JPH05102357A - Pin type heat sink - Google Patents

Pin type heat sink

Info

Publication number
JPH05102357A
JPH05102357A JP32228491A JP32228491A JPH05102357A JP H05102357 A JPH05102357 A JP H05102357A JP 32228491 A JP32228491 A JP 32228491A JP 32228491 A JP32228491 A JP 32228491A JP H05102357 A JPH05102357 A JP H05102357A
Authority
JP
Japan
Prior art keywords
pin
heat sink
group
rows
type heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32228491A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
久輝 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP32228491A priority Critical patent/JPH05102357A/en
Publication of JPH05102357A publication Critical patent/JPH05102357A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat radiation capacity by drawing up a group of pins, which consist of flat pins the cross sections of which are in the shapes of thin and wide straight angles or ribbons, in a specified number of stages and rows, and arranging them so that the long side of the cross section of each pin forms a specified tilt angle including 0 deg. to the stage direction or row direction. CONSTITUTION:A group of flat pins 2, which consist of flat pins the cross sections of which are in the shapes of thin and wide straight angles or ribbons, are arranged in parallel stages and rows on a heat receiving plate 1 consisting of a thin aluminum or copper plate. Moreover, the tilt angle of each flat pin is made, for example, 0 deg. Accordingly, fierce turbulence never occurs by the rectifying action of the pin plane, and pressure loss becomes small, and current loss convection hardly occurs, either and the current speed drop inside the heat sink becomes extremely small. Hereby, heat radiation capacity improves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートシンクの構造に関
するものであり、特に主として小型発熱素子の放熱面に
装着し、その発生熱量を吸収し冷媒流体中に放出するよ
う構成されてあるピン型ヒートシンクの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a heat sink, and more particularly to a pin type heat sink which is mounted mainly on a heat radiating surface of a small heat generating element and which absorbs the generated heat amount and discharges it into a refrigerant fluid. Concerning the structure of.

【0002】[0002]

【従来の技術】発熱素子用の小型放熱器としてピン型ヒ
ートシンクは秀れた放熱性能に着目され、その製造方法
の困難さにもかかわらず実用化が推進されてきた。特に
ピン径1.5mm前後以下の細径ピン群が受熱板上に直
立せしめられ、段列状に整列配設され、ピン間の距離間
隔が1.5mm前後以下の如く高密度に構成されたピン
型ヒートシンクは極めて高性能であり、そのようなヒー
トシンクの製造方法について業界各社で開発が進められ
ている。
2. Description of the Related Art A pin-type heat sink as a small radiator for a heat generating element has been noted for its excellent heat radiation performance, and its practical use has been promoted despite the difficulty of its manufacturing method. In particular, a group of small-diameter pins having a pin diameter of about 1.5 mm or less is made to stand upright on the heat receiving plate and arranged in a row, and the distance between the pins is configured to have a high density of about 1.5 mm or less. The pin-type heat sink has extremely high performance, and various industry companies are developing methods for manufacturing such a heat sink.

【0003】このようなピン型ヒートシンクはピン群の
間において冷媒流体は対流により激しい乱流を発生し、
この乱流が卓越した放熱性能の発揮に寄与するものであ
った。又このようなピン型ヒートシンクにおいても対流
に直交して配置された円柱の外表面の熱伝達率の大きさ
と同様の原則に従って、ピン外径が小さくなる程放熱性
能は向上するものであった。このようなピン型ヒートシ
ンクは高性能ではあるが激しい乱流の発生に起因し、ピ
ンの高密度化に起因する問題点が発生するものであっ
た。
In such a pin-type heat sink, the refrigerant fluid generates a strong turbulence due to convection between the pins.
This turbulent flow contributed to the outstanding heat dissipation performance. Also in such a pin-type heat sink, according to the same principle as that of the heat transfer coefficient of the outer surface of the cylinder arranged orthogonal to the convection, the smaller the outer diameter of the pin, the better the heat radiation performance. Although such a pin-type heat sink has high performance, it causes problems such as high density of pins due to the occurrence of intense turbulence.

【0004】[0004]

【発明が解決しようとする課題】解決しようとする問題
点は次の各点である。 (1)対流によりピン間に発生する激しい乱流に起因し
て冷媒流体の圧力損失が大きく、その為にピン型ヒート
シンク内の対流は通過する段列が多い程流速が大幅に低
下する。従って列数が多い割合には放熱性能が向上しな
い。実例として40mm×40mm厚さ1mmのアルミ
受熱板にφ1mm高さ30mmの純銅ピン320本を1
6段20列に配設して図5の平面図に例示の如きピン型
ヒートシンクを構成した。受熱板に20Wの熱量を加え
ながらピン群の第1列側から風速3m/sの冷却風を送
入して圧力損失による冷却風速の変化及び受熱板の温度
上昇及び熱抵抗値を調べた。測定の結果受熱板の温度上
昇は15.3[℃]熱抵抗値は0.77[℃/W]第2
0列側即ちヒートシンク背面から流出する冷却風速は
1.0m/sであった。この温度上昇は通常のアルミ平
板群を有するヒートシンクに比較すれば10℃も低く、
極めて良好な性能ではあったが、ヒートシンク内におけ
る風速の低下が少なければ更に良好なデータが得られる
筈であった。この様な風速の低下は同一の回路基盤に多
数の同様なヒートシンクを配設して発熱素子を冷却する
場合、大容量の冷却ファンを装備して、風速を上昇せし
める必要が生じ、大きな問題点となるものであった。
[Problems to be Solved by the Invention] The problems to be solved are as follows. (1) The pressure loss of the refrigerant fluid is large due to the severe turbulent flow generated between the pins due to convection, so that the convection in the pin-type heat sink has a large decrease in flow velocity as the number of rows passing therethrough increases. Therefore, the heat radiation performance is not improved when the number of rows is large. As an example, 320 pure copper pins with a diameter of 1 mm and a height of 30 mm are mounted on an aluminum heat receiving plate having a size of 40 mm × 40 mm and a thickness of 1 mm.
The pin-type heat sink as shown in the plan view of FIG. Cooling air having a wind speed of 3 m / s was introduced from the first row side of the pin group while applying a heat amount of 20 W to the heat receiving plate, and changes in the cooling air velocity due to pressure loss, temperature rise of the heat receiving plate, and thermal resistance value were examined. As a result of the measurement, the temperature rise of the heat receiving plate is 15.3 [° C] and the thermal resistance value is 0.77 [° C / W]
The cooling wind velocity flowing out from the 0th row side, that is, the back surface of the heat sink was 1.0 m / s. This temperature rise is 10 ° C lower than that of a heat sink having a normal aluminum plate group,
Although the performance was extremely good, better data could be obtained if the decrease in the wind speed in the heat sink was small. Such a decrease in wind speed requires a large-capacity cooling fan to increase the wind speed when a large number of similar heat sinks are arranged on the same circuit board to cool the heating elements. It was something that

【0005】(2)この様な圧力損失の増加は出口側の
列に到達する対流の流量を減少せしめ、ヒートシンク両
側面に無為に流失する流量を増加せしめる。図5の矢印
8は流失対流を示してある。従って高密度のピン型ヒー
トシンクはかえって性能が低下する場合があり、充分に
列数を増加せしめることが出来ない。即ちピン型ヒート
シンクは大型化及び大容量化が困難である。又同様な理
由から同一の回路基板で冷媒流体の流れ方向に直列に多
数のヒートシンクを配設する場合にも大幅な放熱性能低
下を引起す場合がある。
(2) Such an increase in pressure loss reduces the flow rate of convection reaching the row on the outlet side, and increases the flow rate that is lost to both sides of the heat sink. Arrow 8 in FIG. 5 indicates flow convection. Therefore, the high-density pin-type heat sink may rather deteriorate the performance, and the number of rows cannot be increased sufficiently. That is, it is difficult to increase the size and capacity of the pin-type heat sink. Further, for the same reason, when a large number of heat sinks are arranged in series in the flow direction of the refrigerant fluid on the same circuit board, the heat radiation performance may be significantly reduced.

【0006】(3)ピン型フィン群は放熱性能が極めて
良好であるから、冷媒流体に熱量を極めて効率良く吸収
せしめ、急速にその温度を上昇せしめる。従って段方向
対流の場合、列を通過する毎に冷媒流体の温度を急上昇
せしめ、下流側列に至る程熱交換効率は急激に低下す
る。このことからも高密度ピン型ヒートシンクは多列化
に限界があり、ヒートシンクの大型大容量化を困難にす
る。又同様な理由から同一の回路基板上で冷媒流体の流
れ方向に直列に多数のヒートシンクを配列する場合、大
幅な放熱性能低下を引起す場合がある。
(3) Since the pin-type fin group has extremely good heat dissipation performance, the refrigerant fluid absorbs the amount of heat very efficiently, and the temperature thereof is rapidly raised. Therefore, in the case of stepwise convection, the temperature of the refrigerant fluid is sharply increased each time it passes through the row, and the heat exchange efficiency is drastically lowered toward the downstream row. For this reason also, the high density pin type heat sink has a limit to the number of rows, making it difficult to increase the size and capacity of the heat sink. For the same reason, when a large number of heat sinks are arranged in series on the same circuit board in the flow direction of the refrigerant fluid, the heat radiation performance may be significantly reduced.

【0007】本発明は圧力損失が過大である点を解決す
ると共に、それに起因して発生する諸問題をも解決し、
ピン型ヒートシンクの機能の改善を計る。
The present invention solves the problem that the pressure loss is excessive, and also solves various problems caused by it.
Measure the function of the pin-type heat sink.

【0008】[0008]

【課題を解決する為の手段】問題点を解決する手段とし
て本発明においては各々のピンはその横断面形状が厚さ
の薄い広幅の平角形状か又はリボン形状の平形ピンに形
成されてあり、ピン群は所定数の段及び所定数の列の段
列に整列配置されてあり、各ピンは夫々の横断面の長辺
が段方向又は列方向に対して、0度を含む所定の傾斜角
をなして配置される。
As means for solving the problems, in the present invention, each pin is formed into a wide flat rectangular pin having a thin cross-sectional shape or a flat pin having a ribbon shape. The pin group is arranged in a row of a predetermined number of rows and a predetermined number of rows, and the long side of each pin has a predetermined inclination angle including 0 degree with respect to the step direction or the row direction. Are arranged.

【0009】このような薄肉平形のピンが整列配置され
てある場合は、対流が発生する乱流を適度に抑制し、流
体抵抗を減少せしめて、それ等の効果により圧力損失を
減少せしめる。又流れ方向を制御する機能があるから、
圧力損失により無為にヒートシンク側面に流失する冷媒
の流失対流量を減少せしめヒートシンク内での流速の低
下を防ぐことが出来る。又適切な傾斜角は熱交換の完了
した高温流体の排出方向を制御し、下流側ピン群又は下
流側ヒートシンクの熱交換効率を向上せしめる。これ等
の総合効果は従来のピン型ヒートシンクの問題点を全て
を解決せしめると共に新規な機能をも付加せしめる。
When such thin-walled flat pins are arranged in an array, turbulent flow generated by convection can be appropriately suppressed, fluid resistance can be reduced, and pressure loss can be reduced by these effects. Also, since it has a function to control the flow direction,
It is possible to prevent the flow rate and the flow rate of the refrigerant, which is lost to the side surface of the heat sink due to the pressure loss, to be reduced to prevent the flow velocity in the heat sink from decreasing. Further, the proper inclination angle controls the discharge direction of the high temperature fluid after the heat exchange, and improves the heat exchange efficiency of the downstream pin group or the downstream heat sink. These combined effects solve all the problems of the conventional pin-type heat sink and add new functions.

【0010】[0010]

【実施例】第1実施例 図1は本発明の第1実施例を
示す平面略図である。1は受熱板であり薄肉のアルミ
板、又は薄肉の純銅板からなる。短線2は平形ピン群の
各ピンを示してあり、各ピンの横断面は厚さの薄い広幅
の平角形状かリボン形状をなしている。矢印3は冷媒流
体の主対流(前面流)で矢印4は主対流(背面流)であ
る。矢印の長さは流速の大きさを示してある。本実施例
の平形ピンの傾斜角は0度である。この様に薄肉の平形
ピンが平行平列の段列に配置されたフィン群においては
ピン平面の整流作用により、激しい乱流が発生すること
なく圧力損失は小さく、又図5の従来例の平面図のピン
群9の如き流失対流8が発生することも殆ど無いのでヒ
ートシンク内の流速低下は極めて小さいものとなる。実
例として厚さ0.5mm幅1.5mm高さ30mmの平
形ピン群240本を40mm×40mm厚さ1mmのア
ルミ板上に20段12列に図1の如く配置し、段方向の
対流を前面流速3m/sにて流入させながら受熱板に2
0Wの熱量を与えて受熱板の平衡温度における温度上
昇、熱抵抗値、及び風速変化を調ベた。測定の結果受熱
板の温度上昇は13.4[℃]熱抵抗値は0.67[℃
/W]であり、主対流の流速は矢印の長さが示す如く前
面流速3も背面流速4も3[m/s]と全く流速低下は
発生しなかった。この温度上昇値は前記の従来のピン型
ヒートシンクの実例における16段20列の場合に比較
してピン本数が8−本も少ないに拘わらず1.9[℃]
低下した。又熱抵抗値は0.1[℃/W]改善された。
First Embodiment FIG. 1 is a schematic plan view showing a first embodiment of the present invention. A heat receiving plate 1 is a thin aluminum plate or a thin pure copper plate. The short line 2 shows each pin of the flat pin group, and the cross section of each pin has a wide flat rectangular shape with a small thickness or a ribbon shape. Arrow 3 is the main convection (front flow) of the refrigerant fluid, and arrow 4 is the main convection (back flow). The length of the arrow indicates the magnitude of the flow velocity. The inclination angle of the flat pin of this embodiment is 0 degree. Thus, in the fin group in which thin-walled flat pins are arranged in parallel flat rows, the rectifying action of the pin plane causes a small pressure loss without the occurrence of severe turbulence, and the flat surface of the conventional example shown in FIG. Since there is almost no occurrence of loss convection 8 like the pin group 9 in the figure, the decrease in flow velocity in the heat sink is extremely small. As an example, 240 flat pin groups having a thickness of 0.5 mm, a width of 1.5 mm, and a height of 30 mm are arranged in 20 columns and 12 rows on a 40 mm × 40 mm 1 mm thick aluminum plate as shown in FIG. 2 on the heat receiving plate while flowing at a flow rate of 3 m / s
The amount of heat of 0 W was applied to adjust the temperature rise at the equilibrium temperature of the heat receiving plate, the thermal resistance value, and the change in wind speed. As a result of the measurement, the temperature rise of the heat receiving plate is 13.4 [° C] and the thermal resistance is 0.67 [° C]
/ W], and the flow velocity of the main convection was 3 [m / s] for both the front flow velocity 3 and the back flow velocity 4, as indicated by the length of the arrow, and no reduction in flow velocity occurred. This temperature rise value is 1.9 [° C.], although the number of pins is 8 to 10 as compared with the case of 16 rows and 20 columns in the example of the conventional pin-type heat sink.
Fell. The thermal resistance value was improved by 0.1 [° C / W].

【0011】第2実施例 本実施例は第1実施例のピ
ン群の各々のピンに傾斜角を与えた実施例である。図2
において受熱板1には主対流(前面流)3及び主対流
(背面流)4の流れ方向のほぼ中心において板面に直立
する面を仮想線6として境界面を示してある。この境界
面を境界としてピン群は左右の2群に分けられ、各片側
の夫々の群は異った傾斜角が与えられてある。左右の傾
斜角は上記境界面を対称面として対流の方向に対しほぼ
対称的な後退角又は前進角を与える傾斜をなしている。
図2の如き傾斜角が与えられた平形ピン型ヒートシンク
が対流中に図の如く配置された場合、流入する対流は前
面から流入する主対流3だけでなくヒートシンク側面を
流れる対流からも流入対流5がヒートシンク中に流入す
る。この様な場合流れの上流側における受熱で温度上昇
した主対流3には側画から流入する低温度の流入対流5
が混合されて大きく温度上昇することが無く、又ピン群
間で発生する圧力損失による主対流の流速の低下は流入
対流5による圧力の、補給により補なわれ風速低下は発
生せず、かえって流速は上昇する場合の方が多い。実例
としては、第1実施例の実例における各ピンを捩回して
図2の如き傾斜角を与えて、全く同様の風速及び熱量供
給により受熱板の温度上昇、熱抵抗値、及び風速の変化
を調べた。実測結果の受熱板温度上昇は11.5℃熱抵
抗値は0.57[℃/W]と大幅に改善された。又主対
流(前面流)3の流速が3[m/s]であったのに対し
主対流(背面流)4の流速は3.4[m/s]と流速は
従来のピン型ヒートシンクとにおける風速低下とは逆に
0.4[m/s]上昇した。
Second Embodiment This embodiment is an embodiment in which each pin of the pin group of the first embodiment is provided with an inclination angle. Figure 2
In the heat receiving plate 1, a boundary surface is shown as an imaginary line 6 which is a surface which stands upright on the plate surface substantially at the center of the main convection (front flow) 3 and the main convection (back flow) 4. With this boundary surface as a boundary, the pin group is divided into two groups, left and right, and the respective groups on one side are provided with different inclination angles. The left and right inclination angles are inclined so as to provide a receding angle or an advancing angle that is substantially symmetrical with respect to the direction of convection with the boundary surface as a symmetry plane.
When a flat pin-type heat sink having an inclination angle as shown in FIG. 2 is arranged during convection as shown in the figure, the convection that flows in is not only the main convection 3 that flows in from the front surface but also the convection that flows in from the side surface of the heat sink. Flows into the heat sink. In such a case, the low temperature inflow convection 5 that flows from the side wall into the main convection 3 whose temperature has risen due to heat reception on the upstream side of the flow.
Are not mixed and the temperature does not rise significantly, and the decrease of the main convection flow velocity due to the pressure loss generated between the pin groups is not compensated by the replenishment of the pressure by the inflow convection 5, and the wind speed reduction does not occur. Is more likely to rise. As an example, each pin in the example of the first embodiment is twisted to give an inclination angle as shown in FIG. 2, and the temperature rise of the heat receiving plate, the thermal resistance value, and the change in the wind speed are changed by supplying exactly the same wind speed and heat quantity. Examined. As a result of actual measurement, the temperature rise of the heat receiving plate was 11.5 ° C, and the thermal resistance value was significantly improved to 0.57 [° C / W]. The flow velocity of the main convection (front flow) 3 was 3 [m / s], whereas the flow velocity of the main convection (back flow) 4 was 3.4 [m / s], which was the same as that of the conventional pin-type heat sink. On the contrary to the decrease in wind speed in the above, the value increased by 0.4 [m / s].

【0012】第3実施例 本実施例は大型ヒートシン
クにおける本発明の実施例である。従来のピン型ヒート
シンクは高密度大型化した場合ヒートシンク内における
冷媒流体の温度上昇及び圧力損失の増加により放熱効率
が大幅に低下し、ピン型フィン採用の効果が失なわれて
しまうものであった。図3は大型化された本発明ヒート
シンクの平面略図である。図の如く境界面6がヒートシ
ンクの長手方向の中央部付近に設けられてあり、平形ピ
ン群は第2実施例と同様な傾斜角が与えられてある。本
実施例においては境界面6を中心として所定の数の段又
は列のピン群が欠略せしめられて熱媒流体の流路として
構成されてあることが特徴となっている。この様なヒー
トシンクが対流内に配設された場合この流路は冷媒流体
の排出流路又は導入流路として作用する。図3は排出流
路となる例であり主対流(前面流)3及び主対流(背面
流4)が矢印の方向に流れる場合、平形ピン群2の対流
制御作用により、ヒートシンクの側面かたも多量の冷媒
流体が流入対流5として流入する。本実施例においては
ヒートシンク中の主対流及び流入対流の大部分は平形ピ
ン群の傾斜角に沿って流れ、熱吸収により高温化した冷
媒流体は一定温度以上に上昇することなく、ピン群欠略
部に流入して排出される。即ちヒートシンクが主対流の
流れ方向に如何に延長され、長大化しても下流側ピン群
には主として側面からの低温度の流入対流7が流れ、所
定温度以上の高温流体が流入することはない。又ヒート
シンクが如何に長大であってもピン群の間を流れる距離
は一定であり、一定以上の圧力損失が発生することが無
い。即ち本実施例のピン型ヒートシンクは任意に大型化
することが可能であり、従来例の如く、その為に放熱効
率が低下することが無い。
Third Embodiment This embodiment is an embodiment of the present invention in a large heat sink. When the conventional pin-type heat sink is increased in density and size, the heat dissipation efficiency is significantly reduced due to the temperature rise and pressure loss of the refrigerant fluid inside the heat sink, and the effect of adopting the pin-type fin is lost. .. FIG. 3 is a schematic plan view of the heat sink of the present invention which has been enlarged. As shown in the drawing, the boundary surface 6 is provided in the vicinity of the central portion in the longitudinal direction of the heat sink, and the flat pin group is provided with the same inclination angle as in the second embodiment. The present embodiment is characterized in that a pin group of a predetermined number of steps or rows centering on the boundary surface 6 is omitted to form a flow path for the heat transfer fluid. When such a heat sink is arranged in convection, this channel acts as an outlet channel or an inlet channel for the refrigerant fluid. FIG. 3 shows an example of a discharge flow path. When the main convection (front flow) 3 and the main convection (rear flow 4) flow in the direction of the arrow, the side surface of the heat sink is controlled by the convection control action of the flat pin group 2. A large amount of refrigerant fluid flows in as an inflow convection 5. In the present embodiment, most of the main convection and inflow convection in the heat sink flow along the inclination angle of the flat pin group, and the refrigerant fluid heated to a high temperature by heat absorption does not rise above a certain temperature and the pin group is omitted. And then discharged. That is, even if the heat sink is extended in the main convection flow direction and lengthened, the low temperature inflow convection 7 mainly flows from the side surface to the downstream pin group, and the high temperature fluid above the predetermined temperature does not flow in. Further, no matter how long the heat sink is, the distance flowing between the pin groups is constant, and pressure loss above a certain level does not occur. That is, the pin-type heat sink of this embodiment can be arbitrarily increased in size, and therefore, the heat dissipation efficiency does not decrease as in the conventional example.

【0013】図示は省略してあるが、本実施例は主対流
の流れが全く逆方向であり、図3の矢印の全てが全く反
対方向であっても全く同様な効果が発揮される。その場
合はピン群欠略部は低温冷媒流体の導入流路となり、そ
の部分からヒートシンク内には平形ピン群の傾斜角に沿
って、低温流体が流入し、熱吸収により高温化された流
体は大部分がヒートシンク側面に向って排出される。
Although illustration is omitted, in this embodiment, the flow of main convection is in the completely opposite direction, and even if all the arrows in FIG. In that case, the pin group lacking portion serves as an introduction flow path for the low-temperature refrigerant fluid, and the low-temperature fluid flows from that portion into the heat sink along the inclination angle of the flat pin group, and the fluid heated to a high temperature by heat absorption Most are discharged toward the side of the heat sink.

【0014】対流が吸引ファンによる流れである場合は
破線で示されてある邪魔板9を設けることにより、本実
施例の効果は更に有効なものとなる。その場合は主対流
の流れ方向が図3の通りであっても、又はその全く逆方
向であってもピン群欠略部を無為に通過する流れが無く
なり、対流の全てが平形ピン群の間を流れるようにな
り、放熱効率が上昇する。
When the convection is caused by a suction fan, the effect of this embodiment is further enhanced by providing the baffle plate 9 shown by the broken line. In that case, even if the flow direction of the main convection is as shown in FIG. 3 or in the opposite direction, there is no flow that passes through the pin group cutouts, and all the convection flows between the flat pin groups. And the heat dissipation efficiency increases.

【0015】第4実施例 本実施例は平形ピン群にお
ける傾斜角付与に関する実施例である。図4は本実施例
の正面図の一部拡大図である。図において1は受熱板で
あり、2−2はピン接着部である。平形ピン2は受熱板
に対する直立接着が困難であるから、直角に屈曲せしめ
られて放熱部分以外は受熱板1に積層接着せしめられて
ある。各ピン2の直立部における根元から所定の区間2
−0は傾斜角0度にて平行平列の段列に整列配置されて
ある。各ピン2の直立部の残余の部分は根元から所定の
距離にある所定の区間2−1において捩回されて所定の
傾斜角が与えられてある。
Fourth Embodiment This embodiment is an embodiment relating to imparting a tilt angle in a flat pin group. FIG. 4 is a partially enlarged view of the front view of this embodiment. In the figure, 1 is a heat receiving plate, and 2-2 is a pin bonding portion. Since it is difficult to vertically bond the flat pin 2 to the heat receiving plate, the flat pin 2 is bent at a right angle and laminated and bonded to the heat receiving plate 1 except the heat radiating portion. Predetermined section 2 from the root of the upright part of each pin 2
-0 are arranged in parallel parallel rows with an inclination angle of 0 degree. The remaining portion of the upright portion of each pin 2 is twisted in a predetermined section 2-1 at a predetermined distance from the root to give a predetermined inclination angle.

【0016】このような平形ピン群を有するピン型ヒー
トシンクの構成は傾斜角を有するピン群の配設を容易に
する利点がある。即ち両端を直角に屈曲せしめた平角線
又はリボンを屈曲両端をピンとして直立せしめ平行並列
に受熱板に接着し積層することにより傾斜角0度の平形
ピン群2−0を配設することは容易である。この様にし
て配設された平形ピン群の各々のピン2を捩回せしめて
傾斜角を与えることも容易であり、各々のピンを根元か
ら傾斜角を与えて配設する構造よりはるかに容易に製作
することが出来る。
The structure of the pin type heat sink having the flat pin group has an advantage of facilitating the arrangement of the pin group having the inclination angle. That is, it is easy to dispose the flat pin group 2-0 having an inclination angle of 0 degree by arranging a flat wire or a ribbon whose both ends are bent at right angles with the both ends bent as pins and adhering them in parallel and parallel to the heat receiving plate. Is. It is also easy to give an inclination angle by twisting each pin 2 of the flat pin group arranged in this way, which is far easier than the structure in which each pin is provided with an inclination angle from the root. Can be manufactured to.

【0017】傾斜角が与えられた平形ピン群を有するヒ
ートシンクはピン群の内部列には対流が侵入困難で全体
としては対流の流入量が減少する傾向がある。然し図4
に例示の如き平形ピン群の場合は、根元付近に残された
傾斜角0度の部分2−0には内部列に対流が流入するこ
とが容易で、このピン根元付近から内部に流入する対流
は傾斜角が与えられた部分に対する対流に冷媒流体を補
給して、その流れを容易にする効果があり、ヒートシン
クの放熱効率を良好ならしめる作用がある。
In a heat sink having a flat pin group having an inclined angle, it is difficult for convection to enter the inner row of the pin group, and the inflow amount of convection tends to decrease as a whole. But Figure 4
In the case of the flat pin group as illustrated in Fig. 3, it is easy for convection to flow into the inner row in the portion 2-0 with a tilt angle of 0 degrees left near the root, and convection that flows into the interior from near the root of the pin. Has the effect of replenishing the convection to the portion given the inclination angle with the refrigerant fluid and facilitating the flow, and has the effect of improving the heat dissipation efficiency of the heat sink.

【0018】[0018]

【発明の効果】以上に説明したように、又各実施例の作
用からも分かるように本発明のピン型ヒートシンクは平
形ピンが薄肉で表面積が大きい点、平形ピンの面に平行
な対流に対する流体抵抗が小さい点、及び平形ピン群の
整流作用により激しい乱流の発生を防ぐ点、更に平形ピ
ン群の対流方向制御作用によりヒートシンク側面からの
流失対流を防止し、逆に側面からヒートシンク内に低温
流体を流入せしめることが出来る点等の相乗効果により
著しく高い性能を発揮する。
As described above, and as can be seen from the operation of each embodiment, the pin type heat sink of the present invention has a thin flat pin and a large surface area, and a fluid for convection parallel to the plane of the flat pin. The resistance is small, the rectification of the flat pin group prevents the occurrence of severe turbulence, and the convection direction control function of the flat pin group prevents flow convection from the side of the heat sink. Remarkably high performance is achieved by the synergistic effect of allowing fluid to flow in.

【0019】又平形ピン群の対流方向制御作用及び整流
作用により主対流の下流側段列に高温流体が流入するの
を防ぎヒートシンクを任意の大きさに大型化、長大化せ
しめ、大容量化することが出来る効果もある。
Further, the convection direction control action and the rectification action of the flat pin group prevent the high temperature fluid from flowing into the downstream side row of the main convection, so that the heat sink can be increased in size and length to any size to increase the capacity. There is also an effect that can be.

【0020】更に同一回路基板上に多数の発熱素子が搭
載されてあり、各発熱素子にヒートシンクを装着して冷
却する如き場合、本発明に係るヒートシンクを適用する
ことにより、平形ピン群の対流方向制御作用を利用し、
回路基板対流の下流側ヒートシンク及び発熱体に上流側
ヒートシンクを通過した高温流体が流入しないように、
回路基板対流を制御することが出来ることは大きな効果
であると考えられる。
Further, when a large number of heat generating elements are mounted on the same circuit board and a heat sink is mounted on each of the heat generating elements for cooling, by applying the heat sink according to the present invention, the convection direction of the flat pin group can be improved. Use control action,
To prevent the high temperature fluid that has passed through the upstream heat sink from flowing into the downstream heat sink and the heating element of the circuit board convection,
The ability to control circuit board convection is considered to be a great advantage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のピン型ヒートシンクの第1実施例を示
す平面略図である。
FIG. 1 is a schematic plan view showing a first embodiment of a pin-type heat sink of the present invention.

【図2】本発明のピン型ヒートシンクの第2実施例を示
す平面略図である。
FIG. 2 is a schematic plan view showing a second embodiment of the pin-type heat sink of the present invention.

【図3】本発明のピン型ヒートシンクの第3実施例を示
す平面略図である。
FIG. 3 is a schematic plan view showing a third embodiment of the pin-type heat sink of the present invention.

【図4】本発明のピン型ヒートシンクの第4実施例を示
す部分拡大側面図である。
FIG. 4 is a partially enlarged side view showing a fourth embodiment of the pin-type heat sink of the present invention.

【図5】従来のピン型ヒートシンクの構造例を示す平面
略図である。
FIG. 5 is a schematic plan view showing a structural example of a conventional pin-type heat sink.

【符号の説明】[Explanation of symbols]

1 受熱板 2 平形ピン群 2−0 ピン傾斜角0度部 2−1 ピン捩り部 2−2 ピン接着部 3 主対流(前面流) 4 主対流(背面流) 5 流入対流 6 境界面 7 ピン群欠略部 8 流失対流 1 heat receiving plate 2 flat pin group 2-0 pin inclination angle 0 degree part 2-1 pin twisted part 2-2 pin bonded part 3 main convection (front flow) 4 main convection (back flow) 5 inflow convection 6 interface 7 pin Group lacking section 8 Loss of convection

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多数のピンが放熱フィン群として受熱板
上に直立して配設され、ピン型ヒートシンクとして構成
されてあり、各ピンはその横断面形状が厚さの薄い広幅
の平角形状又はリボン形状の平形ピンとして形成されて
あり、それらのピン群は所定数の段及び所定数の列に段
列に整列配置されてあり、各ピンは夫々の横断面の長辺
が、段方向又は列方向に対して、0度を含む所定の角度
の傾斜角をなして配置されてあることを特徴とするピン
型ヒートシンク。
1. A large number of pins are arranged as a radiation fin group so as to stand upright on a heat receiving plate, and are configured as a pin-type heat sink, and each pin has a wide rectangular cross section whose width is thin or wide. It is formed as a ribbon-shaped flat pin, and the pin group is arranged in a predetermined number of steps and a predetermined number of rows in a step row, and each pin has a long side of its cross section in the step direction or A pin-type heat sink, wherein the pin-type heat sink is arranged with an inclination angle of a predetermined angle including 0 degree with respect to the column direction.
【請求項2】 ピン群の段列配置における所定の段間の
間隙又は所定の列間の間隙における受熱板に垂直な面を
境界面として、ピン群は境界面の両側の2群に分けられ
てあり、それらの片側の群の夫々のピンに与えられてあ
る傾斜角と他の片側の群の夫々のピンに与えられてある
傾斜角とは、夫々のピン断面の長辺が上記境界面を対称
面として、対流の方向に対してほぼ対称的な後退角又は
前進角を与える傾斜角であることを特徴とする請求項1
に記載のピン型ヒートシンク。
2. The pin group is divided into two groups on both sides of the boundary surface, with a plane perpendicular to the heat receiving plate in the gap between the predetermined rows or in the gap between the predetermined rows in the row arrangement of the pin group as the boundary surface. The inclination angle given to each pin of the group on one side and the inclination angle given to each pin of the group on the other side are defined by the long side of the cross section of each pin above the boundary surface. 2. A tilt angle that gives a receding angle or an advancing angle that is substantially symmetrical with respect to the direction of convection, with the symmetry plane as the symmetry plane.
Pin type heat sink described in.
【請求項3】 ピン群の段列配置において、段又は列の
中央部付近の所定の数の段又は列のピン群が欠略して配
置されてあり、この部分の中心線を含み受熱板に垂直な
面を境界面として構成されてあることを特徴とする請求
項2に記載のピン型ヒートシンク。
3. In a row arrangement of pin groups, a pin group of a predetermined number of rows or rows in the vicinity of the central portion of the row or row is abbreviated and arranged, and the heat receiving plate includes the center line of this portion. The pin-type heat sink according to claim 2, wherein a vertical surface is formed as a boundary surface.
【請求項4】 ピン群の夫々のピンの根元から所定の区
間においては傾斜角0度にて平行平列の段列に整列配置
されてあり、夫々のピンの残余の部分はその根元から所
定の距離にある所定の区間において捩回されて所定の角
度の傾斜角が与えられてあることを特徴とする請求項1
に記載のピン型ヒートシンク。
4. A predetermined section from the root of each pin of the pin group is arranged in parallel flat rows with a tilt angle of 0 degree, and the remaining portions of each pin are predetermined from the root. 2. A twist angle is given in a predetermined section at a distance of .gamma. To give a tilt angle of a predetermined angle.
Pin type heat sink described in.
JP32228491A 1991-10-02 1991-10-02 Pin type heat sink Pending JPH05102357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32228491A JPH05102357A (en) 1991-10-02 1991-10-02 Pin type heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32228491A JPH05102357A (en) 1991-10-02 1991-10-02 Pin type heat sink

Publications (1)

Publication Number Publication Date
JPH05102357A true JPH05102357A (en) 1993-04-23

Family

ID=18141924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32228491A Pending JPH05102357A (en) 1991-10-02 1991-10-02 Pin type heat sink

Country Status (1)

Country Link
JP (1) JPH05102357A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490558A (en) * 1992-04-13 1996-02-13 Actronics Kabushiki Kaisha L-type heat sink
US5507092A (en) * 1995-06-06 1996-04-16 Hisateru Akachi L-type heat sink
JP2008205421A (en) * 2006-07-26 2008-09-04 Furukawa Sky Kk Heat exchanger
WO2012114955A1 (en) * 2011-02-21 2012-08-30 古河スカイ株式会社 Heat sink and method for using heat sink
US20130213616A1 (en) * 2011-09-06 2013-08-22 Vacuum Process Engineering, Inc. Heat exchanger incorporating out-of-plane features

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490558A (en) * 1992-04-13 1996-02-13 Actronics Kabushiki Kaisha L-type heat sink
US5507092A (en) * 1995-06-06 1996-04-16 Hisateru Akachi L-type heat sink
JP2008205421A (en) * 2006-07-26 2008-09-04 Furukawa Sky Kk Heat exchanger
WO2012114955A1 (en) * 2011-02-21 2012-08-30 古河スカイ株式会社 Heat sink and method for using heat sink
JP6030051B2 (en) * 2011-02-21 2016-11-24 株式会社Uacj Heat sink and method of using heat sink
US20130213616A1 (en) * 2011-09-06 2013-08-22 Vacuum Process Engineering, Inc. Heat exchanger incorporating out-of-plane features

Similar Documents

Publication Publication Date Title
JP4776032B2 (en) Heat exchanger
US7909087B2 (en) Heat exchanger
US5705854A (en) Cooling apparatus for electronic device
JP2005520113A (en) Heat exchanger
JPH02168697A (en) Cooling device for electronic equipment and radiating fin therefor
CN111415915A (en) Heat radiation structure of micro-channel radiator
JP2730908B2 (en) Heat exchanger and air conditioner incorporating this heat exchanger
JPH05102357A (en) Pin type heat sink
JP2007505282A (en) Heat exchanger
JP4517333B2 (en) Heat exchanger
JP5715352B2 (en) heatsink
JP5498143B2 (en) Heat sink using bent louver-like heat dissipation unit
CN104768356B (en) A kind of water cooling hardened structure of application 3D printing technique
JPH0363499A (en) Heat exchanger with fins
JP2017069522A (en) Cold plate
JP3430921B2 (en) Heat exchanger
JP2003083690A (en) Corrugated fin heat-exchanger
JP2003086742A (en) Heat sink
JP2003282801A (en) Heat sink device
JPS6133432Y2 (en)
CN217900598U (en) Flat pipe of automobile-used tube-band radiator, automobile-used tube-band radiator and vehicle
KR0182542B1 (en) Heat exchanger
CN212259619U (en) Heat radiation structure and radiator using same
JPH05280882A (en) Heat dissipating fin
JPH07105466B2 (en) Application structure of Ken Yamagata heat sink