JPH0510380B2 - - Google Patents

Info

Publication number
JPH0510380B2
JPH0510380B2 JP59059477A JP5947784A JPH0510380B2 JP H0510380 B2 JPH0510380 B2 JP H0510380B2 JP 59059477 A JP59059477 A JP 59059477A JP 5947784 A JP5947784 A JP 5947784A JP H0510380 B2 JPH0510380 B2 JP H0510380B2
Authority
JP
Japan
Prior art keywords
flame retardant
film
flame
ultra
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59059477A
Other languages
Japanese (ja)
Other versions
JPS60203652A (en
Inventor
Yosaburo Tanaka
Toshinobu Imahama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP59059477A priority Critical patent/JPS60203652A/en
Publication of JPS60203652A publication Critical patent/JPS60203652A/en
Publication of JPH0510380B2 publication Critical patent/JPH0510380B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、線状高密度ポリエチレン製の難燃性
極薄フイルムに関し、その目的とするところは難
燃性の極めて高い極薄フイルムの提供にある。 現在、線状高密度ポリエチレン製成形品を包含
する易燃性のプラスチツク製品に対して、従来の
化学的、物理的諸物性のバランスに加え、火炎に
対する安全性、すなわち難燃性が強く要求されて
いる。この事情は極薄フイルムについても例外で
はなく、その難燃性如何によつては、従来開拓さ
れた需要分野の一部、すなわち土木建築資材、電
気関連部材、産業包装材等の分野から撤退を余儀
なくされる事態も生じかねない状況にある。 極薄フイルムは、特殊な目的をもつてTダイ加
工法で成形される例もあるが、通常は、インフレ
ーシヨン加工法で成形されるものが殆ど全てを占
めている。線状高密度ポリエチレンの極薄フイル
ムの成形は、190℃〜230℃の樹脂温度、30ミクロ
ンメーター以下のフイルム厚さ、大きなブロー
比、60〜100m/分の高速生産性等の加工条件が
要求され、他のポリオレフイン製品の加工条件に
比べて非常に過酷であるとともに、得られる極薄
フイルムに対しては、シワ、タルミがないこと、
フイルムの表面平滑性、厚みの均一性及びフイル
ム強度とその縦横方向のバランス性等の極薄フイ
ルム特有のフイルム物性が要求されている。当然
のことがらがこれらの要求を満たしながら、難燃
化を図らねばならない。従来、プラスチツクの難
燃化については、何百種類という数多くの難燃剤
及び難燃化方法が開発され、提案されている。し
かし、前記のように、厳しい加工条件及び独特の
フイルム物性が要求される故に、線状高密度ポリ
エチレン製極薄フイルムの難燃化は極めて難しい
ものと言われている。すなわち、当該フイルムの
難燃化は、原料の線状高密度ポリエチレンに難燃
剤および必要に応じて難燃助剤を添加し、フイル
ム加工するのが一般的であるが、その場合、加工
時の難燃剤の分解による発泡、機器腐触性ガスの
発生、ピンホール発生によるバブル形成不能、偏
肉によるバブルの不安定化および溶融樹脂のメル
ト物性変動による生産性の低下等の種々のトラブ
ルが発生する。さらに得られたフイルムには、シ
ワ、タルミ、凝固物、ゲルおよび難燃剤のブルー
ミング等の好ましくない事態が発生すると同時
に、要求される強度のバランス性が全く認められ
なくなる。 ここに、本発明者らは、線状高密度ポリエチレ
ン製極薄フイルムの難燃化を目的に鋭意検討を重
ねた結果、多くの難燃剤、難燃方法および難燃組
成物のなかで、本発明の難燃性極薄フイルムの原
料として用いた組成物のみが当該難燃性フイルム
の製造を可能ならしめるという意外な事実を見出
し、本発明を完成するに至つた。 すなわち、本発明は、メルトインデツクスが
0.01〜0.20g/10分、密度が0.945〜0.960g/ml
である線状ポリエチレンの100重量部に対し、エ
チレンビス(テトラブロモフタルイミド)及び/
またはビス(ペンタブロムフエノキシ)エタンの
3〜30重量部とアンチモン系難燃助剤及び/また
はホウ素系難燃助剤の1〜10重量部とを配合して
なる難燃性極薄フイルムである。 本発明に用いられる線状ポリエチレンとは、
JIS K−7210に準拠して得たメルトインデツクス
(MI)が0.01〜0.20g/10分、JIS K−7112に準
拠して得た密度が0.945〜0.0960g/mlの基本物
性をもつ線状のポリエチレンであり、中低圧法で
製造されるものを云う。従来の極薄フイルムは、
前記のポリエチレンを用い、一般に以下の加工条
件 樹脂温度:190〜230℃ ブロー比:3以上 フロストライン高さ:30〜65cm 生産速度:60〜100m/分 フイルム厚さ:5〜30μm の下に、L/Dが24以上、圧縮比が2〜4である
急圧縮メータリングタイプのスクリユーを有し、
口径により異なるが容量5.5〜40KWの主電動機
を有する押出機を用いて、インフレーシヨン法に
より成形される。本発明のフイルムは、前記の一
般的製造条件を何ら変えることなく、そのまま適
用して成形することが可能である。 本発明の極薄フイルムを構成する一成分である
エチレンビス(テトラブロモフタルイミド)及
び/またはビス(ペンタブロムフエノキシ)エタ
ンは、ともにハロゲン系難燃剤として上市され、
現在主として耐衝撃性ポリスチレン及びABS樹
脂の難燃化に用いられているが、当該難燃剤が本
発明で用いる特定の配合系において、線状ポリエ
チレン製極薄フイルムの難燃化を可能ならしめる
という事実は、これまで全く知られていなかつ
た。本発明の効果を得るに必要な前記のハロゲン
系難燃剤の添加量は、当該線状ポリエチレン100
重量部に対し、3〜30重量部である。好ましくは
5〜20重量部である。3重量部以下では、当該フ
イルムの難燃性が小さく、30重量部以上では当該
フイルムへの成形加工が難かしくなり、成形条件
の変更を余儀なくされる。 本発明に用いられるアンチモン系難燃助剤とし
ては、三酸化アンチモン、アンチモン酸カリ、四
酸化アンチモン等を挙げることができ、また、ホ
ウ素系難燃助剤としては、ホウ酸亜鉛を代表とし
て挙げることができる。本発明の効果を得るに必
要な該難燃助剤の添加量は、当該線状ポリエチレ
ン100重量部に対し1〜10重量部である。1重量
部以下では難燃助剤としての添加効果が小さく、
10重量部以上では添加効果の大幅な上昇が望めぬ
だけでなく、当該フイルムに成形加工することが
困難になる。 本発明の難燃性極薄フイルムは、シワ、タルミ
がなく、その表面は当該難燃剤を含まないフイル
ムと同じ程度に平滑であり、また難燃剤や難燃助
剤のブルーミングが全く認められない。さらに、
フイルム中に難燃剤や難燃助剤に起因するブツブ
ツ(凝固物)が全くなく、該添加物はよく分散し
ている。このようなフイルム特性は市場の要求を
満たすものであり、また難燃性の効果的な発現に
とつて望ましいものである。 一般に、極薄フイルムは往々にして、その表面
をプラズマ処理またはコロナ放電処理した後、印
刷またはアルミニウム蒸着等により印字またはコ
ーテイングされて使用されるのであるが、本発明
の難燃性極薄フイルムは、表面処理後の印刷性お
よびアルミニウム蒸着性に何ら問題はなく、従来
と同様な方法及び操作により印字またはアルミニ
ウム蒸着が可能である。 本発明の難燃性極薄フイルムの配合成分の混合
方法は、プラスチツクに他の有機物質や無機物質
を添加配合する場合に一般に用いられる公知の方
法がそのまま使用できる。たとえば、マスターバ
ツチ方式による混合方法をあげることができる。
これが最も簡便な方法であるが、勿論直接混合す
る方法でも支障はない。 また、原料用線状ポリエチレンあるいはマスタ
ーバツチ製造用ポリエチレンの中に、一般に添加
される添加剤、例えば酸化防止剤、紫外線吸収
剤、スリツプ剤等が含有されること、あるいはそ
れらを適宜追加することも支障ない。 本発明の難燃性極薄フイルムは、線状高密度ポ
リエチレンに特定の難燃剤及び難燃助剤を配合し
てなるものであり、これによつて従来困難とされ
ていた極薄フイルムへの過酷な加工条件を克服
し、従来の極薄フイルムへの要求物性を満たしな
がら、新たに難燃性を付与することが出来たもの
である。すなわち、従来の極薄フイルムへの加工
条件を何ら変更することなく、加工時の難燃剤等
の分解、ピンホール発生、、バブルの不安定化等
のトラブルを伴わずに本発明の難燃性極薄フイル
ムを容易に製造できるだけでなく、得られた本発
明の難燃性極薄フイルムは、シワ、タルミ、凝固
物およびブルーミング等の欠点を伴わず、良好な
フイルム強度とそのバラン性を保持し、その上に
極めて高い難燃性を付与したものである。本発明
の難燃性極薄フイルムは点火しても燃焼を継続せ
ず直ぐに消火するものであり、この点で火炎に対
する安全性が確保されるので、この関係の需要分
野に広く利用することができる。 以下に、実施例により本発明を更に詳しく説明
するが、本発明はこれら実施例に限定されるもの
ではない。 実施例 1 まづ40m/mの高速2軸連続混練機(神戸製鋼
社製NCM型)を用い、樹脂温度200℃で、以下
に示す高濃縮組成物(マスターバツチ)のペレツ
トを製造した。
The present invention relates to a flame-retardant ultra-thin film made of linear high-density polyethylene, and its purpose is to provide an ultra-thin film with extremely high flame retardancy. Currently, in addition to the traditional balance of chemical and physical properties, there is a strong demand for flame safety, that is, flame retardancy, for flammable plastic products, including molded products made of linear high-density polyethylene. ing. This situation is no exception for ultra-thin films, and depending on their flame retardance, they may be withdrawn from some of the previously developed demand fields, such as civil engineering and construction materials, electrical components, and industrial packaging materials. We are in a situation where we may be forced to do so. Although ultra-thin films are sometimes molded using the T-die processing method for special purposes, most of them are usually formed using the inflation processing method. Molding ultra-thin films of linear high-density polyethylene requires processing conditions such as a resin temperature of 190°C to 230°C, a film thickness of 30 microns or less, a large blow ratio, and high-speed productivity of 60 to 100 m/min. The processing conditions are extremely harsh compared to those for other polyolefin products, and the resulting ultra-thin film has no wrinkles or sagging.
Film properties unique to ultra-thin films are required, such as surface smoothness, uniformity of thickness, film strength, and balance in the longitudinal and lateral directions. Naturally, flame retardancy must be achieved while meeting these requirements. Hitherto, hundreds of types of flame retardants and flame retardant methods have been developed and proposed for making plastics flame retardant. However, as mentioned above, it is said that it is extremely difficult to make ultra-thin films made of linear high-density polyethylene flame retardant because strict processing conditions and unique film properties are required. In other words, to make the film flame retardant, it is common to add a flame retardant and, if necessary, a flame retardant aid to the raw material, linear high-density polyethylene, and then process the film. Various problems occur such as foaming due to decomposition of flame retardant, generation of gas corrosive to equipment, inability to form bubbles due to pinholes, instability of bubbles due to uneven thickness, and decreased productivity due to fluctuations in the melt properties of molten resin. do. Furthermore, undesirable phenomena such as wrinkles, sagging, coagulation, gel, and blooming of the flame retardant occur in the obtained film, and at the same time, the required balance of strength is not observed at all. As a result of intensive studies aimed at making ultra-thin films made of linear high-density polyethylene flame-retardant, the present inventors found that among many flame retardants, flame-retardant methods, and flame-retardant compositions, the present invention was found. The inventors discovered the surprising fact that only the composition used as a raw material for the flame-retardant ultra-thin film of the invention makes it possible to manufacture the flame-retardant film, and thus completed the present invention. That is, in the present invention, the melt index is
0.01~0.20g/10min, density 0.945~0.960g/ml
For 100 parts by weight of linear polyethylene, ethylene bis(tetrabromophthalimide) and/or
Or a flame retardant ultra-thin film made by blending 3 to 30 parts by weight of bis(pentabromophenoxy)ethane and 1 to 10 parts by weight of an antimony-based flame retardant aid and/or a boron-based flame retardant aid. It is. The linear polyethylene used in the present invention is
Linear material with basic physical properties of melt index (MI) obtained in accordance with JIS K-7210 of 0.01 to 0.20 g/10 min, and density obtained in accordance with JIS K-7112 of 0.945 to 0.0960 g/ml. This refers to polyethylene manufactured using a medium-low pressure method. Conventional ultra-thin films are
Using the above polyethylene, the following processing conditions are generally used: Resin temperature: 190-230℃ Blow ratio: 3 or more Frost line height: 30-65cm Production speed: 60-100m/min Film thickness: 5-30μm Below, It has a rapid compression metering type screw with an L/D of 24 or more and a compression ratio of 2 to 4,
It is molded by the inflation method using an extruder equipped with a main motor with a capacity of 5.5 to 40 kW, depending on the diameter. The film of the present invention can be applied and molded as is without changing the general manufacturing conditions described above. Ethylene bis(tetrabromophthalimide) and/or bis(pentabromophenoxy)ethane, which are one of the components constituting the ultra-thin film of the present invention, are both marketed as halogen flame retardants.
Currently, it is mainly used to make high-impact polystyrene and ABS resin flame retardant, but it is said that this flame retardant can make it possible to make ultra-thin linear polyethylene films flame retardant in the specific formulation used in the present invention. The facts were completely unknown until now. The amount of the halogen flame retardant necessary to obtain the effects of the present invention is as follows:
The amount is 3 to 30 parts by weight. Preferably it is 5 to 20 parts by weight. If it is less than 3 parts by weight, the flame retardance of the film will be low, and if it is more than 30 parts by weight, it will be difficult to mold the film, making it necessary to change the molding conditions. Examples of antimony-based flame retardant aids used in the present invention include antimony trioxide, potassium antimonate, antimony tetroxide, etc., and examples of boron-based flame retardant aids include zinc borate. be able to. The amount of the flame retardant aid required to obtain the effects of the present invention is 1 to 10 parts by weight per 100 parts by weight of the linear polyethylene. If it is less than 1 part by weight, the effect of addition as a flame retardant aid is small;
If the amount exceeds 10 parts by weight, not only will it not be possible to expect a significant increase in the effect of addition, but it will also be difficult to form the film. The flame retardant ultra-thin film of the present invention has no wrinkles or sagging, its surface is as smooth as a film that does not contain the flame retardant, and no blooming of the flame retardant or flame retardant aid is observed. . moreover,
There are no lumps (coagulates) caused by the flame retardant or flame retardant aid in the film, and the additives are well dispersed. Such film properties meet market requirements and are desirable for effective flame retardancy. Generally, ultra-thin films are often used by subjecting their surfaces to plasma treatment or corona discharge treatment, and then printing or coating them by printing or aluminum vapor deposition. There are no problems with printability or aluminum vapor deposition after surface treatment, and printing or aluminum vapor deposition is possible using conventional methods and operations. As the method for mixing the components of the flame retardant ultra-thin film of the present invention, any known method generally used when adding and blending other organic or inorganic substances to plastics can be used as is. For example, a mixing method using a master batch method can be mentioned.
This is the simplest method, but of course a method of direct mixing may also be used. In addition, it is also a problem that the linear polyethylene for raw materials or the polyethylene for masterbatch production contains commonly added additives, such as antioxidants, ultraviolet absorbers, slip agents, etc., or that they are added as appropriate. do not have. The flame retardant ultra-thin film of the present invention is made by blending a specific flame retardant and flame retardant aid with linear high-density polyethylene. This film was able to overcome the harsh processing conditions and satisfy the physical properties required for conventional ultra-thin films, while also adding flame retardancy. In other words, the flame retardant properties of the present invention can be achieved without any changes to the conventional processing conditions for ultra-thin films and without problems such as decomposition of flame retardants, generation of pinholes, and destabilization of bubbles during processing. Not only can an ultra-thin film be easily produced, but the obtained flame-retardant ultra-thin film of the present invention has no defects such as wrinkles, sagging, coagulation, or blooming, and maintains good film strength and balance. Moreover, it has extremely high flame retardancy. Even if the flame-retardant ultra-thin film of the present invention is ignited, it does not continue to burn and immediately extinguishes the flame.In this respect, safety against flames is ensured, so it can be widely used in fields that require this. can. EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples. Example 1 Pellets of the highly concentrated composition (masterbatch) shown below were produced using a 40 m/m high-speed twin-screw continuous kneader (model NCM manufactured by Kobe Steel, Ltd.) at a resin temperature of 200°C.

【表】 次に、線状ポリエチレンのペレツト(東洋曹達
工業(株)製ニポロンハード#7300、MI=0.05、密
度=0.951)の100重量部に対し前記マスターバツ
チの10重量部を加え、リボンブレンダーを用いて
ペレツト混合を行つた。該混合ペレツトを用い、
押出機(プラコー(株)製、LM50)にて下記の条件 *加工条件 樹脂温度:200℃ ブロー比:6.4 フロストライン高さ:43cm 生産速度:60m/分 フイルム厚:10μm のもとにインフレーシヨン法によりフイルム成形
を行つた。得られたフイルムは、シワ、タルミが
なく、その表面は平滑であり、難燃剤や難燃助剤
に起因したブツブツ(凝固物)およびブルーミン
グが全く認められなかつた。表1に示したよう
に、良好なフイルム強度及びそのバランス性を保
ちながら、難燃性も極めて優れていた。 実施例 2 実施例1のエチレンビス(テトラブロモフタル
イミド)の代りにビス(ペンタブロムフエノキ
シ)エタン(フエローコーポレーシヨン社製、パ
イロチエツク77B)を用いた以外は実施例1と同
様な処方、操作、手順およびインフレーシヨン加
工条件でフイルムを製造した。得られたフイルム
は実施例1のフイルムと同様な優れたフイルム外
観を有していた。表1に記したように、フイルム
強度、フイルム強度のバランス性、難燃性等のフ
イルム物性はすべて良好であつた。 実施例 3 実施例1のマスターバツチの配合量10重量部を
20重量部に増加した以外は、すべて実施例1と同
様な処方、操作、手順およびインフレーシヨン加
工条件でフイルムを製造した。製造時でのバブル
の安定性が良く、成形加工はスムーズであつた。
フイルム外観、フイルム物性及び難燃性はともに
表1に示したように極めて良好であつた。 実施例 4 実施例1で用いた線状ポリエチレンペレツトと
実施例2で用いたハロゲン系難燃剤と三酸化アン
チモンとそれぞれ重量組成比が100:20:7にな
るように秤り取つた。ロール径16インチ、ロール
温度70±5℃の熱ロール(西村工機社製)上で該
ポリエチレンペレツトを溶融させ、ついでその溶
融ポリマーに該難燃剤及び難燃助剤を混練し、3
mm厚のシートで取り出した。該シートをペレタイ
ザーにかけペレツト化した。このペレツトを用
い、実施例1と同じ加工機及び同じ加工条件でフ
イルム成形を行つた。製造時のバブルの安定性が
良く、何ら問題なく成形加工が可能であつた。得
られたフイルムの外観は極めて良好であり、表1
に記したように、フイルム強度、強度のバランス
性、難燃性等はすべて優れていた。 比較例 1 実施例4の線状ポリエチレンとハロゲン系難燃
剤と難燃助剤との重量組成比をそれぞれ100:
40:13にした以外はすべて実施例4と同じ材料、
操作、手順及び加工条件でフイルム成形を行つ
た。加工時のバブルの安定性が悪く、成形加工は
うまく行かなかつた。 比較例 2 実施例1のハロゲン系難燃剤の代りにデカブロ
モジフエニルエーテル(東洋曹達工業(株)製、フレ
ームカツトBR100)を用いた以外はすべて実施
例1と同様な処方、操作、手順及び加工条件でフ
イルム成形を行つた。実施例1〜4に比べ、成形
加工性は若干劣つたが、フイルム加工は可能であ
つた。しかし、フイルムの表面に該難燃剤のブル
ーミングが認められた。 比較例 3 実施例1のハロゲン系難燃剤の代りに塩素系難
燃剤(フツカーケミカル社製、デクロランプラス
2520)を用いた以外は、すべて実施例1と同様な
処方、操作、手順及び加工条件でフイルムの成形
加工を行つた。得られたフイルムの難燃性は極め
て低かつた。 比較例 4 実施例1のハロゲン系難燃剤の代りにテトラブ
ロモビスフエノールA(GLC社製)を用いた以外
は、すべて実施例1と同様な処方、操作、手順及
び加工条件でフイルム成形加工を行つた。該難燃
剤は、ABS樹脂及びエポキシ樹脂の難燃剤とし
て一般に多用されているものである。成形加工時
に該難燃剤は分解し、成形加工は不可能であつ
た。
[Table] Next, 10 parts by weight of the masterbatch was added to 100 parts by weight of linear polyethylene pellets (Nipolon Hard #7300 manufactured by Toyo Soda Kogyo Co., Ltd., MI = 0.05, density = 0.951), and using a ribbon blender, The pellets were mixed. Using the mixed pellets,
Inflation was performed using an extruder (LM50, manufactured by Plako Co., Ltd.) under the following conditions *Processing conditions: Resin temperature: 200℃ Blow ratio: 6.4 Frost line height: 43cm Production speed: 60m/min Film thickness: 10μm Film molding was carried out by the Chonion method. The obtained film was free of wrinkles and sagging, had a smooth surface, and had no lumps (coagulation) or blooming caused by the flame retardant or flame retardant aid. As shown in Table 1, the film had excellent flame retardancy while maintaining good film strength and balance. Example 2 The same formulation as in Example 1 except that bis(pentabromophenoxy)ethane (manufactured by Ferro Corporation, Pyrocheck 77B) was used instead of ethylene bis(tetrabromophthalimide) in Example 1. Films were produced using the operating procedures and inflation processing conditions. The resulting film had an excellent film appearance similar to the film of Example 1. As shown in Table 1, the film properties such as film strength, film strength balance, and flame retardance were all good. Example 3 The blending amount of the master batch of Example 1 was 10 parts by weight.
A film was produced using the same formulation, operation, procedure, and inflation processing conditions as in Example 1, except that the amount was increased to 20 parts by weight. The bubble stability during manufacturing was good, and the molding process was smooth.
The film appearance, film physical properties, and flame retardance were all very good as shown in Table 1. Example 4 The linear polyethylene pellets used in Example 1 and the halogenated flame retardant and antimony trioxide used in Example 2 were weighed so that the weight composition ratio was 100:20:7, respectively. The polyethylene pellets are melted on a heated roll (manufactured by Nishimura Koki Co., Ltd.) with a roll diameter of 16 inches and a roll temperature of 70±5°C, and then the flame retardant and flame retardant aid are kneaded into the molten polymer.
It was taken out in a mm-thick sheet. The sheet was pelletized using a pelletizer. Using this pellet, film molding was carried out using the same processing machine and the same processing conditions as in Example 1. The stability of the bubble during production was good, and molding was possible without any problems. The appearance of the obtained film was extremely good, as shown in Table 1.
As mentioned above, the film strength, strength balance, flame retardance, etc. were all excellent. Comparative Example 1 The weight composition ratio of the linear polyethylene of Example 4, the halogen-based flame retardant, and the flame retardant aid was 100:
All the same materials as Example 4 except that the ratio was 40:13.
Film forming was carried out using the operations, procedures, and processing conditions. The stability of the bubble during processing was poor, and the molding process did not go well. Comparative Example 2 The same formulation, operation, procedure, and method as in Example 1 were used except that decabromodiphenyl ether (Flame Cut BR100, manufactured by Toyo Soda Kogyo Co., Ltd.) was used instead of the halogenated flame retardant in Example 1. Film molding was performed under the processing conditions. Although moldability was slightly inferior to Examples 1 to 4, film processing was possible. However, blooming of the flame retardant was observed on the surface of the film. Comparative Example 3 A chlorine-based flame retardant (manufactured by Futsuker Chemical Co., Ltd., Dechlorane Plus) was used instead of the halogen-based flame retardant in Example 1.
The film was formed using the same formulation, operation, procedure, and processing conditions as in Example 1, except that 2520) was used. The flame retardance of the obtained film was extremely low. Comparative Example 4 Film molding was carried out under the same formulation, operation, procedure, and processing conditions as in Example 1, except that tetrabromobisphenol A (manufactured by GLC) was used instead of the halogenated flame retardant in Example 1. I went. The flame retardant is commonly used as a flame retardant for ABS resins and epoxy resins. The flame retardant decomposed during molding, making molding impossible.

【表】【table】

【表】 比較例 5 低密度ポリエチレンやエチレン/酢ビ共重合体
のモールド品及びフイルムの難燃化に多用されて
いる塩素化パラフインを用いて線状ポリエチレン
製極薄フイルムの難燃化を試みた。実施例1の混
練機を用い、樹脂温度170℃で以下に示す組成の
マスターバツチのペレツトを製造した。
[Table] Comparative Example 5 An attempt was made to make an ultra-thin linear polyethylene film flame retardant using chlorinated paraffin, which is often used to make flame retardant films and molded products of low-density polyethylene and ethylene/vinyl acetate copolymers. Ta. Using the kneader of Example 1, a masterbatch pellet having the composition shown below was produced at a resin temperature of 170°C.

【表】【table】

【表】 以下、実施例1と同様の処方、操作、手順及び
加工条件の下にフイルムの成形加工を行つた。 成形加工時に該難燃剤は分解し、成形加工は全
く不可能であつた。
[Table] Films were formed and processed under the same formulation, operation, procedure, and processing conditions as in Example 1. The flame retardant decomposed during molding, making molding completely impossible.

Claims (1)

【特許請求の範囲】 1 メルトインデツクスが0.01〜0.20g/10分、
密度が0.945〜0.960g/mlである線状ポリエチレ
ンの100重量部に対し、 (イ) エチレンビス(テトラブロモフタルイミド)
及び/またはビス(ペンタブロムフエノキシ)
エタンの3〜30重量部と (ロ) アンチモン系難燃助剤及び/またはホウ素系
難燃助剤の1〜10重量部と を配合してなる、厚さ5〜30μmの難燃性極薄フ
イルム。
[Claims] 1. Melt index is 0.01 to 0.20 g/10 minutes,
For 100 parts by weight of linear polyethylene with a density of 0.945 to 0.960 g/ml, (a) ethylene bis(tetrabromophthalimide)
and/or bis(pentabromophenoxy)
A flame retardant ultra-thin product with a thickness of 5 to 30 μm, made by blending 3 to 30 parts by weight of ethane and (b) 1 to 10 parts by weight of an antimony-based flame retardant aid and/or a boron-based flame retardant aid. film.
JP59059477A 1984-03-29 1984-03-29 Flame-retardant ultrathin film Granted JPS60203652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059477A JPS60203652A (en) 1984-03-29 1984-03-29 Flame-retardant ultrathin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059477A JPS60203652A (en) 1984-03-29 1984-03-29 Flame-retardant ultrathin film

Publications (2)

Publication Number Publication Date
JPS60203652A JPS60203652A (en) 1985-10-15
JPH0510380B2 true JPH0510380B2 (en) 1993-02-09

Family

ID=13114419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059477A Granted JPS60203652A (en) 1984-03-29 1984-03-29 Flame-retardant ultrathin film

Country Status (1)

Country Link
JP (1) JPS60203652A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794579B2 (en) * 1986-12-10 1995-10-11 三菱化学株式会社 Flame-retardant propylene resin composition
CN108034117A (en) * 2017-12-28 2018-05-15 广东宇星阻燃新材股份有限公司 A kind of fire-retardant master granule for wear well polythene and its preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110253A (en) * 1978-02-20 1979-08-29 Furukawa Electric Co Ltd:The Polyethylene resin composition filled with inorganic materials
JPS56139546A (en) * 1980-04-01 1981-10-31 Tokuyama Soda Co Ltd Flame-retardant polyolefin composition
JPS57109856A (en) * 1980-12-27 1982-07-08 Dainichi Nippon Cables Ltd Flame-retardant organic polymer composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110253A (en) * 1978-02-20 1979-08-29 Furukawa Electric Co Ltd:The Polyethylene resin composition filled with inorganic materials
JPS56139546A (en) * 1980-04-01 1981-10-31 Tokuyama Soda Co Ltd Flame-retardant polyolefin composition
JPS57109856A (en) * 1980-12-27 1982-07-08 Dainichi Nippon Cables Ltd Flame-retardant organic polymer composition

Also Published As

Publication number Publication date
JPS60203652A (en) 1985-10-15

Similar Documents

Publication Publication Date Title
KR20170017611A (en) Foamable master batch and Polyolefin resin compositions with excellent expandability and direct metallizing property
JPS60133039A (en) Thermoplastic resin composition
US4632942A (en) Resin composition for masterbatch of foaming agent
US4451417A (en) Method of producing extruded plate-like polystyrene foam
US3645930A (en) Expandable compositions and products
EP0004578B1 (en) Pellets containing styrene polymer and aluminium hydroxide, and process for preparing flame-retarding styrene polymer foams
JPS5835614B2 (en) Manufacturing method of polystyrene resin sheet foam
JPH0510380B2 (en)
EP0145363A2 (en) A formable vinyl chloride-based resin composition
WO2000027906A1 (en) Extrusion-foamed board of resin blend comprising modified polypropylene resin and polystyrene resin
JPH01294751A (en) Propylene polymer composition
US4393016A (en) Process for producing plate-like polystyrene resin foam
JPH01215773A (en) Composition for inorganic lightweight foam and production thereof
KR820002060B1 (en) Process for producing foamed polystyrene boards
JPS6367494B2 (en)
JPH0762131A (en) Expandable resin composition and production of expanded polypropylene resin
JPH07330935A (en) Crystalline polyolefin foam
JPH09151269A (en) Foamable vinyl chloride resin composition for injection molding
JPH06212037A (en) Matte film for packaging
JPH09143298A (en) Vinyl chloride-based resin composition
JPS6339932A (en) Expandable resin composition
JPH09124826A (en) Hard-type foamed material of vinylchloride-based resin
JPS58157837A (en) Polyethylene-based resin composition
JPH0231087B2 (en) HATSUHOSHASHUTSUSEIKEIYOHORIPUROPIRENSEIKEIZAIRYO
JPS58183742A (en) Resin composition compounded with flame retardant