JPH0510375B2 - - Google Patents

Info

Publication number
JPH0510375B2
JPH0510375B2 JP59064631A JP6463184A JPH0510375B2 JP H0510375 B2 JPH0510375 B2 JP H0510375B2 JP 59064631 A JP59064631 A JP 59064631A JP 6463184 A JP6463184 A JP 6463184A JP H0510375 B2 JPH0510375 B2 JP H0510375B2
Authority
JP
Japan
Prior art keywords
polymerization
weight
butylazo
molded product
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59064631A
Other languages
Japanese (ja)
Other versions
JPS60206848A (en
Inventor
Kyoshi Mori
Masao Nakagawa
Toshiaki Sugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP6463184A priority Critical patent/JPS60206848A/en
Publication of JPS60206848A publication Critical patent/JPS60206848A/en
Publication of JPH0510375B2 publication Critical patent/JPH0510375B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐熱性・耐溶剤性に優れ、かつ発泡
性・成形性の良好な発泡性熱可塑性共重合体粒子
の工業的に有利な製造方法に関するものである。
発泡性重合体粒子としては、発泡性ポリスチレン
樹脂粒子がよく知られており、該粒子を用いるこ
とによつて安価で容易に型発泡成形体を得ること
が出来る。しかしながら、該発泡成形体は、重合
物を構成する単量体がスチレンであるため、比較
的温度の高い配管の保温材、屋根用断熱材、自動
車部材、ソーラーシステム用保温材等の耐熱性を
要求される用途には使用できない欠点がある。ま
た、特に自動車部材等において、他素材と貼り合
わせて用いる場合、耐溶剤性が劣るので、接着材
の選択が困難であるという欠点も有している。 本発明者らは、実用性に於て、充分な耐熱性と
耐溶剤性を有する発泡性熱可塑性重合体粒子を得
るには、重合体を構成する単量体組成として、ア
ルフアメチルスチレン10%以上、かつアクリロニ
トリルを5%以上含有してなる共重合体粒子を
得、この樹脂粒子に易揮発性発泡剤を含有せしめ
る必要があると考えた。しかるに、かかる観点に
基づいて、従来アルフアメチルスチレンを上記の
如く多量使用し、耐熱性の優れた共重合体を懸濁
重合により得るには、t−ブチルパーオキシベン
ゾエート、ジ−t−ブチルパーオキサイド、t−
ブチルパーオキシアセテート等の有機過酸化物を
重合開始剤として用いる方法があるが、これらの
開始剤を用いる方法においては、重合温度の如何
に拘らず、はなはだ多量用いることが必要であ
り、従つて得られる共重合体は、その重合度が極
度に低くなり、該共重合体粒子に易揮発性発泡剤
を含浸せしめて発泡性熱可塑性樹脂粒子となした
ものは、発泡性が著しく悪く、満足な発泡成形体
が得難いのみならず、その成形体も弱いものにな
つてしまう。更にこれらの開始剤を用いて重合度
を上げる為に、その使用量を少なくすると、いわ
ゆるdead end重合となり、工業的に高転化率は
得られず、従つて満足な発泡成形体は得難い。
又、ベンゾイルパーオキサイドの如き有機過酸化
物を使用すれば、これに適する重合温度に於ても
工業的に利用し得る高転化率の共重合体は全く得
られないのである。 一方、高重合度で、かつ高転化率のアルフアメ
チルスチレン−アクリロニトリル系共重合体を得
る方法として乳化重合法があるが、この方法によ
つて発泡性熱可塑性重合体粒子を製造するには、
特開昭57−65735に見られるごとく、乳化重合し
た後、凝固、ペレツト化を行ない、得られたペレ
ツトに発泡剤含浸を行なうという極めて煩雑なプ
ロセスが必要となり、製造コストが高くなるのみ
ならず、得られる樹脂には乳化剤、凝固剤等が多
量混入してしまう為、発泡性、強度等の劣つたも
のしか得られないという欠点を有する。 本発明者等は、かかる欠点に鑑み鋭意研究をし
た結果、特定のアゾ系開始剤を用い、アクリロニ
トリルを併用することによつて、多量のアルフア
メチルスチレンを用いても高重合度、かつ高転化
率を共重合体が得られる懸濁重合方法を見出し、
得られる共重合体粒子に易揮発性発泡剤を含浸せ
しめることによつて耐熱性に優れた発泡性熱可塑
性共重合体粒子を得ることに成功し、本発明をな
すに到つた。 すなわち本発明は、アルフアメチルスチレン10
〜80重量%、アクリロニトリル5〜50重量%、更
にスチレン、クロルスチレン、パラメチルスチレ
ン、t−ブチルスチレン、アクリル酸エステル、
メタクリル酸エステルから選ばれた少なくとも1
種の化合物0〜70重量%の使用割合にある単量体
を用い、1,1′−アゾビスシクロヘキサン−1−
カルボニリトリル、2−t−ブチルアゾ−2−シ
アノプロパン、2−t−ブチルアゾ−2−シアノ
ブタン、1−t−ブチルアゾ−1−シアノシクロ
ヘキサンから選ばれる1種以上を開始剤として重
合温度80〜150℃で共重合を行なわせ、重合中又
は重合後、易揮発性発泡剤を含浸せしめることを
特徴とする発泡性熱可塑性重合体粒子製造の方法
を要旨とする。 本発明に使用されるアルフアメチルスチレンの
量は10〜80重量%の範囲で、所望する耐熱性と発
泡倍率によつて決められるが、10重量%未満であ
ると耐熱性向上の効果が見られなくなり、80重量
%をこえると重合転化率が低下し、樹脂中に多量
の単量体が残つて耐熱性が悪化する。50倍発泡成
形体で100℃の耐熱性を得る為には、アルフアメ
チルスチレン20〜50重量%を用いる必要があり、
5〜15倍発泡成形体で110℃の耐熱性を得る為に
は50〜80重量%のアルフアメチルスチレンを用い
る必要がある。 又、本発明に使用されるアクリロニトリルは、
組成物の重合転化率を向上させる為、及び耐油性
を発揮させる為に必要である。その量が5重量%
未満では、組成物の重合転化率が低くなり、かつ
耐油性において効果が発揮できなくなり好ましく
ない。又、50重量%をこえて用いても重合転化率
は変らず、樹脂が黄褐色に着色するので好ましく
ない。 アルフアメチルスチレン、アクリロニトリル以
外の単量体としては、スチレン、クロルスチレ
ン、パラメチルスチルン、t−ブチルスチレン等
の各種置換スチレン、メチルアクリレート、エチ
ルアクリレート、ブチルアクリレート等のアクリ
ル酸エステル、メチルメタクリレート、エチルメ
タクリレート、ブチルメタクリレート等のメタク
リル酸エステルの中の1種又は2種以上を適宜用
いることができる。 本発明に用いられる開始剤の選択は、重合度が
高く、かつ高い重合転化率の重合体を効率よく得
る為に重要である。重合転化率が低く単量体が5
%以上樹脂中に残存している場合、満足な発泡成
形体を得ることが困難であり、かろうじて発泡成
形体を得ることが出来ても著しく耐熱性の悪いも
のになつてしまう。かかる観点から、使用される
べき開始剤としては、特に、1,1′−アゾビスシ
クロヘキサン−1−カルボニトリル、2−t−ブ
チルアゾ−2−シアノプロパン、2−t−ブチル
アゾ−2−シアノブタン、1−t−ブチルアゾ−
1−シアノシクロヘキサンが採用される。これら
の開始剤の使用量は、用いる単量体に対して0.05
〜3.0重量%が好ましい。0.05重量%以下では工
業的に実用性のある重合転化率が全く得られない
か、もしくは長時間を要し、著しく生産性の悪い
ものとなつてしまい、また3.0重量%以上では分
子量が著しく低下し、満足な発泡成形が行なえな
いか、もしくはかろうじて発泡成形が行なえても
強度が大巾に劣つた発泡成形体しか得られない。 本発明における開始剤を用いる場合の重合温度
は80〜150℃が採用される。80℃未満では重合転
化率が極めて低くなり、また150℃をこえると分
子量が低下して満足な発泡成形体が得難い。 本発明に於て、かかる発泡性熱可塑性共重合体
粒子を得る方法としては懸濁重合法が採用され
る。乳化重合法に於ては、先に述べたごとくプロ
セスの煩雑さによるコストアツプと、乳化剤、凝
固剤の混入による品質の低下があり、塊状重合法
に於ては、重合後ペレツト化を行なつた後、発泡
剤含浸を行なわなければならないというプロセス
の煩雑さの点で懸濁重合法に劣つている。 懸濁重合に用いられる分散剤としては、ポリビ
ニルアルコール、ポリビニルピロリドン、メチル
セルロース等の有機分散剤;第三リン酸カルシウ
ム、ピロリン酸カルシウム、ケイ酸ソーダ、酸化
亜鉛、炭酸マグネシウム等の無機分散剤等を用い
ることが出来るが、無機分散剤を用いる場合に
は、アルキルベンゼンスルフオン酸ソーダ、α−
オレフインスルフオン酸ソーダ等のアニオン界面
活性剤を用いることにより分散剤の効果は著しく
良好となる。分散剤を用いて上記組成の共重合体
粒子を懸濁重合にて得ようとする場合、粒子径が
非常に小さくなつてしまう傾向にあり、比較的大
粒子を得ようとして分散剤を減少すれば、重合後
半に懸濁異常を起こして、所望する比較的大粒子
径の粒子を得ることが困難である。従つて、所望
する粒子径の粒子を得ようとする場合には、重合
初期に少量の分散剤を用いて重合を行ない、重合
後半に分散剤を追加することが好ましい。 本発明に用いられる易揮発性発泡剤としては、
プロパン、ブタン、ペンタン等の脂肪族炭化水
素;シクロブタン、シクロペンタン、シクロヘキ
サン等の環式脂肪族炭化水素、及びトリクロルフ
ルオルメタン、ジクロルフルオルメタン、ジクロ
ルジフルオルメタン、メチルクロライド、ジクロ
ルテトラフルオルメタン、エチルクロライド等の
ハロゲン化炭化水素があげられる。これら発泡剤
の用いられるべき量は、所望する発泡成形体の発
泡倍率によつて異なるが、2重量%から15重量%
を含有させることにより2倍から100倍の発泡成
形体を得ることが可能である。しかして、これら
の発泡剤を添加する時期は、重合中あるいは重合
後のいずれの時期でもよい。 一方、本発明において、高度に発泡した成形体
を目的とする場合には、トルエン、キシレン、エ
チルベンゼン、ヘプタン、オクタン等の溶剤;ス
チレン、アルフアメチルスチレン、アクリロニト
リル等の単量体;又はフタル酸エステル、アジピ
ン酸エステル等の可塑剤を、該発泡性熱可塑性共
重合体粒子中に含有せしめることが好ましい。こ
れらの溶剤、単量体、可塑剤を含有せしめる方法
としては、あらかじめ単量体に混合して、重合せ
しめる方法、発泡剤含浸と同時に含浸せしめる方
法等がある。又、単量体を含有せしめる方法とし
ては、重合後、未反応の単量体を残こすことにな
るが、その残存量のコントロールが難かしい。こ
れら溶剤、可塑剤の使用量は3重量%以下である
ことが好ましい。 かくして得られた発泡性熱可塑性樹脂粒子は、
水蒸気、熱風等の加熱媒体により所望する倍率ま
で予備発泡せしめた後、閉塞し得るが密閉し得な
い型中に充填され、水蒸気等の加熱媒体によつて
再び加熱することによつて、所望の形状を有する
耐熱性発泡体となし得る。 以下、本発明を実施例にて説明する。 実施例 1 撹拌機付きオートクレーブに水110重量部、第
三リン酸カルシウム0.08重量部、ドデシルベンゼ
ンスルフオン酸ソーダ0.003重量部、塩化ナトリ
ウム0.2重量部を入れ、次いで撹拌状態で1,
1′−アゾビスシクロヘキサン−1−カルボニトリ
ル0.5重量部と、トルエン1.0重量部を溶解したア
ルフアメチルスチレン30重量部、アクリロニトリ
ル20重量部、スチレン50重量部の混合系単量体を
該系に導入し、懸濁状態とし、直ちに100℃に昇
温し、3時間後に第三リン酸カルシウム0.3重量
部を追加した。その後、更に4時間の重合を行な
つた後、更に115℃に昇温して3時間の後重合を
行なつた。得られた樹脂の重合転化率は99.4%で
あつた。次いで、100℃に温度を下げ、ブタン10
重量部を加え、100℃で8時間の発泡剤含浸を行
なつた。得られた発泡性熱可塑性重合体を水蒸気
で加熱して見掛倍率50倍に予備発泡した後、閉塞
し得るが密閉し得ない金型に充填し、水蒸気で加
熱することにより45cm×30cm×2cmの板状発泡成
形体を得た。この成形体を100℃の熱風式均熱乾
燥機内に1週間放置した後の、初期寸法に対する
寸法変化率は、−1.5%であつた。 実施例 2〜4 実施例1において、1,1′−アゾビスシクロヘ
キサン−1−カルボニトリルを、夫々、表−1に
示す物質と重合温度に変えた以外は実施例1と同
様に実施した。結果を表−1に示す。 比較例 1 実施例1において、1,1′−アゾビスシクロヘ
キサン−1−カルボニトリルをベンゾイルパーオ
キサイドに変え、90℃で7時間の重合を行なつた
が、重合添加率は78%までしか上がらず、発泡成
形体を得るに到らなかつた。 実施例 5 単量体組成をアルフアメチルスチレン50重量
部、アクリロニトリル25重量部、スチレン25重量
部とした以外は実施例1と同様にして発泡成形体
を得た。この成形体を100℃の熱風式均熱乾燥機
内に1週間放置した後の、初期寸法に対する寸法
変化率は、−1.8%であつた。
The present invention relates to an industrially advantageous method for producing expandable thermoplastic copolymer particles having excellent heat resistance and solvent resistance, and good foamability and moldability.
As expandable polymer particles, expandable polystyrene resin particles are well known, and by using these particles, a molded foamed article can be easily obtained at low cost. However, since the monomer constituting the polymer is styrene, the foam molded product has poor heat resistance for use in relatively high-temperature pipe insulation materials, roof insulation materials, automobile parts, solar system insulation materials, etc. There are drawbacks that prevent it from being used for the required purpose. In addition, when used in combination with other materials, particularly in automobile parts, etc., it also has the disadvantage that it is difficult to select an adhesive because of its poor solvent resistance. The present inventors found that in order to obtain expandable thermoplastic polymer particles having sufficient heat resistance and solvent resistance for practical purposes, the monomer composition constituting the polymer should be 10% alpha methylstyrene. It was considered necessary to obtain copolymer particles containing 5% or more of acrylonitrile as described above, and to incorporate an easily volatile blowing agent into the resin particles. However, based on this viewpoint, in order to obtain a copolymer with excellent heat resistance by suspension polymerization using a large amount of alphamethylstyrene as described above, t-butyl peroxybenzoate, di-t-butyl peroxybenzoate, di-t-butyl peroxybenzoate, etc. oxide, t-
There are methods using organic peroxides such as butyl peroxyacetate as polymerization initiators, but in methods using these initiators, it is necessary to use extremely large amounts regardless of the polymerization temperature. The resulting copolymer has an extremely low degree of polymerization, and the copolymer particles impregnated with an easily volatile blowing agent to form expandable thermoplastic resin particles have extremely poor foamability and are unsatisfactory. Not only is it difficult to obtain a foamed molded product, but the molded product also becomes weak. Furthermore, if the amount of these initiators used is reduced in order to increase the degree of polymerization, so-called dead end polymerization will occur, making it impossible to obtain a high conversion rate industrially, and therefore making it difficult to obtain a satisfactory foamed molded product.
Furthermore, if an organic peroxide such as benzoyl peroxide is used, it is impossible to obtain a copolymer with a high conversion rate that can be used industrially even at an appropriate polymerization temperature. On the other hand, emulsion polymerization is a method for obtaining alphamethylstyrene-acrylonitrile copolymers with a high degree of polymerization and a high conversion rate, but in order to produce expandable thermoplastic polymer particles by this method,
As seen in Japanese Patent Application Laid-Open No. 57-65735, an extremely complicated process of emulsion polymerization, coagulation, pelletization, and impregnation of the resulting pellets with a blowing agent is required, which not only increases production costs but also increases production costs. However, since the resulting resin contains a large amount of emulsifiers, coagulants, etc., it has the disadvantage that only products with poor foamability, strength, etc. can be obtained. As a result of intensive research in view of these drawbacks, the present inventors have found that by using a specific azo initiator and acrylonitrile in combination, a high degree of polymerization and high conversion can be achieved even when using a large amount of alpha methylstyrene. discovered a suspension polymerization method that yields a copolymer with a
By impregnating the resulting copolymer particles with an easily volatile foaming agent, they succeeded in obtaining expandable thermoplastic copolymer particles with excellent heat resistance, and have completed the present invention. That is, the present invention provides alpha methyl styrene 10
~80% by weight, 5~50% by weight of acrylonitrile, and further styrene, chlorostyrene, paramethylstyrene, t-butylstyrene, acrylic ester,
At least one selected from methacrylic acid esters
1,1'-Azobiscyclohexane-1- with monomers used in a proportion of 0 to 70% by weight of the species compound.
Polymerization at a temperature of 80 to 150°C using one or more selected from carbonylitrile, 2-t-butylazo-2-cyanopropane, 2-t-butylazo-2-cyanobutane, and 1-t-butylazo-1-cyanocyclohexane as an initiator. The gist of the present invention is a method for producing expandable thermoplastic polymer particles, which comprises copolymerizing and impregnating an easily volatile blowing agent during or after the polymerization. The amount of alphamethylstyrene used in the present invention is in the range of 10 to 80% by weight, and is determined depending on the desired heat resistance and expansion ratio, but if it is less than 10% by weight, the effect of improving heat resistance is not observed. When it exceeds 80% by weight, the polymerization conversion rate decreases and a large amount of monomer remains in the resin, resulting in poor heat resistance. In order to obtain heat resistance of 100℃ with a 50x foamed molded product, it is necessary to use 20 to 50% by weight of alpha methylstyrene.
In order to obtain heat resistance of 110° C. in a 5-15 times foamed product, it is necessary to use 50-80% by weight of alpha methylstyrene. Furthermore, the acrylonitrile used in the present invention is
It is necessary to improve the polymerization conversion rate of the composition and to exhibit oil resistance. The amount is 5% by weight
If it is less than this, the polymerization conversion rate of the composition will be low and the oil resistance will not be effective, which is not preferable. Further, even if it is used in an amount exceeding 50% by weight, the polymerization conversion rate will not change and the resin will be colored yellowish brown, which is not preferable. Monomers other than alphamethylstyrene and acrylonitrile include styrene, various substituted styrenes such as chlorostyrene, paramethylstyrene, and t-butylstyrene, acrylic acid esters such as methyl acrylate, ethyl acrylate, and butyl acrylate, methyl methacrylate, One or more types of methacrylic acid esters such as ethyl methacrylate and butyl methacrylate can be used as appropriate. Selection of the initiator used in the present invention is important in order to efficiently obtain a polymer with a high degree of polymerization and a high polymerization conversion rate. Polymerization conversion rate is low and monomer is 5
% or more remaining in the resin, it is difficult to obtain a satisfactory foamed molded product, and even if a foamed molded product can be obtained, it will have extremely poor heat resistance. From this point of view, initiators to be used include, in particular, 1,1'-azobiscyclohexane-1-carbonitrile, 2-t-butylazo-2-cyanopropane, 2-t-butylazo-2-cyanobutane, 1-t-butylazo-
1-cyanocyclohexane is employed. The amount of these initiators used is 0.05% based on the monomer used.
~3.0% by weight is preferred. If it is less than 0.05% by weight, an industrially practical polymerization conversion rate cannot be obtained at all, or it will take a long time, resulting in extremely poor productivity, and if it is more than 3.0% by weight, the molecular weight will decrease significantly. However, satisfactory foam molding cannot be carried out, or even if foam molding can be carried out, the result is only a foam molded product whose strength is significantly inferior. The polymerization temperature when using an initiator in the present invention is 80 to 150°C. If it is less than 80°C, the polymerization conversion rate will be extremely low, and if it exceeds 150°C, the molecular weight will decrease and it will be difficult to obtain a satisfactory foam molded product. In the present invention, a suspension polymerization method is employed as a method for obtaining such expandable thermoplastic copolymer particles. As mentioned earlier, in the emulsion polymerization method, there is an increase in cost due to the complexity of the process and a decrease in quality due to the contamination of emulsifiers and coagulants.In the bulk polymerization method, pelletization is performed after polymerization. It is inferior to the suspension polymerization method in terms of the complexity of the process, which requires impregnation with a blowing agent afterwards. As dispersants used in suspension polymerization, organic dispersants such as polyvinyl alcohol, polyvinylpyrrolidone, and methylcellulose; inorganic dispersants such as tricalcium phosphate, calcium pyrophosphate, sodium silicate, zinc oxide, and magnesium carbonate can be used. However, when using an inorganic dispersant, sodium alkylbenzenesulfonate, α-
By using an anionic surfactant such as sodium olefin sulfonate, the effect of the dispersant is significantly improved. When trying to obtain copolymer particles with the above composition by suspension polymerization using a dispersant, the particle size tends to become very small, and it is difficult to reduce the amount of the dispersant in order to obtain relatively large particles. For example, suspension abnormalities occur in the latter half of polymerization, making it difficult to obtain particles with a relatively large particle size as desired. Therefore, in order to obtain particles with a desired particle size, it is preferable to carry out the polymerization using a small amount of dispersant at the beginning of the polymerization, and to add the dispersant at the latter half of the polymerization. Easily volatile foaming agents used in the present invention include:
Aliphatic hydrocarbons such as propane, butane, and pentane; cycloaliphatic hydrocarbons such as cyclobutane, cyclopentane, and cyclohexane; and trichlorofluoromethane, dichlorofluoromethane, dichlorodifluoromethane, methyl chloride, and dichloride. Examples include halogenated hydrocarbons such as tetrafluoromethane and ethyl chloride. The amount of these blowing agents to be used varies depending on the desired expansion ratio of the foam molded product, but ranges from 2% by weight to 15% by weight.
By containing it, it is possible to obtain a foamed molded product from 2 times to 100 times larger. These blowing agents may be added either during or after polymerization. On the other hand, in the present invention, when the purpose is a highly foamed molded article, solvents such as toluene, xylene, ethylbenzene, heptane, and octane; monomers such as styrene, alphamethylstyrene, and acrylonitrile; or phthalate esters It is preferable that the expandable thermoplastic copolymer particles contain a plasticizer such as adipic acid ester or the like. Methods for incorporating these solvents, monomers, and plasticizers include a method in which they are mixed with the monomers in advance and polymerized, a method in which they are impregnated simultaneously with the impregnation with the blowing agent, and the like. Furthermore, the method of containing monomers leaves unreacted monomers after polymerization, but it is difficult to control the remaining amount. The amount of these solvents and plasticizers used is preferably 3% by weight or less. The expandable thermoplastic resin particles thus obtained are
After pre-foaming to a desired magnification with a heating medium such as steam or hot air, the foam is filled into a mold that can be closed but cannot be sealed, and heated again with a heating medium such as steam to form the desired foam. It can be made into a heat-resistant foam having a shape. The present invention will be explained below with reference to Examples. Example 1 110 parts by weight of water, 0.08 parts by weight of tribasic calcium phosphate, 0.003 parts by weight of sodium dodecylbenzenesulfonate, and 0.2 parts by weight of sodium chloride were placed in an autoclave equipped with a stirrer, and then stirred for 1.
A mixed monomer consisting of 0.5 parts by weight of 1'-azobiscyclohexane-1-carbonitrile, 30 parts by weight of alphamethylstyrene dissolved in 1.0 parts by weight of toluene, 20 parts by weight of acrylonitrile, and 50 parts by weight of styrene was introduced into the system. The suspension was made into a suspended state, and the temperature was immediately raised to 100°C, and after 3 hours, 0.3 parts by weight of tribasic calcium phosphate was added. After that, polymerization was carried out for an additional 4 hours, and then the temperature was further raised to 115°C, and post-polymerization was carried out for 3 hours. The polymerization conversion rate of the obtained resin was 99.4%. Then lower the temperature to 100 °C and add butane 10
Parts by weight were added and impregnated with a blowing agent for 8 hours at 100°C. The obtained expandable thermoplastic polymer is pre-foamed to an apparent magnification of 50 times by heating with steam, then filled into a mold that can be closed but cannot be sealed, and heated with steam to form a mold of 45 cm x 30 cm x A 2 cm plate-shaped foam molded product was obtained. After this molded body was left in a hot air soaking dryer at 100°C for one week, the dimensional change rate with respect to the initial size was -1.5%. Examples 2 to 4 The same procedure as in Example 1 was carried out except that 1,1'-azobiscyclohexane-1-carbonitrile was changed to the substance and polymerization temperature shown in Table 1, respectively. The results are shown in Table-1. Comparative Example 1 In Example 1, 1,1'-azobiscyclohexane-1-carbonitrile was changed to benzoyl peroxide and polymerization was carried out at 90°C for 7 hours, but the polymerization addition rate increased only to 78%. However, it was not possible to obtain a foamed molded product. Example 5 A foam molded product was obtained in the same manner as in Example 1 except that the monomer composition was 50 parts by weight of alphamethylstyrene, 25 parts by weight of acrylonitrile, and 25 parts by weight of styrene. After this molded body was left in a hot air soaking dryer at 100°C for one week, the dimensional change rate with respect to the initial size was -1.8%.

【表】 * 重合転化率が低くかつた為、発泡剤含浸
を行なわなかつた。従つて、成形体は得ら
れず、耐熱試験も行なわなかつた。
[Table] * Because the polymerization conversion rate was low, impregnation with a blowing agent was not performed. Therefore, no molded product was obtained and no heat resistance test was conducted.

Claims (1)

【特許請求の範囲】[Claims] 1 アルフアメチルスチレン10〜80重量%、アク
リロニトリル5〜50重量%、更にスチレン、クロ
ルスチレン、パラメチルスチレン、t−ブチルス
チレン、アクリル酸エステル、メタクリル酸エス
テルから選ばれた少なくとも1種の化合物0〜70
重量%の使用割合にある単量体を用い、1,1′−
アゾビスシクロヘキサン−1−カルボニトリル、
2−t−ブチルアゾ−2−シアノプロパン、2−
t−ブチルアゾ−2−シアノブタン、1−t−ブ
チルアゾ−1−シアノシクロヘキサンから選ばれ
る1種以上を開始剤として重合温度80〜150℃で
共重合を行なわせ、重合中又は重合後、易揮発性
発泡剤を含浸せしめることを特徴とする発泡性熱
可塑性樹脂粒子製造の方法。
1 10 to 80% by weight of alphamethylstyrene, 5 to 50% by weight of acrylonitrile, and at least one compound selected from styrene, chlorostyrene, paramethylstyrene, t-butylstyrene, acrylic ester, and methacrylic ester. 70
Using monomers in the proportion of 1,1′-
azobiscyclohexane-1-carbonitrile,
2-t-butylazo-2-cyanopropane, 2-
Copolymerization is carried out at a polymerization temperature of 80 to 150°C using one or more types selected from t-butylazo-2-cyanobutane and 1-t-butylazo-1-cyanocyclohexane as an initiator, and easily volatile during or after the polymerization. A method for producing expandable thermoplastic resin particles, which comprises impregnating them with a blowing agent.
JP6463184A 1984-03-30 1984-03-30 Preparation of expandable thermoplastic copolymer particle Granted JPS60206848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6463184A JPS60206848A (en) 1984-03-30 1984-03-30 Preparation of expandable thermoplastic copolymer particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6463184A JPS60206848A (en) 1984-03-30 1984-03-30 Preparation of expandable thermoplastic copolymer particle

Publications (2)

Publication Number Publication Date
JPS60206848A JPS60206848A (en) 1985-10-18
JPH0510375B2 true JPH0510375B2 (en) 1993-02-09

Family

ID=13263804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6463184A Granted JPS60206848A (en) 1984-03-30 1984-03-30 Preparation of expandable thermoplastic copolymer particle

Country Status (1)

Country Link
JP (1) JPS60206848A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8618635D0 (en) * 1986-07-30 1986-09-10 Unilever Plc Detergent composition
JPH0660259B2 (en) * 1988-04-26 1994-08-10 積水化成品工業株式会社 Method for producing expandable acrylonitrile-styrene copolymer resin particles
MY117649A (en) * 1996-07-04 2004-07-31 Shell Int Research Process for the preparation of polymer particles
KR100837549B1 (en) * 2006-01-20 2008-06-12 주식회사 엘지화학 Colored expandable polystyrene resin and method for preparing thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142764A (en) * 1976-05-24 1977-11-28 Arco Polymers Inc Antioxidant for
JPS55725A (en) * 1978-06-19 1980-01-07 Denki Kagaku Kogyo Kk Copolymerization
JPS55112240A (en) * 1979-02-19 1980-08-29 Huels Chemische Werke Ag Selffextinguishing fineegrain foamed styrol polymer
JPS5611930A (en) * 1979-07-12 1981-02-05 Hitachi Chem Co Ltd Foaming styrene resin particle
JPS5765735A (en) * 1980-09-13 1982-04-21 Kanegafuchi Chem Ind Co Ltd Heat-resistant expandable synthetic resin particle and molded article thereof
JPS57185328A (en) * 1982-04-07 1982-11-15 Dow Chemical Co Foam-linked body with foamable synthetic resin particles
JPS58122932A (en) * 1982-01-14 1983-07-21 Hitachi Chem Co Ltd Foamable styrene resin particle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142764A (en) * 1976-05-24 1977-11-28 Arco Polymers Inc Antioxidant for
JPS55725A (en) * 1978-06-19 1980-01-07 Denki Kagaku Kogyo Kk Copolymerization
JPS55112240A (en) * 1979-02-19 1980-08-29 Huels Chemische Werke Ag Selffextinguishing fineegrain foamed styrol polymer
JPS5611930A (en) * 1979-07-12 1981-02-05 Hitachi Chem Co Ltd Foaming styrene resin particle
JPS5765735A (en) * 1980-09-13 1982-04-21 Kanegafuchi Chem Ind Co Ltd Heat-resistant expandable synthetic resin particle and molded article thereof
JPS58122932A (en) * 1982-01-14 1983-07-21 Hitachi Chem Co Ltd Foamable styrene resin particle
JPS57185328A (en) * 1982-04-07 1982-11-15 Dow Chemical Co Foam-linked body with foamable synthetic resin particles

Also Published As

Publication number Publication date
JPS60206848A (en) 1985-10-18

Similar Documents

Publication Publication Date Title
US4539335A (en) Expandable thermoplastic resin particles and process for preparing the same
JPH07179647A (en) Resin particle for production of flame retardant foam of good dimensional stability and its production
JPH0510375B2 (en)
JPS60206849A (en) Preparation of expandable thermoplastic copolymer particle
JP4007738B2 (en) Expandable thermoplastic copolymer particles
JPH0513174B2 (en)
JPS5846251B2 (en) Method for manufacturing expandable vinyl polymer particles
JP2611355B2 (en) Method for producing expandable thermoplastic resin particles
KR100280218B1 (en) Manufacturing method of expandable polystyrene resin beads
JPH0461896B2 (en)
KR100280217B1 (en) Method for producing expandable styrene polymer resin beads
JPS60206847A (en) Preparation of expandable thermoplastic copolymer particle
JPH0447700B2 (en)
JPH10176078A (en) Expandable resin particle and its production
JPH11152364A (en) Preparation of foamable styrenic polymer particle
JP4587499B2 (en) Expandable styrenic resin particles and process for producing the same
JP4587499B6 (en) Expandable styrene resin particles and process for producing the same
JPH07330943A (en) Expandable resin particles and expansion-molded article
JPH0423656B2 (en)
JP2001123001A (en) Expandable methyl methacrylate resin particles and foamed molded article
JPS60206844A (en) Expandable thermoplastic copolymer particle
JPS6337140A (en) Foamable styrene copolymer particle and production thereof
JPH10273550A (en) Foamable resin particle, its production, and molded foam
JPS63275649A (en) Expandable copolymer particle
JPH07179646A (en) Resin particle for production of flame retardant foam of good dimensional stability and its production