱物質繊維層に多く混合させておく。
In the present invention, in order to increase the elongation of the upper mineral fiber layer by changing the hygroscopic expansion coefficient of the upper and lower mineral fiber layers, a material that swells and expands due to moisture absorption is added to the upper mineral fiber layer. Mix a lot.

このような手段として具体的には、上下鉱物質
繊維層の組成分において、吸湿して体積膨脹を生
じ易い故紙パイプ等の植物繊維の添加量やスター
チ、ポバール等の有機結合剤の添加量を上層の方
が下層より多くなるように調整しておけばよい。
Specifically, in the composition of the upper and lower mineral fiber layers, the amount of vegetable fibers such as waste paper pipes, which tend to absorb moisture and cause volume expansion, and the amount of organic binders such as starch and poval can be adjusted. The number may be adjusted so that the number in the upper layer is larger than that in the lower layer.

例えば、ロツクウール等の無機質繊維及びこの
無機質繊維に添加されるパーライトやシラス等の
無機質骨材を100重量部とすると、故紙パイプ及
びスターチ等のバインダーからなる有機分を、上
層が20〜30重量部、下層が5〜15重量部となるよ
うに配合し、夫々の層を形成して一体化すればよ
い。
For example, if inorganic fibers such as rock wool and inorganic aggregates such as perlite and shirasu added to these inorganic fibers are 100 parts by weight, the organic content consisting of waste paper pipes and binders such as starch is added to the upper layer by 20 to 30 parts by weight. , the lower layer may contain 5 to 15 parts by weight, and each layer may be formed and integrated.

このような構成を有する鉱物質繊維板製天井材
の吸湿線膨脹率は、温度30℃で湿度50%の状態か
ら同温度で湿度90%にまで変化させた場合上層1
が0.1〜0.2%で下層2が0.04〜0.07%の伸び率と
なり、上層1が大きく伸びを生じて第1図に示す
ように天井材中央部が上方に彎曲状態の反りが生
じるようになる。尚、上層と下層の鉱物質繊維層
は吸湿による伸び率の違いで両者の層間で剥離が
生じないように密着一体化させておくものであ
り、又、下層は上層の吸湿膨脹による変形に追随
しないだけの剛性を有する層に形成しておく。こ
のようにして形成した天井材は、例えば2尺
(606mm巾)の平板状のものであれば、天井材中央
部の反りの矢高は垂直状態に配して自重が作用し
ない時には2〜5mm生じるようになりこの反りに
よつて施工した状態における吸湿時の強度低下に
伴なう自重による垂れ下がりを緩和するものであ
る。
The coefficient of hygroscopic expansion of a ceiling material made of mineral fiberboard with such a structure is as follows: When the temperature is changed from 50% humidity at 30°C to 90% humidity at the same temperature, the upper layer 1
is 0.1 to 0.2%, the lower layer 2 has an elongation rate of 0.04 to 0.07%, and the upper layer 1 elongates significantly, causing the central part of the ceiling material to curve upward as shown in FIG. The upper and lower mineral fiber layers are closely integrated to prevent separation between the two layers due to the difference in elongation rate due to moisture absorption, and the lower layer follows the deformation of the upper layer due to moisture absorption and expansion. It is formed into a layer that has sufficient rigidity to prevent damage. If the ceiling material formed in this way is a flat plate of 2 shaku (606 mm width), for example, the height of the warp at the center of the ceiling material will be 2 to 5 mm when it is placed vertically and no weight is applied. This warping alleviates sagging due to its own weight, which is caused by a decrease in strength when moisture is absorbed in the installed state.

なお、下層(表面側層)の鉱物質繊維層を形成
するに際して、ロツクウールを粉砕してなる繊維
長100〜2000μのロツクウール短繊維を主体とす
る薄層を表層部に一体に成形しておいてもよい。
In addition, when forming the mineral fiber layer of the lower layer (surface side layer), a thin layer mainly composed of short rock wool fibers with a fiber length of 100 to 2000 μm, which is obtained by crushing rock wool, is integrally formed on the surface layer. Good too.

このようなロツクウール短繊維を主体とした鉱
物質繊維の下層を設けると、天井材の表面密度を
高めて表面平滑性、化粧性、表面硬度に優れた天
井材を得ることができ、さらに上層(裏面側層)
の鉱物質繊維層の表面の荒れ等の欠点が隠蔽され
るので、上層の鉱物質繊維層を低比重化したポー
ラスな層にして天井板全体の軽量化を図ることが
できる。
By providing a lower layer of mineral fibers mainly consisting of short rock wool fibers, it is possible to increase the surface density of the ceiling material and obtain a ceiling material with excellent surface smoothness, cosmetic properties, and surface hardness. back side layer)
Since defects such as surface roughness of the mineral fiber layer are hidden, the weight of the entire ceiling board can be reduced by making the upper mineral fiber layer a porous layer with a low specific gravity.

又、下層の鉱物質繊維層には上層の鉱物質繊維
層の吸湿線膨脹率を越えない範囲内で無機あるい
は有機の各種着色剤を添加して着色化粧面を形成
してもよい。
Furthermore, a colored decorative surface may be formed by adding various inorganic or organic colorants to the lower mineral fiber layer within a range that does not exceed the coefficient of hygroscopic linear expansion of the upper mineral fiber layer.

このような着色剤としては、例えば雲母やベン
ガラ等の無機粉、あるいは顔料、染料等を用いる
ことができる。
As such a coloring agent, for example, inorganic powder such as mica or red iron, pigments, dyes, etc. can be used.

さらに、上下鉱物質繊維層間の界面には、防火
性を著しく低下させない範囲内で結合剤を塗布し
ておいてもよい。
Further, a binder may be applied to the interface between the upper and lower mineral fiber layers within a range that does not significantly reduce fire protection.

又、天井材表面には、トラバーチン模様等の公
知の化粧を施してもよく、特に、下層(表面側)
の鉱物質繊維層をロツクウールの短繊維を主体と
して形成した場合には、表面が緻密であるのでト
ラバーチン模様が鮮明になると共に、上層をポー
ラスな鉱物質繊維層に形成しておくことでトラバ
ーチンの凹模様部での吸音性を向上させることが
出来るものである。
In addition, a known decoration such as a travertine pattern may be applied to the surface of the ceiling material, especially on the lower layer (surface side).
If the mineral fiber layer is formed mainly from short rock wool fibers, the surface is dense, so the travertine pattern becomes clear, and the upper layer is formed of a porous mineral fiber layer, which makes the travertine pattern more clear. This makes it possible to improve sound absorption in the concave pattern portion.

(実施例の説明) 実施例 下層(表面側)の鉱物質繊維層を形成する組成
分として、 長さ300〜1000μの繊維を主体とする ロツクウール短繊維 90% 故紙パルプ 6% スターチ 4% に調整した有機分配合比の少ないスラリーを使用
し、上層(表面側)の鉱物質繊維層を形成する組
成分として、 長さ4〜10mmの繊維を主体とする ロツクウール 73% 軽量骨材(パーライト) 7% 故紙パルプ 10% スターチ 4% に調整した有機分配合比の大なるスラリーを使用
し、夫々のスラリーを抄造してウエツトマツトを
形成して抄き合わせしたのち、ドライヤーにて乾
燥して上層が11mm厚さで、下層が1mm厚さの上下
鉱物質繊維層が一体化してなる天井材を得た。
(Explanation of Examples) Example The composition for forming the lower (surface side) mineral fiber layer was adjusted to 90% short rock wool fibers, mainly fibers with a length of 300 to 1000μ, 6% waste paper pulp, and 4% starch. Using a slurry with a low organic content ratio, the composition for forming the upper layer (surface side) mineral fiber layer is 73% rock wool, which mainly consists of fibers with a length of 4 to 10 mm, and lightweight aggregate (perlite) 7 % Waste paper pulp 10% Starch 4% A slurry with a large organic proportion was used, and each slurry was made into paper to form a wet mat, which was then combined and dried with a dryer until the upper layer was 11 mm thick. A ceiling material was obtained in which upper and lower mineral fiber layers with a lower layer thickness of 1 mm were integrated.

この天井材との比較例として上層の組成分から
のみなる天井材を形成し、両天井材に同一のトラ
バーチン模様を施したのち、吸湿垂れ下がりを比
較した。その結果を第2図に示す。
As a comparative example with this ceiling material, a ceiling material consisting only of the composition of the upper layer was formed, and after applying the same travertine pattern to both ceiling materials, the moisture absorption and sagging were compared. The results are shown in FIG.

なお、天井材の試験片として2尺巾のものを
夫々使用し、温度30℃、湿度90%の条件下で時間
の経過に伴なう中央部の垂れ下がり量を測定し
た。
In addition, 2 shaku wide test pieces were used as ceiling material test pieces, and the amount of sagging in the center over time was measured under conditions of a temperature of 30° C. and a humidity of 90%.

図から明らかなようなように、比較例において
は24時間を経過すると垂れ下がりが3mm以上発生
し120時間経過後には4.5mmまで達したが、本発明
実施例においては120時間経過しても垂れ下がり
が3mm以下で、目立ち難いものであり、耐サグ性
に優れたものであつた。
As is clear from the figure, in the comparative example, sagging occurred over 3 mm after 24 hours and reached 4.5 mm after 120 hours, but in the example of the present invention, sagging did not occur even after 120 hours. It was less than 3 mm, hardly noticeable, and had excellent sag resistance.

(発明の効果) 以上のように本発明の鉱物質繊維板製天井材に
よれば、上下二層が一体に層着してなる鉱物質繊
維板製天井材であつて吸湿時に天井材中央部が上
方に反りを生じるように形成したものであるの
で、多湿な状態の部屋に用いても自重による垂れ
下がりが膨脹率の差による上向き反り上がり量に
吸収されてサグが生じても小さく、安定した状態
で張設しておくことができ、又、下層の有機分の
配合比を小なくすることによつてその吸湿線膨脹
率を少なくすることができるので下層表面の防火
性を著しく向上させることができるものである。
(Effects of the Invention) As described above, according to the mineral fiberboard ceiling material of the present invention, the mineral fiberboard ceiling material has two upper and lower layers layered together, and when moisture is absorbed, the central part of the ceiling material Since it is formed to curve upward, even if it is used in a humid room, the sagging due to its own weight is absorbed by the amount of upward curvature due to the difference in expansion rate, and even if sag occurs, it is small and stable. In addition, by reducing the blending ratio of organic components in the lower layer, the coefficient of hygroscopic expansion can be reduced, which significantly improves the fire protection of the surface of the lower layer. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は
その上反り状態を示す簡略側面図、第2図は垂れ
下がり量の比較線図である。 1……上層の鉱物質繊維層、2……下層の鉱物
質繊維層。
The drawings show an embodiment of the present invention, and FIG. 1 is a simplified side view showing an upwardly warped state, and FIG. 2 is a comparison diagram of the amount of sagging. 1... Upper mineral fiber layer, 2... Lower mineral fiber layer.

Claims (1)

【特許請求の範囲】 1 上下二層の鉱物質繊維層を層着一体化してな
る鉱物質繊維板製天井材であつて、上層の鉱物質
繊維層の吸湿線膨脹率を下層の鉱物質繊維層の吸
湿線膨脹率よりも大きく形成して吸湿時に中央部
が上方に反りを生じるように形成されていること
を特徴とする鉱物質繊維板製天井材。 2 上下二層の鉱物質繊維層が抄き合せによつて
積層一体化されていることを特徴とする特許請求
の範囲第1項記載の鉱物質繊維板製天井材。
[Scope of Claims] 1. A ceiling material made of mineral fiberboard formed by integrally layering two upper and lower mineral fiber layers, in which the coefficient of hygroscopic linear expansion of the upper mineral fiber layer is determined by the coefficient of hygroscopic expansion of the mineral fiber layer of the lower layer. A ceiling material made of mineral fiberboard, characterized in that the material is formed to have a coefficient of expansion greater than the hygroscopic linear expansion coefficient of the layer so that the central portion warps upward when moisture is absorbed. 2. A ceiling material made of mineral fiberboard according to claim 1, characterized in that two upper and lower mineral fiber layers are laminated and integrated by lamination.
JP16396284A 1984-08-03 1984-08-03 Ceiling material made of mineral fiberboard Granted JPS6140946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16396284A JPS6140946A (en) 1984-08-03 1984-08-03 Ceiling material made of mineral fiberboard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16396284A JPS6140946A (en) 1984-08-03 1984-08-03 Ceiling material made of mineral fiberboard

Publications (2)

Publication Number Publication Date
JPS6140946A JPS6140946A (en) 1986-02-27
JPH0510457B2 true JPH0510457B2 (en) 1993-02-09

Family

ID=15784124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16396284A Granted JPS6140946A (en) 1984-08-03 1984-08-03 Ceiling material made of mineral fiberboard

Country Status (1)

Country Link
JP (1) JPS6140946A (en)

Also Published As

Publication number Publication date
JPS6140946A (en) 1986-02-27

Similar Documents

Publication Publication Date Title
JP2974769B2 (en) Fiberboard of refractory structure containing gypsum
US3513009A (en) Method of forming fissured acoustical panel
CA1309897C (en) Fire-resistant door
US7829488B2 (en) Non-woven glass fiber mat faced gypsum board and process of manufacture
US3183996A (en) Acoustical structural panel
JP2020533495A (en) Mineral fiber roof cover board
CN107949550B (en) Sound-absorbing ceiling tile
US1855161A (en) Composite insulating board
KR20080038173A (en) Lightweight panel
EP0944560A1 (en) Finishing mortar for sound-absorbing coating of inner walls, ceilings and the like in buildings
JP3863549B2 (en) Wooden door
US3528846A (en) Back-coated ceramic acoustical product and method of manufacture
JPH0510457B2 (en)
GB1446014A (en) Panels
JP3914528B2 (en) Mineral fiberboard and manufacturing method thereof
JP7406353B2 (en) Inorganic board, ceiling finishing material, ceiling structure, and manufacturing method of inorganic board
CN213952776U (en) Heat-insulating decorative composite board
JP2006519942A (en) Sound-absorbing insulation panel
NO964640L (en) Insulation plate of lignocellulose
JPS6137424B2 (en)
JPS63278836A (en) Inorganic decorative material
JP2910899B2 (en) Manufacturing method of plate
CN208034907U (en) Light fire-proof waterproof pluwood
CN208202191U (en) A kind of fire-type graphite polystyrene board
JPH02223439A (en) Fire resistant reinforced stone plate