JPH05101442A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH05101442A
JPH05101442A JP3082843A JP8284391A JPH05101442A JP H05101442 A JPH05101442 A JP H05101442A JP 3082843 A JP3082843 A JP 3082843A JP 8284391 A JP8284391 A JP 8284391A JP H05101442 A JPH05101442 A JP H05101442A
Authority
JP
Japan
Prior art keywords
recording
layer
light
thermal conductivity
incident side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3082843A
Other languages
Japanese (ja)
Inventor
Osamu Ueno
修 上野
Hideo Kobayashi
英夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP3082843A priority Critical patent/JPH05101442A/en
Publication of JPH05101442A publication Critical patent/JPH05101442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To stabilize recording by providing the protective layers on a light incident side and light transparent side of a low thermal conductivity in contact with this recording layer on the light incident side and light transparent side of the recording layer and providing cooling layers on the outer sides of these protective layers. CONSTITUTION:The cooling layers 8, 11 having the high thermal conductivity are provided via the protective layers 9, 10 having the low thermal conductivity respectively on both sides of the recording layer 3, i.e., on the light incident side and the light transparent side. Then, the diffusion of heat is efficiently accelerated and the trailing of an isothermal curve is suppressed as far as possible while the unnecessary spread of the recording marks is prevented by the respective protective layers. The thermal interference between the recording marks is decreased in this way and jitters can be decreased. Since the trailing of the isothermal curve can be suppressed in such a manner, the stable recording is eventually attained and the recording level of the reproduced signals is stabilized. Further, the CN can be taken at a higher level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、基板上に光、熱等の
手段によりその光学的性質が可逆的に変化する記録層を
備え、その光学的性質の変化を利用して情報の書き換
え、再生を行う書換え可能な光記録媒体に係り、特に冷
却効率に優れており、CN比や消去率が共に優れてお
り、しかも、ジッターが小さく、多数回の書換えが可能
な光記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a recording layer having its optical properties reversibly changed by means of light, heat or the like on a substrate, and rewriting information by utilizing the change of the optical properties. The present invention relates to a rewritable optical recording medium for reproduction, and particularly to an optical recording medium which has excellent cooling efficiency, excellent CN ratio and erasing rate, small jitter, and can be rewritten many times.

【0002】[0002]

【従来の技術】情報の書換え可能な光学的記録方法とし
て、その記録方式により相変化光記録媒体や光磁気記録
媒体が知られており、また、本願出願人の提案に係る相
分離光記録媒体(特願平2−169,710号)が知ら
れている。
As a rewritable optical recording method for information, a phase change optical recording medium and a magneto-optical recording medium are known depending on the recording method, and a phase separation optical recording medium proposed by the applicant of the present application. (Japanese Patent Application No. 2-169,710) is known.

【0003】ここで、相変化光記録媒体は、高出力のレ
ーザー光を記録層上に照射してその照射部位を溶融後急
冷することによりアモルファス状態に変化させ、これに
よって情報の記録を行い、また、中間出力のレーザー光
を記録層上に照射してその照射部位を所定時間結晶化温
度以上に保持することにより結晶状態に変化させ、これ
によって情報の消去を行い、更に、低出力のレーザー光
を記録層上に照射して結晶状態とアモルファス状態の光
学的性質の違いを反射光量の差として検出することによ
り情報の再生を行うものである。
Here, in the phase change optical recording medium, the recording layer is irradiated with a high-power laser beam, and the irradiated portion is melted and rapidly cooled to change to an amorphous state, thereby recording information. Further, by irradiating the recording layer with an intermediate output laser beam and maintaining the irradiated portion at a crystallization temperature or higher for a predetermined time, the state is changed to a crystalline state, thereby erasing information, and a low output laser beam. Information is reproduced by irradiating the recording layer with light and detecting the difference in optical properties between the crystalline state and the amorphous state as the difference in the amount of reflected light.

【0004】また、光磁気記録媒体は、磁性材料により
構成された記録層に所定方向の磁界をかけた状態で光ス
ポットを照射し、その照射部位の磁化方向を反転させる
ことでそのカー回転角を変化させ、このカー回転角の変
化を利用して情報の記録、再生を行うと共に、記録時と
は磁界の方向に反転させた状態で記録層の記録部位に光
スポットを照射し、その照射部位の磁化方向を記録前の
状態に戻して情報の消去を行うものである。
Further, the magneto-optical recording medium is irradiated with a light spot in a state where a magnetic field in a predetermined direction is applied to a recording layer made of a magnetic material, and the Kerr rotation angle is changed by reversing the magnetization direction of the irradiated portion. Information is recorded and reproduced by using this change in the Kerr rotation angle, and a light spot is irradiated onto the recording portion of the recording layer in the state of being reversed in the direction of the magnetic field from that during recording. Information is erased by returning the magnetization direction of the part to the state before recording.

【0005】更に、相分離光記録媒体は、基板上に相分
離によって光学的性質が変化する記録層を設け、この記
録層に対して光、熱等の手段によりバイノーダル分解又
はスピノーダル分解を生起させ、これによって選択的に
相分離を起こさせ、この相分離をした部位と相分離をし
ていない部位との間における光学的性質の差を利用して
情報の記録、再生、消去を行うものである。
Further, the phase-separated optical recording medium is provided with a recording layer whose optical properties are changed by phase separation on the substrate, and binodal decomposition or spinodal decomposition is caused to the recording layer by means of light, heat or the like. , Which selectively causes phase separation, and records, reproduces, and erases information by utilizing the difference in optical properties between the part where phase separation is performed and the part where phase separation is not performed. is there.

【0006】しかしながら、これらの光学的記録方法に
おいては、その何れも情報の書き換え時に高温に加熱す
る必要があるが、この書き換え時に与えられた熱が逃げ
難く、この熱の逃げが不完全であると記録マーク間に熱
的干渉が発生して記録層を形成する記録材料のアモルフ
ァス化(記録)が安定せず、その結果、再生信号の記録
レベルが安定せず、再生波形のジッターが大きくなり、
また、CN比を大きくすることができなくなり、しか
も、結晶の粒径が均一になり難いことから消去率が低下
するという問題があった。
However, in each of these optical recording methods, it is necessary to heat to a high temperature at the time of rewriting information, but the heat given at the time of rewriting is difficult to escape, and the escape of this heat is incomplete. The thermal interference between the recording mark and the recording mark causes the recording material that forms the recording layer to become amorphized (recorded), resulting in unstable recording level of the reproduced signal and increased jitter in the reproduced waveform. ,
Further, there is a problem in that the CN ratio cannot be increased, and moreover, the grain size of the crystal is difficult to be uniform, so that the erasing rate is lowered.

【0007】この問題を、相変化光記録媒体を例にして
以下に説明する。従来の典型的な相変化光記録媒体の構
造は、図4に示すように、ガラス等の無機材料やあるい
はポリカーボネート、ポリメチルメタアクリレート(P
MMA)等のアクリル系樹脂等の樹脂材料で形成された
基板1と、照射されたレーザー光Lにより発生する熱の
拡散を防止して熱の集中を図るために比較的小さい熱伝
導性を有するZnS−SiO2 等の無機誘電体材料で形
成され、上記基板1上に積層された光入射側保護層2
と、Ge−Sb−Te、In−Sb−Te、In−Ge
−Sb−Te等の記録材料で形成され、上記光入射側保
護層2上に積層された記録層3と、上記光入射側保護層
2と同様の無機誘電体材料で形成され、上記記録層3上
に積層された光透過側保護層4と、アルミニウム合金等
の材料で形成され、上記光透過側保護層4上に積層され
た反射層5と、この反射層5の上に積層される紫外線硬
化樹脂6と、この紫外線硬化樹脂6により上記反射層5
の上に接着されるポリカーボネート等の樹脂材料で形成
された保護板7とで構成されている(例えば、特開平2
−270,145号公報)。そして、この様な相変化光
記録媒体においては、光入射側の媒体表面に付着したゴ
ミの位置をレーザー光Lが焦点を結ぶ記録層3からでき
るだけ離れた位置にし、これによって媒体に導入される
レーザー光Lに対してこの媒体表面に不可避的に付着す
るゴミが及ぼす影響を可及的に減少させるために、通
常、基板1側からレーザー光Lを照射するようにしてい
る。
This problem will be described below by taking a phase change optical recording medium as an example. As shown in FIG. 4, the structure of a typical conventional phase change optical recording medium is an inorganic material such as glass, or polycarbonate, polymethylmethacrylate (P
The substrate 1 formed of a resin material such as an acrylic resin such as MMA) has relatively low thermal conductivity in order to prevent the diffusion of heat generated by the irradiated laser beam L and concentrate the heat. A light incident side protective layer 2 formed of an inorganic dielectric material such as ZnS-SiO 2 and laminated on the substrate 1.
And Ge-Sb-Te, In-Sb-Te, In-Ge
A recording layer 3 formed of a recording material such as -Sb-Te and laminated on the light incident side protective layer 2, and an inorganic dielectric material similar to the light incident side protective layer 2, and the recording layer 3 is laminated on the light transmission side protection layer 4, a reflection layer 5 formed of a material such as an aluminum alloy and laminated on the light transmission side protection layer 4, and is laminated on the reflection layer 5. The ultraviolet curable resin 6 and the reflective layer 5 by the ultraviolet curable resin 6
And a protective plate 7 formed of a resin material such as polycarbonate that is adhered to the upper surface (see, for example, Japanese Unexamined Patent Application Publication No. Hei 2
-270,145). Then, in such a phase change optical recording medium, the position of dust adhering to the medium surface on the light incident side is set as far as possible from the recording layer 3 on which the laser beam L is focused, and is introduced into the medium. In order to reduce the influence of dust that inevitably adheres to the medium surface on the laser light L as much as possible, the laser light L is usually irradiated from the substrate 1 side.

【0008】また、この図4の相変化光記録媒体につい
て、光スポットを照射して書換えを行う場合、記録層3
を構成する記録材料の融点が600℃程度であるため、
この光スポットが照射されて記録層3に形成される記録
マークの部分は600℃を越えており、この光スポット
の移動方向を矢印A方向とした場合において、この移動
方向Aに沿う媒体の縦断面における600℃、400℃
及び200℃の等温度曲線Cを模式的にみると図5の通
りになり、特に基板1及び光入射側保護層2において光
スポットの移動方向Aの後方にブロードに拡がった、い
わゆる等温度曲線Cの尾引き現象が発生する。
When the phase change optical recording medium of FIG. 4 is irradiated with a light spot for rewriting, the recording layer 3
Since the melting point of the recording material constituting the
The part of the recording mark irradiated with this light spot and formed on the recording layer 3 exceeds 600 ° C., and when the moving direction of this light spot is the direction of arrow A, the longitudinal section of the medium along this moving direction A is taken. 600 ℃, 400 ℃ on the surface
And the isothermal curve C at 200 ° C. are schematically shown in FIG. 5, and in particular, the so-called isothermal curve spread broadly behind the moving direction A of the light spot in the substrate 1 and the light incident side protective layer 2. The trailing phenomenon of C occurs.

【0009】そして、この等温度曲線Cの尾引き現象は
上述した記録マーク間に生じる熱的干渉の原因になって
おり、これが従来の媒体構造における種々の問題を引き
起こす重大な原因の1つになっている。
The tailing phenomenon of the isothermal curve C is a cause of the thermal interference between the recording marks described above, which is one of the serious causes of various problems in the conventional medium structure. Is becoming

【0010】そこで、この記録層周辺を形成する材料と
して熱伝導率の高ものを選び、これによって書き換え時
に記録層に与えられる熱が逃げ易くなるように設計する
ことも考えられるが、この場合には、書き換え時に光ス
ポットが照射された際に書換えに必要な等温度曲線の光
スポットが周辺材料の高熱伝導率による影響によって必
要以上に拡がり、結果として記録マークが拡がり、記録
感度が低下するという別の問題を引き起こす。
Therefore, it is conceivable that a material having a high thermal conductivity is selected as a material for forming the periphery of the recording layer and the heat applied to the recording layer at the time of rewriting is designed to escape easily. Is that the light spot of the isothermal curve required for rewriting when the light spot is irradiated at the time of rewriting spreads more than necessary due to the influence of the high thermal conductivity of the surrounding material, resulting in the widening of the recording mark and the lowering of the recording sensitivity. Cause another problem.

【0011】[0011]

【発明が解決しようとする課題】そこで、本発明者ら
は、この問題を解消すべく鋭意検討を行った結果、単に
レーザー光等の光透過側だけに熱伝導率の大きい反射層
(冷却層)を設けただけではこの問題を解決することが
できず、記録層を中心とするその光入射側と光透過側の
両側に熱伝導率の高い冷却層を形成して効率良く冷却す
る必要があり、同時に記録層の両側にこの記録層に直接
に接する熱伝導率の小さい保護層を設けて記録マークの
拡がりによる記録感度の低下を防止する必要があること
を見出し、本発明に到達した。
Therefore, as a result of intensive studies to solve this problem, the present inventors have found that a reflection layer (cooling layer) having a large thermal conductivity only on the light transmission side of laser light or the like. ) Cannot solve this problem, and it is necessary to form cooling layers with high thermal conductivity on both sides of the recording layer, which are the light incident side and the light transmitting side, for efficient cooling. At the same time, they have found that it is necessary to provide a protective layer having a small thermal conductivity, which is in direct contact with the recording layer, on both sides of the recording layer at the same time to prevent the deterioration of the recording sensitivity due to the spread of the recording mark, and the present invention has been accomplished.

【0012】従って、本発明の目的は、新たな問題を発
生させることなく情報の書き換え時に発生する等温度曲
線の尾引き現象を少なくし、これによって記録マーク間
の熱的干渉を可及的に解消せしめ、記録を安定化させ、
再生信号の記録レベルを安定させて、再生波形のジッタ
ーが小さく、エッジ記録に適すると共に、CN比が大き
く、しかも、消去率の高い光記録媒体を提供することに
ある。
Therefore, an object of the present invention is to reduce the trailing phenomenon of the isothermal curve which occurs at the time of rewriting information without causing a new problem, and thereby to minimize the thermal interference between recording marks. To eliminate it, stabilize the record,
An object of the present invention is to provide an optical recording medium which stabilizes the recording level of a reproduction signal, has a small reproduction waveform jitter, is suitable for edge recording, has a large CN ratio, and has a high erasing rate.

【0013】また、本発明の他の目的は、新たな問題を
発生させることなく情報の書き換え時に発生する等温度
曲線の尾引き現象を少なくし、これによって記録感度を
低下させることなく多数回の書換えが可能な光記録媒体
を提供することにある。
Another object of the present invention is to reduce the trailing phenomenon of the isothermal curve that occurs at the time of rewriting information without causing a new problem, and thereby to reduce the recording sensitivity a large number of times. An object is to provide a rewritable optical recording medium.

【0014】[0014]

【課題を解決するための手段】すなわち、本発明は、基
板上に光、熱等の手段によりその光学的性質が可逆的に
変化する記録層を備え、その光学的性質の変化を利用し
て情報の書き換え、再生を行う光記録媒体において、上
記記録層の光入射側及び光透過側にはそれぞれこの記録
層に接する熱伝導率の小さい光入射側及び光透過側の保
護層を設けると共に、これら光入射側及び光透過側の保
護層の外側にはそれぞれ熱伝導率の大きい光入射側及び
光透過側の冷却層を設けた光記録媒体である。
That is, according to the present invention, a recording layer whose optical properties are reversibly changed by means of light, heat or the like is provided on a substrate, and the change of the optical properties is utilized. In an optical recording medium for rewriting and reproducing information, the light incident side and the light transmitting side of the recording layer are respectively provided with protective layers on the light incident side and the light transmitting side having a small thermal conductivity which are in contact with the recording layer, The optical recording medium is provided with a cooling layer on the light incident side and a cooling layer on the light transmitting side, which has high thermal conductivity, outside the protective layers on the light incident side and the light transmitting side, respectively.

【0015】本発明において、光記録媒体の中心の記録
層を構成する記録材料としては、例えば相変化光記録材
料を例にして説明すると、TeOx (Ge、Se添
加)、In−Se、In−Sb、In−Te、Sb−T
e、Sb−Se、Sn−Te、Bi−Te、Bi−S
e、Te−N、Ge−Te、Ag−Zn、As23
の二元系材料や、Ge−Sn−Te、In−Se−T
e、In−Sb−Se、In−Se−Tl、Ge−Sb
−Te、Ge−Te−Tl、Ge−Te−Au、Ge−
Te−Cu、Ge−Te−Co、Ge−Te−Ni、S
b−Se−Bi、Sb−Se−Te、Sn−Se−Te
等の三元系材料や、Ge−Te−Sb−Se、Ge−T
e−Sn−Au、Ge−Te−Sb−Cu、Ge−Te
−Sn−Su、In−Se−Tl−Co、In−Ge−
Sb−Te、Ge−Sb−Te−Co、Ge−Sb−T
e−Pb等の四元系材料等を挙げることができる。勿
論、これら相変化光記録材料以外にも、例えばLi2
−SiO2 混合系等の酸化物−酸化物混合系材料や、Z
rO2 −ThO2 混合系等の酸化物−酸化物混合系材料
や、LiCl−NaCl混合系等のハロゲン化物−ハロ
ゲン化物混合系材料や、Bi−Bi23 混合系等の酸
化物やハロゲン化物等の不定比化合物や、その他バイノ
ーダル分解又はスピノーダル分解を起こすポリマーブレ
ンド、ミクロ相分離を起こす有機系材料等の相分離型記
録材料を挙げることができるほか、光磁気記録媒体等を
挙げることができる。本発明を適用する上で、これらの
記録材料のうち最も効果の大きいものは600℃以上の
高温まで加熱する必要のある相変化光記録材料であり、
より好ましくはGe−Sb−TeやIn−Ge−Sb−
Te等の相変化光記録材料である。
In the present invention, as a recording material constituting the central recording layer of the optical recording medium, for example, a phase change optical recording material will be described. TeO x (Ge, Se added), In-Se, In -Sb, In-Te, Sb-T
e, Sb-Se, Sn-Te, Bi-Te, Bi-S
e, Te-N, Ge- Te, Ag-Zn, and a binary system material such as As 2 S 3, Ge-Sn -Te, In-Se-T
e, In-Sb-Se, In-Se-Tl, Ge-Sb
-Te, Ge-Te-Tl, Ge-Te-Au, Ge-
Te-Cu, Ge-Te-Co, Ge-Te-Ni, S
b-Se-Bi, Sb-Se-Te, Sn-Se-Te
Ternary materials such as Ge-Te-Sb-Se, Ge-T
e-Sn-Au, Ge-Te-Sb-Cu, Ge-Te
-Sn-Su, In-Se-Tl-Co, In-Ge-
Sb-Te, Ge-Sb-Te-Co, Ge-Sb-T
Examples thereof include quaternary materials such as e-Pb. Of course, other than these phase change optical recording materials, for example, Li 2 O
Oxides -SiO 2 mixed system or the like - oxide mixture-based material and, Z
Oxide-oxide mixed material such as rO 2 —ThO 2 mixed system, halide-halide mixed material such as LiCl—NaCl mixed system, oxide or halogen such as Bi—Bi 2 O 3 mixed system In addition to non-stoichiometric compounds such as compounds, polymer blends that cause binodal decomposition or spinodal decomposition, and phase-separated recording materials such as organic materials that cause micro-phase separation, as well as magneto-optical recording media. it can. In applying the present invention, the most effective of these recording materials is a phase change optical recording material that needs to be heated to a high temperature of 600 ° C. or higher,
More preferably Ge-Sb-Te or In-Ge-Sb-
It is a phase change optical recording material such as Te.

【0016】これらの記録材料によって形成される記録
層の層厚は、通常5〜200nmであり、好ましくは1
0〜40nmである。記録層の層厚が200nm以上に
厚くなると、書換え回数及び記録感度の改善という本発
明の作用効果を顕著にに達成することが難しくなる。な
お、記録層の層厚が5nm以下になると、均一な膜を作
ることが難しくなるので、蒸着、スパッタリング等の作
製法では5nm以上であることが望ましい。
The layer thickness of the recording layer formed of these recording materials is usually 5 to 200 nm, preferably 1
It is 0 to 40 nm. When the layer thickness of the recording layer becomes thicker than 200 nm, it becomes difficult to remarkably achieve the operational effects of the present invention of improving the number of times of rewriting and recording sensitivity. If the recording layer has a thickness of 5 nm or less, it is difficult to form a uniform film. Therefore, it is desirable that the thickness is 5 nm or more in the production methods such as vapor deposition and sputtering.

【0017】本発明において、光入射側の各層(基板、
保護層及び冷却層等)を形成する材料については、光が
透過する必要があることから、材料における光の消衰係
数が小さく、好ましくは0.2以下であることが望まし
い。また、記録層の両面にそれぞれ直接に接して設けら
れる保護層(光入射側及び光透過側)の材料について
は、高温に晒されることから融点の高いこと、好ましく
は1,500℃以上であることが望ましく、また、記録
マークが拡がって記録感度が低下するようなことがない
ようにその熱伝導率が小さいことが望ましい。そして、
記録層の両側にそれぞれ設けられる冷却層(光入射側及
び光透過側)の材料については、書き換えの際における
光スポット照射時に等温度曲線の尾引き現象を可及的に
解消するために、少なくとも上記保護層の熱伝導率より
大きく、好ましくは保護層の熱伝導率より1桁以上大き
いことが望ましい。更に、光入射側あるいは光透過側に
位置するそれぞれの保護層と冷却層とはそれらを形成す
る材料の熱膨脹率の差ができるだけ小さいことが望まし
い。
In the present invention, each layer on the light incident side (substrate,
As for the material forming the protective layer, the cooling layer, etc.), it is necessary for light to pass therethrough. Therefore, the extinction coefficient of light in the material is small, preferably 0.2 or less. The materials of the protective layers (light incident side and light transmitting side) provided in direct contact with both sides of the recording layer have high melting points because they are exposed to high temperatures, preferably 1,500 ° C. or higher. It is desirable that the thermal conductivity is small so that the recording mark does not spread and the recording sensitivity is not lowered. And
Regarding the materials of the cooling layers (light incident side and light transmitting side) provided on both sides of the recording layer, at least in order to eliminate the tailing phenomenon of the isothermal curve during irradiation of the light spot during rewriting, It is desirable that the thermal conductivity of the protective layer is higher than that of the protective layer, and preferably the thermal conductivity of the protective layer is higher by one digit or more. Further, it is desirable that the difference between the coefficients of thermal expansion of the materials forming the protective layer and the cooling layer located on the light incident side or the light transmitting side is as small as possible.

【0018】特に、光入射側の保護層及び冷却層を形成
する各材料については、熱伝導率の観点から、保護層の
熱伝導率は小さければ小さい程よく、また、冷却層を形
成する材料の熱伝導率は大きければ大きい程よく、両者
の間の差は大きければ大きい程よい。具体的には、保護
層の材料の熱伝導率は、10W・m-1・K-1以下、好ま
しくは3W・m-1・K-1以下であるのがよく、また、冷
却層の材料の熱伝導率は、10W・m-1・K-1以上、好
ましくは20W・m-1・K-1以上であるのがよく、両者
の差が10W・m-1・K-1以上、好ましくは15W・m
-1・K-1以上であるのがよい。また、熱膨脹率の観点か
らは、保護層の材料と冷却層の材料との間の差が小さけ
れば小さい程よく、また、好ましくは両者の材料自体の
熱膨脹率が共に小さいのがよい。具体的には、材料、層
厚によって異なるが、熱膨脹率の差が10×10-6/d
eg以下、好ましくは7×10-6/deg以下、より好
ましくは3×10-6/deg以下であり、両者の材料自
体の熱膨脹率が10×10-6/deg以下、好ましくは
5×10-6/deg以下、より好ましくは2×10-6
deg以下であるのがよい。
In particular, regarding the respective materials forming the protective layer and the cooling layer on the light incident side, the smaller the thermal conductivity of the protective layer is, the better, from the viewpoint of thermal conductivity, and the material forming the cooling layer. The larger the thermal conductivity, the better, and the larger the difference between the two, the better. Specifically, the thermal conductivity of the material of the protective layer is 10 W · m −1 · K −1 or less, preferably 3 W · m −1 · K −1 or less, and the material of the cooling layer is good. The thermal conductivity of 10 W · m −1 · K −1 or more, preferably 20 W · m −1 · K −1 or more, the difference between the two is 10 W · m −1 · K −1 or more, Preferably 15 Wm
It is preferably -1 · K -1 or more. From the viewpoint of the coefficient of thermal expansion, the smaller the difference between the material of the protective layer and the material of the cooling layer is, the better, and preferably, both the materials themselves have a small coefficient of thermal expansion. Specifically, the difference in the coefficient of thermal expansion is 10 × 10 −6 / d, although it depends on the material and layer thickness.
EG or less, preferably 7 × 10 -6 / deg or less, more preferably 3 × 10 -6 / deg or less, and the thermal expansion coefficient of both materials themselves is 10 × 10 -6 / deg or less, preferably 5 × 10 6. -6 / deg or less, more preferably 2 x 10 -6 /
It is preferably deg or less.

【0019】この様な観点で光入射側に位置する保護層
と冷却層とを形成するそれぞれの材料の組合せを検討し
てみると、保護層の材料が、ZnS、SiO2 、SiO
及びZrO2 から選ばれた1種又は2種以上の混合物を
主成分とする材料であり、冷却層の材料が、AlN、S
iC、BeO、Al2 3 、Si3 4 、In2 3
SnO2 、MgO、TiC、TiN、BN、Ta
2 5 、ZnO:Al及びSiから選ばれた1種又は2
種以上の混合物を主成分とする材料であるのがよい。な
お、Siは、誘電体というよりも半導体であり、光吸収
が問題ではあるが、800nmに対する消衰係数が0.
2程度と小さく、光入射側の冷却層として使用できる。
Considering the combination of the respective materials forming the protective layer and the cooling layer located on the light incident side from such a viewpoint, the protective layer materials are ZnS, SiO 2 and SiO.
And a material containing a mixture of two or more selected from ZrO 2 as a main component, and the material of the cooling layer is AlN, S
iC, BeO, Al 2 O 3 , Si 3 N 4 , In 2 O 3 ,
SnO 2 , MgO, TiC, TiN, BN, Ta
2 O 5 , ZnO: one or two selected from Al and Si
A material containing a mixture of at least one kind as a main component is preferable. Si is a semiconductor rather than a dielectric, and although light absorption is a problem, the extinction coefficient at 800 nm is 0.
It is as small as about 2 and can be used as a cooling layer on the light incident side.

【0020】なお、大部分の材料においてその熱伝導率
の担い手はフォノン(格子振動)であると考えられてい
る。そこで、例えば結晶性の材料であれば、結晶粒が大
きくかつ結晶粒界の少ないものの方が熱伝導性が高い。
従って、同じ材料でも層の作製方法や作製条件によって
熱伝導率が変化する。例えば、AlNの層を作製する場
合、AlNターゲットを用いてスパッタリング法で層を
形成してもよいが、窒素雰囲気中でAlをイオンプレー
ティングするイオンプレーティング法により作製する方
がより結晶性の良い膜を形成することができ、熱伝導率
が大きくなる。また、適当な焼結助材を添加して結晶粒
界を埋めるようにすると、粒界におけるフォノンの散乱
が減少して熱伝導率が大きくなる。この焼結助材によっ
て熱伝導率を変化させる場合には、母材を変えずにこの
焼結助材の使用の有無により光入射側の保護層と冷却層
とを形成することもできる。
In most materials, it is believed that phonons (lattice vibrations) are responsible for the thermal conductivity. Therefore, for example, in the case of a crystalline material, a material having large crystal grains and few crystal grain boundaries has higher thermal conductivity.
Therefore, even if the same material is used, the thermal conductivity changes depending on the layer manufacturing method and layer manufacturing conditions. For example, when a layer of AlN is formed, the layer may be formed by a sputtering method using an AlN target, but it is more crystalline when formed by an ion plating method in which Al is ion plated in a nitrogen atmosphere. A good film can be formed and the thermal conductivity becomes large. Further, when a suitable sintering aid is added to fill the crystal grain boundaries, phonon scattering at the grain boundaries is reduced and thermal conductivity is increased. When the thermal conductivity is changed by the sintering aid, the protective layer and the cooling layer on the light incident side can be formed without changing the base material, depending on whether or not the sintering aid is used.

【0021】これに対して、In2 3 やSnO2 等に
おける熱伝導の担い手は、欠陥に基づいて発生する伝導
電子であると考えられている。そこで、これらIn2
3 やSnO2 をそれぞれ単体で用いるよりも、これら2
種を混合したり、WO3 やMoO3 等の他の元素を添加
して、混合物として使用する方が熱伝導率が大きくな
る。
On the other hand, it is considered that the carriers responsible for heat conduction in In 2 O 3 and SnO 2 are conduction electrons generated due to defects. Therefore, these In 2 O
Rather than using 3 or SnO 2 individually, these 2
The thermal conductivity is higher when the seeds are mixed or other elements such as WO 3 and MoO 3 are added and used as a mixture.

【0022】更に、光透過側に位置する保護層及び冷却
層の材料についても、上記光入射側の場合と同様の観点
で材料を選択し、組み合わせて使用することができる。
また、この光透過側の冷却層の材料については、光入射
側と異なって特に透明である必要がなく、従来の反射層
を形成する反射材料と同様に、Al、Au、Ag、Cu
等の金属材料あるいはこれらの混合材料若しくはこれら
の材料を主成分とする材料を使用することができ、ま
た、保護層を形成する材料についても、上記冷却層の材
料より熱伝導率の小さいZnS、SiO2 、SiO、T
2 5 、ZrO2 、AlN、 、In2 3 、S
nO2 、Al2 3 及びSi3 4 等の無機誘電体材料
から選ばれた1種又は2種以上の混合物を主成分とする
材料を使用することができる。
Further, as for the materials of the protective layer and the cooling layer located on the light transmitting side, the materials can be selected and used in combination from the same viewpoint as in the case of the light incident side.
Further, the material of the cooling layer on the light transmitting side does not need to be particularly transparent, unlike the light incident side, and Al, Au, Ag, Cu can be used similarly to the reflective material forming the conventional reflective layer.
It is possible to use a metal material such as, or a mixed material thereof, or a material containing these materials as a main component, and also for the material forming the protective layer, ZnS having a smaller thermal conductivity than the material of the cooling layer, SiO 2 , SiO, T
a 2 O 5 , ZrO 2 , AlN, In 2 O 3 , S
A material containing, as a main component, one kind or a mixture of two or more kinds selected from inorganic dielectric materials such as nO 2 , Al 2 O 3 and Si 3 N 4 can be used.

【0023】また、上記基板を形成する基板材料として
は、従来公知のものでよく特に限定されるものではない
が、例えばガラス等の無機材料や、ポリカーボネート、
アクリル樹脂、ポリオレフィン類、ポリジクロロペンタ
ジエン、ポリイミド、エポキシ樹脂等の樹脂材料を挙げ
ることができる。これらの基板材料については、通常そ
の屈折率が1.45〜1.6の範囲にある。この基板の
厚さは、変形が生じずかつゴミの悪影響を防止できる厚
さであればよく、例えば1.2mmである。特に、本発
明においては、光入射側にも冷却層を設けるので、この
冷却層が基板を熱負荷から保護する作用も発揮する。こ
のため、基板材料として比較的熱に弱い樹脂材料を使用
するのに適している。
The substrate material for forming the above-mentioned substrate may be any conventionally known one and is not particularly limited. For example, an inorganic material such as glass, polycarbonate,
Resin materials such as acrylic resin, polyolefins, polydichloropentadiene, polyimide, and epoxy resin can be mentioned. The refractive index of these substrate materials is usually in the range of 1.45 to 1.6. The thickness of this substrate may be a thickness that does not cause deformation and can prevent the adverse effect of dust, and is, for example, 1.2 mm. Particularly, in the present invention, since the cooling layer is also provided on the light incident side, the cooling layer also exerts the function of protecting the substrate from the heat load. Therefore, it is suitable to use a resin material which is relatively weak against heat as a substrate material.

【0024】なお、光透過側には、紫外線硬化樹脂を介
して保護板を設けるのがよく、この紫外線硬化樹脂とし
てはアクリレート系等の材料を挙げることができ、更
に、保護板としては基板材料と同様にガラス等の無機材
料や、ポリカーボネート、アクリル樹脂、ポリオレフィ
ン類、ポリジクロロペンタジエン、ポリイミド、エポキ
シ樹脂等の樹脂材料を挙げることができる。また、本発
明においては、記録層の光入射側及び光透過側のそれぞ
れに保護層が直接に接し、また、その外側にそれぞれ光
入射側及び光透過側の冷却層が存在すればよく、例え
ば、これら保護層と冷却層の間に他の目的の層が存在し
ていてもよい。
A protective plate is preferably provided on the light transmitting side via an ultraviolet curable resin, and examples of the ultraviolet curable resin include acrylate-based materials. Further, the protective plate is a substrate material. Similarly, there may be mentioned inorganic materials such as glass and resin materials such as polycarbonate, acrylic resin, polyolefins, polydichloropentadiene, polyimide and epoxy resin. In the present invention, the protective layer is in direct contact with each of the light-incident side and the light-transmissive side of the recording layer, and the cooling layers on the light-incident side and the light-transmissive side may be present outside thereof, for example, A layer for other purposes may be present between these protective layer and cooling layer.

【0025】また、本発明の光記録媒体における記録層
や光入射側及び光透過側の各保護層及び冷却層の製造法
については、特に限定されるものではなく、それぞれの
層の特性に従って従来公知の種々の方法、例えば真空蒸
着法、スパッタリング法、イオンプレーティング法、分
子線エピタクシー法(MBE)、化学蒸着法(CVD)
等の方法を採用することができる。
The method for producing the recording layer, the protective layer on the light incident side and the protective layer on the light transmitting side, and the cooling layer in the optical recording medium of the present invention is not particularly limited, and it is conventional according to the characteristics of each layer. Various known methods such as vacuum deposition method, sputtering method, ion plating method, molecular beam epitaxy method (MBE), chemical vapor deposition method (CVD)
Etc. can be adopted.

【0026】[0026]

【作用】本発明によれば、記録層の両側、すなわち光入
射側及び光透過側にそれぞれ熱伝導率の小さい保護層を
介して熱伝導率の大きい冷却層が設けられているので、
各保護層によって記録マークの不必要な拡がりを防止し
つつ、効率的に熱の拡散を促進し、等温度曲線の尾引き
現象を可及的に抑制し、これによって記録マーク間の熱
的干渉を減少せしめ、ジッターを減少させることができ
るものと考えられる。また、この様に等温度曲線の尾引
き現象を抑制できることは、結果として安定な記録を達
成でき、再生信号の記録レベルを安定させ、更に、CN
比を大きくとることができ、しかも、結晶相の結晶粒径
が均一になって消去率を大きくすることができる。加え
て、等温度曲線の尾引き現象を可及的に抑制できること
は、書き換え時の熱分布が記録層の上下で対称な形に近
ずくことになり、この書き換え時の歪みの発生が抑制さ
れ、耐久性が増して書換え回数が向上する。
According to the present invention, since the cooling layer having high thermal conductivity is provided on both sides of the recording layer, that is, the light incident side and the light transmitting side, through the protective layers having low thermal conductivity, respectively.
Each protective layer prevents unnecessary spread of recording marks, efficiently promotes heat diffusion, and suppresses the tailing phenomenon of isothermal curves as much as possible, which results in thermal interference between recording marks. It is thought that it is possible to reduce the jitter and the jitter. In addition, the ability to suppress the tailing phenomenon of the isothermal curve in this way can achieve stable recording, stabilize the recording level of the reproduction signal, and
The ratio can be made large, and moreover, the crystal grain size of the crystal phase becomes uniform and the erasing rate can be increased. In addition, the fact that the tailing phenomenon of the isothermal curve can be suppressed as much as possible means that the heat distribution during rewriting approaches a symmetrical shape above and below the recording layer, and the occurrence of distortion during rewriting is suppressed. The durability is increased and the number of times of rewriting is improved.

【0027】[0027]

【実施例】以下、実施例及び比較例に基づいて、本発明
を具体的に説明する。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples.

【0028】実施例1 図1に示すように、厚さ1.2mmのポリカーボネート
製基板1上に、厚さ80nmのAlN〔焼結助材入り、
熱伝導率(バルクの値):170W・m-1・K-1、熱膨
脹率(バルクの値):5×10-6/deg〕製の光入射
側冷却層8と、厚さ80nmの(ZnS)80(Si
2 20〔熱伝導率:0.7W・m-1・K-1、熱膨脹率
(バルクの値):6×10-6/deg〕製の光入射側保
護層9と、厚さ20nmのGe−Sb−Te製の記録層
3と、厚さ40nmの(ZnS)80(SiO2 20製の
光透過側保護層10と、厚さ100nmのAl合金〔熱
伝導率(バルクの値):230W・m-1・K-1、熱膨脹
率(バルクの値):20×10-6/deg〕製の光透過
側冷却層11とをそれぞれスパッタリング法で形成し、
次いで、厚さ1.2mmのポリカーボネート製の保護板
7を紫外線硬化樹脂6を用いて接着し、実施例1の光記
録媒体を調製した。
Example 1 As shown in FIG. 1, 80 nm thick AlN [containing a sintering aid,
Thermal conductivity (bulk value): 170 W · m −1 · K −1 , thermal expansion coefficient (bulk value): 5 × 10 −6 / deg] The light incident side cooling layer 8 having a thickness of 80 nm ( ZnS) 80 (Si
O 2 ) 20 [heat conductivity: 0.7 W · m −1 · K −1 , coefficient of thermal expansion (bulk value): 6 × 10 −6 / deg] light incident side protective layer 9 and thickness 20 nm Recording layer 3 made of Ge-Sb-Te, a light-transmitting side protective layer 10 made of (ZnS) 80 (SiO 2 ) 20 having a thickness of 40 nm, and an Al alloy having a thickness of 100 nm [thermal conductivity (bulk value ): 230 W · m −1 · K −1 , coefficient of thermal expansion (bulk value): 20 × 10 −6 / deg] and a light transmission side cooling layer 11 formed by sputtering, respectively.
Next, a 1.2 mm-thick polycarbonate protection plate 7 was adhered using an ultraviolet curable resin 6 to prepare an optical recording medium of Example 1.

【0029】ここで、光入射側冷却層8の材料であるA
lNの屈折率は約1.9であり、これは光入射側保護層
9の材料である(ZnS)80(SiO2 20の屈折率約
2.0と概ね同一である。この結果、光学的にみると
(ZnS)80(SiO2 20層とAlN層とはほぼ等価
な働きをすることになり、従来(下記比較例)と同程度
の膜厚(合計170nm)で従来と同程度の光反射率、
光吸収率を確保できた。また、光入射側冷却層8の材料
であるAlNの熱伝導率は、薄層化することにより減少
するが、それでも光入射側保護層9の材料である(Zn
S)80(SiO2 20の熱伝導率の数十倍以上はあると
予想され、光入射側冷却層8に到達した熱エネルギーは
この光入射側冷却層8内で瞬時に拡散され、その熱エネ
ルギー密度が急激に低下する。
Here, A, which is the material of the light incident side cooling layer 8,
The refractive index of 1N is about 1.9, which is substantially the same as the refractive index of about 2.0 of (ZnS) 80 (SiO 2 ) 20 which is the material of the light incident side protective layer 9. As a result, when viewed optically, the (ZnS) 80 (SiO 2 ) 20 layer and the AlN layer function almost equivalently, and the film thickness (total 170 nm) is about the same as the conventional one (comparative example below). Light reflectance comparable to conventional
The light absorption rate was secured. Although the thermal conductivity of AlN, which is the material of the light-incident-side cooling layer 8, is reduced by making it thinner, it is still the material of the light-incident-side protective layer 9 (Zn.
It is expected that the thermal conductivity of S) 80 (SiO 2 ) 20 is several tens of times or more, and the thermal energy reaching the light incident side cooling layer 8 is instantaneously diffused in the light incident side cooling layer 8 and The thermal energy density drops sharply.

【0030】一方、光透過側冷却層11を形成するAl
合金の熱伝導率は、光透過側保護層10の材料である
(ZnS)80(SiO2 20の熱伝導率の数千倍以上で
あると予想され、光入射側と同様に、光透過側冷却層1
1に到達した熱エネルギーはこの光透過側冷却層11内
で瞬時に拡散され、その熱エネルギー密度が急激に低下
する。
On the other hand, Al forming the light transmitting side cooling layer 11
The thermal conductivity of the alloy is expected to be several thousand times higher than the thermal conductivity of (ZnS) 80 (SiO 2 ) 20 which is the material of the light transmitting side protective layer 10, and the light transmitting side has the same light transmittance. Side cooling layer 1
The thermal energy that has reached 1 is instantaneously diffused in the light transmission side cooling layer 11, and the thermal energy density thereof is drastically reduced.

【0031】この結果、書き換え時にレーザー光の光ス
ポットを照射した際における一定時間経過後の温度分布
を測定してみると、光スポットの移動方向Aに沿う媒体
の縦断面における600℃、400℃及び200℃の等
温度曲線Cはこれを模式的にみて図2の通りになり、記
録層3を中心にしてその光入射側保護層9において光ス
ポットの移動方向Aの後方に若干の拡がりは見られるも
のの、ほぼ左右対称形をしており、いわゆる等温度曲線
Cの尾引き現象が可及的に抑制されている。
As a result, when the temperature distribution after the elapse of a certain time when the light spot of the laser light was irradiated at the time of rewriting was measured, 600 ° C. and 400 ° C. in the longitudinal section of the medium along the moving direction A of the light spot. 2 and the isothermal curve C at 200 ° C. are schematically shown in FIG. 2, and a slight spread is formed in the light incident side protective layer 9 behind the recording layer 3 in the moving direction A of the light spot. Although it can be seen, it has a substantially symmetrical shape, and the so-called isothermal curve C tailing phenomenon is suppressed as much as possible.

【0032】なお、光入射側冷却層8に到達した熱エネ
ルギーがこの光入射側冷却層8内で瞬時に拡散され、そ
の熱エネルギー密度が急激に低下するので、基板1の上
面に到達する熱エネルギー密度は低くなり、この結果、
基板1上面の温度はポリカーボネート基板の軟化点より
低い温度に抑えることができ、基板1への熱的な悪影響
を軽減することもできる。また、光入射側冷却層8の熱
伝導率が大きいことにより、記録感度の低下が懸念され
るが、光透過側保護層10の膜厚を従来より厚くする等
の方法で、従来光透過側冷却層11に流れ込んでいた熱
エネルギーの量を減少させることにより、容易に従来と
同様の記録感度を確保することができる。更に、光入射
側冷却層8と光入射側保護層9とを形成する材料のAl
Nと(ZnS)80(SiO2 20の熱膨脹率が同程度で
あるので、熱膨脹によってこの界面が剥離する等の問題
が発生する心配も無い。
The heat energy reaching the light incident side cooling layer 8 is instantly diffused in the light incident side cooling layer 8 and the heat energy density thereof is rapidly reduced, so that the heat reaching the upper surface of the substrate 1 is reduced. The energy density will be lower, and as a result,
The temperature of the upper surface of the substrate 1 can be suppressed to a temperature lower than the softening point of the polycarbonate substrate, and thermal adverse effects on the substrate 1 can be reduced. Further, since the thermal conductivity of the light-incident-side cooling layer 8 is high, there is concern that the recording sensitivity may be deteriorated. However, it is possible to increase the film thickness of the light-transmissive-side protective layer 10 as compared with the conventional method. By reducing the amount of thermal energy flowing into the cooling layer 11, it is possible to easily secure the same recording sensitivity as in the conventional case. Further, Al which is a material for forming the light incident side cooling layer 8 and the light incident side protective layer 9
Since the thermal expansion coefficients of N and (ZnS) 80 (SiO 2 ) 20 are about the same, there is no risk of problems such as separation of this interface due to thermal expansion.

【0033】次に、この様にして得られた光記録媒体に
ついて、回転数1800rpmで回転させると共に、開
口数0.5の対物レンズを使用して波長830nmの半
導体レーザー光を記録層3上に集束させ、レーザー出力
をピークパワーとバイアスパワーの2値で偏重して記録
する、いわゆる1ビームオーバーライト方式で書換えを
行い、再生波形に生じる歪み率、CN比、消去率及び書
換え回数を測定して評価した。結果を表1に示す。
Next, the optical recording medium thus obtained is rotated at a rotation speed of 1800 rpm, and a semiconductor laser beam having a wavelength of 830 nm is recorded on the recording layer 3 by using an objective lens having a numerical aperture of 0.5. Rewriting is performed by so-called 1-beam overwrite method, in which the laser output is focused and biased by the two values of peak power and bias power and recorded, and the distortion rate, CN ratio, erasing rate and number of times of rewriting occurring in the reproduced waveform are measured. Evaluated. The results are shown in Table 1.

【0034】ここで、再生波形に生じる歪み率の測定は
次のようにして行った。すなわち、記録マークの熱干渉
は記録時の蓄熱が大きい媒体ほど大きくなり、この蓄熱
が大きいと長い記録マークを記録したとき、その前方が
膨らんで再生波形に歪みが生じる。これを図示すると図
3の通りになり、記録層の結晶12中に形成されるアモ
ルファス化した記録マーク13の形状は、図3(a)の
ように光スポットの移動方向Aに対してその前方が膨ら
み、これに対応する再生波形14は、そのアモルファス
レベルにおいて、図3(b)のように光スポットの移動
方向Aに対してその後方と前方との間に差(d)、いわ
ゆる再生波形の歪みが生じ、再生波形14全体の幅をD
としたときのこの歪みdの大きさの割合(d/D×10
0)を再生波形に生じる歪み率(%)とした。
Here, the distortion rate occurring in the reproduced waveform was measured as follows. That is, the thermal interference of the recording mark becomes larger in a medium in which the heat storage during recording is larger, and when this heat storage is large, the front of the recording mark swells when a long recording mark is recorded, and the reproduced waveform is distorted. This is illustrated in FIG. 3, and the shape of the amorphized recording mark 13 formed in the crystal 12 of the recording layer is in front of the moving direction A of the light spot as shown in FIG. Swells, and the reproduced waveform 14 corresponding to this bulge is a difference (d) between the rear side and the front side with respect to the moving direction A of the light spot at the amorphous level (so-called reproduced waveform) as shown in FIG. 3B. Distortion occurs, and the width of the entire reproduced waveform 14 becomes D
And the ratio of the magnitude of this distortion d (d / D × 10
0) was defined as the distortion rate (%) generated in the reproduced waveform.

【0035】また、CN比は、記録周波数3.7MHz
の信号に対する値として求めた。消去率は、3.7MH
zの信号上に1.39MHzを記録したときの3.7M
Hzのキャリヤレベルの減少量を求めて消去率とした。
書換え回数は、あるセクター内に3.7MHzの信号を
一定回数オーバーライトした後、1.39MHzと3.
7MHzで書換えを行って3.7MHzに対するCN比
を測定するという操作を繰り返し、この際にCN比が低
下し始める時の繰り返し回数として求めた。
The CN ratio is a recording frequency of 3.7 MHz.
Was calculated as the value for the signal. Erasure rate is 3.7MH
3.7M when 1.39MHz is recorded on the z signal
The erase rate was obtained by calculating the amount of decrease in the carrier level at Hz.
The number of rewrites is 1.39 MHz after the 3.7 MHz signal is overwritten in a certain sector a certain number of times.
The operation of rewriting at 7 MHz and measuring the CN ratio with respect to 3.7 MHz was repeated, and the number of repetitions when the CN ratio started to decrease at this time was determined.

【0036】表1の結果から明らかなように、この実施
例1の相変化型光記録媒体は、歪み率が小さく、蓄熱の
影響が少なく、この結果、記録マーク間の熱干渉が小さ
く、エッジ記録等の高密度記録に適していることが判明
した。また、CN比も比較的大きく、これは、アモルフ
ァスレベルの減少によるキャリアレベルの増加に起因し
ており、冷却速度が増加してアモルファス化がより完全
に進行したことに対応している。そして、消去率も大き
くなっており、これは、キャリアレベルが増加したこと
のほか、冷却速度が増加して結晶粒が均一化したことに
起因すると考えられ、このことは記録膜面の透過電子顕
微鏡観察により確認された。更に、書換え回数について
も、3×106 回でCN比の劣化が認められず、この時
に記録膜面の変形や剥離等も観察されなかった。
As is clear from the results shown in Table 1, the phase-change optical recording medium of Example 1 has a low distortion rate and a small effect of heat storage. As a result, the thermal interference between recording marks is small and the edge is small. It was found that it is suitable for high-density recording such as recording. In addition, the CN ratio is also relatively large, which is due to the increase of the carrier level due to the decrease of the amorphous level, which corresponds to the fact that the cooling rate has increased and the amorphization has progressed more completely. The erasing rate is also high, which is thought to be due to the increase in carrier level and the increase in cooling rate and the homogenization of crystal grains. It was confirmed by microscopic observation. Further, regarding the number of times of rewriting, when the number of rewriting was 3 × 10 6 , no deterioration of the CN ratio was observed, and at this time, neither deformation nor peeling of the recording film surface was observed.

【0037】実施例2 図1の構成において、光入射側冷却層8を厚さ70nm
の(In2 3 80(SnO2 20(熱伝導率:27W
・m-1・K-1)とし、光入射側保護層9を厚さ80nm
のSiO2 〔熱伝導率(バルクの値):1W・m-1・K
-1、熱膨脹率(バルクの値):0.6×10-6/de
g〕とし、光透過側保護層10を厚さ40nmのSiO
2 とした以外は、上記第1実施例と同様にして光記録媒
体を作製した。この実施例2の光記録媒体についても、
上記実施例1と同様にして再生波形に生じる歪み率、C
N比、消去率及び書換え回数を測定した。結果を表1に
示す。
Example 2 In the structure shown in FIG. 1, the light incident side cooling layer 8 has a thickness of 70 nm.
(In 2 O 3 ) 80 (SnO 2 ) 20 (thermal conductivity: 27 W
.M −1 · K −1 ) and the thickness of the light incident side protective layer 9 is 80 nm.
SiO 2 [thermal conductivity (bulk value): 1 W · m −1 · K
-1 , Thermal expansion coefficient (bulk value): 0.6 x 10 -6 / de
g], and the light-transmitting side protective layer 10 is made of SiO 2 with a thickness of 40 nm.
An optical recording medium was prepared in the same manner as in the first embodiment except that the number 2 was changed. Also for the optical recording medium of Example 2,
In the same manner as in the first embodiment, the distortion rate of the reproduced waveform, C
The N ratio, the erase rate and the number of rewritings were measured. The results are shown in Table 1.

【0038】実施例3 図1の構成において、光入射側冷却層8を厚さ50nm
のSiC〔焼結助材BeO入り、熱伝導率(バルクの
値):270W・m-1・K-1、熱膨脹率(バルクの
値):4×10-6/deg〕とし、光透過側保護層10
を厚さ70nmの(ZnS)80(SiO2 20とした以
外は、上記第1実施例と同様にして光記録媒体を作製し
た。この実施例3の光記録媒体についても、上記実施例
1と同様にして再生波形に生じる歪み率、CN比、消去
率及び書換え回数を測定した。結果を表1に示す。
Example 3 In the configuration of FIG. 1, the light incident side cooling layer 8 has a thickness of 50 nm.
SiC [containing sintering aid BeO, thermal conductivity (bulk value): 270 W · m −1 · K −1 , thermal expansion coefficient (bulk value): 4 × 10 −6 / deg], light transmission side Protective layer 10
An optical recording medium was prepared in the same manner as in Example 1 except that (ZnS) 80 (SiO 2 ) 20 having a thickness of 70 nm was used. With respect to the optical recording medium of Example 3, the distortion rate, the CN ratio, the erasing rate, and the number of times of rewriting generated in the reproduced waveform were measured in the same manner as in Example 1. The results are shown in Table 1.

【0039】実施例4 図1の構成において、光入射側冷却層8を厚さ50nm
のSiCとし、光入射側保護層9を厚さ70nmの(Z
nS)80(SiO2 20とし、更に光入射側冷却層8と
基板1との間に厚さ10nmの(ZnS)80(Si
2 20の保護層を設けた以外は、上記第1実施例と同
様にして光記録媒体を作製した。この実施例4の光記録
媒体についても、上記実施例1と同様にして再生波形に
生じる歪み率、CN比、消去率及び書換え回数を測定し
た。結果を表1に示す。
Example 4 In the structure shown in FIG. 1, the cooling layer 8 on the light incident side has a thickness of 50 nm.
Of SiC, and the light-incident-side protective layer 9 having a thickness of 70 nm (Z
nS) 80 (SiO 2 ) 20, and a 10 nm-thickness (ZnS) 80 (Si) between the light incident side cooling layer 8 and the substrate 1.
An optical recording medium was prepared in the same manner as in the first embodiment except that a protective layer of O 2 ) 20 was provided. With respect to the optical recording medium of Example 4, the distortion rate, the CN ratio, the erasing rate, and the number of times of rewriting generated in the reproduced waveform were measured in the same manner as in Example 1. The results are shown in Table 1.

【0040】比較例 図1の構成において、光入射側冷却層8を設けず、か
つ、光入射側保護層9を厚さ160nmの(ZnS)80
(SiO2 20とし、光透過側冷却層10を厚さ30n
mの(ZnS)80(SiO2 20とした以外は、上記第
1実施例と同様にして光記録媒体を作製した。この比較
例の光記録媒体についても、上記実施例1と同様にして
再生波形に生じる歪み率、CN比、消去率及び書換え回
数を測定した。結果を表1に示す。
Comparative Example In the structure of FIG. 1, the cooling layer 8 on the light incident side is not provided, and the protective layer 9 on the light incident side is made of (ZnS) 80 having a thickness of 160 nm.
(SiO 2 ) 20 and the thickness of the light transmitting side cooling layer 10 is 30 n
An optical recording medium was prepared in the same manner as in the first embodiment except that (ZnS) 80 (SiO 2 ) 20 of m was used. With respect to the optical recording medium of this comparative example, the distortion rate, the CN ratio, the erasing rate and the number of times of rewriting generated in the reproduced waveform were measured in the same manner as in Example 1 above. The results are shown in Table 1.

【0041】この比較例の光記録媒体について、その書
き換え時にレーザー光の光スポットを照射した際におけ
る一定時間経過後の温度分布を測定してみると、光スポ
ットの移動方向Aに沿う媒体の縦断面における600
℃、400℃及び200℃の等温度曲線Cはこれを模式
的にみて図5とほぼ同様の形状となっており、記録層3
を中心にしてその光入射側保護層9において光スポット
の移動方向Aの後方に大きな拡がりは見られ、いわゆる
等温度曲線Cの尾引き現象が観察された。また、再生波
形に生じる歪み率、CN比、消去率及び書換え回数を測
定した後の媒体の記録膜面を透過電子顕微鏡観察で確認
した結果、記録層3周辺に記録膜面の変形が観察され
た。
Regarding the optical recording medium of this comparative example, the temperature distribution after a certain period of time when the light spot of the laser beam was irradiated at the time of rewriting, the longitudinal distribution of the medium along the moving direction A of the light spot was measured. 600 in the plane
The isothermal curve C at 400 ° C., 400 ° C. and 200 ° C. has a shape similar to that of FIG.
A large spread was seen in the light incident side protective layer 9 in the rear of the moving direction A of the light spot with respect to the center, and a so-called tailing phenomenon of the isothermal curve C was observed. Further, as a result of observing the recording film surface of the medium after measuring the distortion rate, the CN ratio, the erasing rate and the number of times of rewriting generated in the reproduced waveform with a transmission electron microscope, deformation of the recording film surface was observed around the recording layer 3. It was

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明によれば、媒体の冷却効率が良く
なるので、記録マーク間の熱干渉が減少してジッターが
小さくなり、エッジ記録等の高密度記録が可能になるほ
か、CN比、消去率、再生データの信頼性が向上する。
また、書き換え時の熱歪みが減少するので書換え回数が
増加し、更に、基板として樹脂材料を使用してもこの基
板に対する熱負荷が減少し、この点からも書換え回数が
増加する。更に、記録層を挟んで熱伝導率の小さい保護
層を設けているので、記録感度が低下することもない。
According to the present invention, since the cooling efficiency of the medium is improved, the thermal interference between the recording marks is reduced, the jitter is reduced, and the high density recording such as the edge recording can be performed. , Erasure rate, and reliability of reproduced data are improved.
In addition, since the thermal strain at the time of rewriting is reduced, the number of rewritings is increased, and even if a resin material is used as the substrate, the thermal load on this substrate is reduced, and from this point also the number of rewritings is increased. Further, since the protective layer having a small thermal conductivity is provided with the recording layer sandwiched, the recording sensitivity does not decrease.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係る相変化光記録媒体の構
成を示す断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing a configuration of a phase change optical recording medium according to an example of the present invention.

【図2】 図1に示す光記録媒体における書き換え時の
等温度曲線を模式的に示す説明図である。
FIG. 2 is an explanatory diagram schematically showing isothermal curves during rewriting in the optical recording medium shown in FIG.

【図3】 再生波形の歪み率を説明するための、記録マ
ークの形状と再生波形の形状との関係を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a relationship between a shape of a recording mark and a shape of a reproduced waveform for explaining a distortion rate of the reproduced waveform.

【図4】 従来の相変化光記録媒体の構成を示す断面説
明図である。
FIG. 4 is an explanatory sectional view showing the structure of a conventional phase change optical recording medium.

【図5】 図4に示す光記録媒体における書き換え時の
等温度曲線を模式的に示す説明図である。
5 is an explanatory diagram schematically showing isothermal curves during rewriting in the optical recording medium shown in FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に光、熱等の手段によりその光学
的性質が可逆的に変化する記録層を備え、その光学的性
質の変化を利用して情報の書き換え、再生を行う光記録
媒体において、上記記録層の光入射側及び光透過側には
それぞれこの記録層に接する熱伝導率の小さい光入射側
及び光透過側の保護層を設けると共に、これら光入射側
及び光透過側の保護層の外側にはそれぞれ熱伝導率の大
きい光入射側及び光透過側の冷却層を設けたことを特徴
とする光記録媒体。
1. An optical recording medium comprising a recording layer on a substrate, the optical properties of which are reversibly changed by means of light, heat, etc., and information is rewritten and reproduced by utilizing the change of the optical properties. In the above, the light incident side and the light transmitting side of the recording layer are provided with protective layers on the light incident side and the light transmitting side, respectively, which are in contact with the recording layer and have a small thermal conductivity. An optical recording medium, characterized in that a cooling layer on the light incident side and a cooling layer on the light transmitting side, each having a large thermal conductivity, is provided outside the layer.
JP3082843A 1991-03-25 1991-03-25 Optical recording medium Pending JPH05101442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082843A JPH05101442A (en) 1991-03-25 1991-03-25 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082843A JPH05101442A (en) 1991-03-25 1991-03-25 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH05101442A true JPH05101442A (en) 1993-04-23

Family

ID=13785672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082843A Pending JPH05101442A (en) 1991-03-25 1991-03-25 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH05101442A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978831A2 (en) * 1998-08-05 2000-02-09 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus
WO2003063153A1 (en) * 2002-01-21 2003-07-31 Pioneer Corporation Optical disk of intergroove recording system
US6709801B2 (en) * 2000-01-26 2004-03-23 Hitachi, Ltd. Information recording medium
WO2009069795A1 (en) * 2007-11-27 2009-06-04 Sony Corporation Recordable optical recording medium and method for manufacturing the same
US8075974B2 (en) 2006-03-10 2011-12-13 Ricoh Company, Ltd. Optical recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181137A (en) * 1987-01-23 1988-07-26 Hitachi Ltd Optical information recording medium
JPH01159839A (en) * 1987-12-16 1989-06-22 Fuji Electric Co Ltd Optical recording medium
JPH0434743A (en) * 1990-05-30 1992-02-05 Toshiba Corp Recording medium
JPH04177625A (en) * 1990-11-09 1992-06-24 Nippon Telegr & Teleph Corp <Ntt> Optical disc medium having heat diffusion layer and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181137A (en) * 1987-01-23 1988-07-26 Hitachi Ltd Optical information recording medium
JPH01159839A (en) * 1987-12-16 1989-06-22 Fuji Electric Co Ltd Optical recording medium
JPH0434743A (en) * 1990-05-30 1992-02-05 Toshiba Corp Recording medium
JPH04177625A (en) * 1990-11-09 1992-06-24 Nippon Telegr & Teleph Corp <Ntt> Optical disc medium having heat diffusion layer and its manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978831A2 (en) * 1998-08-05 2000-02-09 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus
EP0978831A3 (en) * 1998-08-05 2002-02-06 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus
US6709801B2 (en) * 2000-01-26 2004-03-23 Hitachi, Ltd. Information recording medium
WO2003063153A1 (en) * 2002-01-21 2003-07-31 Pioneer Corporation Optical disk of intergroove recording system
US7263057B2 (en) 2002-01-21 2007-08-28 Pioneer Corporation On-groove recordation type optical disc
US8075974B2 (en) 2006-03-10 2011-12-13 Ricoh Company, Ltd. Optical recording medium
WO2009069795A1 (en) * 2007-11-27 2009-06-04 Sony Corporation Recordable optical recording medium and method for manufacturing the same
JP2009129526A (en) * 2007-11-27 2009-06-11 Sony Corp Write once optical recording medium and manufacturing method thereof
US8394479B2 (en) 2007-11-27 2013-03-12 Sony Corporation Write-once optical recording medium and process for manufacturing the same

Similar Documents

Publication Publication Date Title
USRE36383E (en) Optical recording medium and production process for the medium
EP1172811B1 (en) Information recording medium, method for producing the same, and recording/reproducing method using the same
US7260053B2 (en) Optical recording medium, process for manufacturing the same, sputtering target for manufacturing the same, and optical recording process using the same
JP2000231724A (en) Use method of optical recording medium and optical recording medium
EP1132904A2 (en) Information recording medium and method of manufacturing the same
JP3666854B2 (en) Information recording medium and manufacturing method thereof
US20040130998A1 (en) Phase change information recording medium having multiple layers and recording and playback method for the medium
US6660451B1 (en) Optical information recording medium
EP1345218B1 (en) Optical information recording medium and manufacturing method and recording/reproducing method for the same
JPH08127176A (en) Information recording thin film, manufacture thereof information recording medium and using method therefor
EP1407451A1 (en) Multi-stack optical data storage medium and use of such a medium
JPH05101442A (en) Optical recording medium
JP4097487B2 (en) Phase change recording medium
JP4093846B2 (en) Phase change optical recording medium
JP4093913B2 (en) Phase change optical recording medium
JP4357169B2 (en) Information recording medium
EP0661699B1 (en) Information recording medium
JP4306988B2 (en) Information recording medium
JP2004095111A (en) Phase transition optical recording medium
JP4064736B2 (en) Phase change recording medium
JP2004273040A (en) Phase-change type recording medium
JP2867701B2 (en) Manufacturing method of optical information recording medium
JP2006286176A (en) Phase transition type optical recording medium
JP3691501B2 (en) Optical recording medium
US20060165946A1 (en) Optical storage medium