JPH0510024Y2 - - Google Patents

Info

Publication number
JPH0510024Y2
JPH0510024Y2 JP1988057549U JP5754988U JPH0510024Y2 JP H0510024 Y2 JPH0510024 Y2 JP H0510024Y2 JP 1988057549 U JP1988057549 U JP 1988057549U JP 5754988 U JP5754988 U JP 5754988U JP H0510024 Y2 JPH0510024 Y2 JP H0510024Y2
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
hood
pipe
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988057549U
Other languages
Japanese (ja)
Other versions
JPH01164312U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988057549U priority Critical patent/JPH0510024Y2/ja
Publication of JPH01164312U publication Critical patent/JPH01164312U/ja
Application granted granted Critical
Publication of JPH0510024Y2 publication Critical patent/JPH0510024Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は海域等の水中に構築された橋脚の如き
構造物の周囲に施設してこれを保護する繊維強化
プラスチツクパイプ製緩衝工に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hood made of fiber-reinforced plastic pipe that is installed around and protects structures such as bridge piers constructed underwater in sea areas.

[従来の技術] 従来、海域等の水中に構築された橋脚等の如き
構造物の周囲に施設してこれを保護する緩衝工に
は、大別して弾性変形型と塑性変形型(または圧
壊型)の2種類のタイプがある。弾性変形型の緩
衝工としては、古タイヤをチエーンあるいはワイ
ヤ等で固く縛り、橋脚周囲に懸装させると云つた
ような簡単な構造のものがある。また、後者の塑
性変形型の緩衝工としては、大きなエネルギーを
吸収する場合に用いられ、複数の区画を蜂巣状に
構成した鋼製の緩衝材を橋脚周囲に装着させるよ
うにしたもの、あるいは上記区画内に発泡材等の
エネルギー吸収材を充填したり、更に上記緩衝材
の外周へプラスチツク製あるいはゴム製の空気式
フエンダーを取り付けたもの等がある。
[Conventional technology] Traditionally, hoods installed around structures such as bridge piers built underwater in sea areas to protect them can be roughly divided into elastic deformation type and plastic deformation type (or crushing type). There are two types. Elastically deformable hoods have a simple structure, such as old tires tied tightly together with chains or wires, and suspended around bridge piers. In addition, the latter type of plastic deformation type shock absorbers are used when absorbing large amounts of energy, and are equipped with steel shock absorbers with multiple compartments arranged in a honeycomb shape, or the ones mentioned above. In some cases, the compartment is filled with an energy absorbing material such as a foam material, and a pneumatic fender made of plastic or rubber is attached to the outer periphery of the cushioning material.

[考案が解決しようとする課題] 前述の弾性変形型の古タイヤをチエーンあるい
はワイヤ等で固く縛り、橋脚周囲に懸装させると
云つたような簡単な構造のものは保護する機能が
不十分である。また、塑性変形型の、複数の区画
を蜂巣状に構成した鋼製の緩衝工は、水面の上下
により緩衝材が水面より出没の繰り返しを行うた
めに防蝕上問題があり、また、緩衝材が水面より
出没する際の浮力により変動荷重か作用して、蜂
巣状に複数の区画より構成された緩衝材に疲労亀
裂が発生したり、充填された発泡材等が劣化する
といつた問題点がある。
[Problem to be solved by the invention] Simple structures such as the above-mentioned elastically deformable old tires tied tightly with chains or wires and suspended around bridge piers do not have sufficient protection. be. In addition, plastic deformation type steel hoods with multiple compartments arranged in a honeycomb configuration have corrosion prevention problems because the buffer material repeatedly appears and disappears from the water surface depending on the rise and fall of the water surface. There are problems such as fatigue cracks occurring in the cushioning material, which is made up of multiple compartments in a honeycomb structure, and deterioration of the filled foam material, etc. due to variable loads due to buoyancy when emerging from the water surface. .

本考案は、上記の問題点を解消するべくなされ
たもので、橋脚等への異物衝突エネルギーを速や
かに吸収できる繊維強化プラスチツクパイプ製緩
衝工を提供することを目的とするものである。
The present invention has been made to solve the above-mentioned problems, and aims to provide a hood made of fiber-reinforced plastic pipe that can quickly absorb the energy of foreign objects colliding with bridge piers, etc.

[課題を解決するための手段] 本考案に係わる繊維強化プラスチツクパイプ製
緩衝工は、強度性能が異なる複数の繊維強化プラ
スチツクパイプが同心状に重畳された複合繊維強
化プラスチツクパイプの複数本を結束した構造体
としたものである。
[Means for solving the problem] The fiber-reinforced plastic pipe hood according to the present invention is made by bundling multiple composite fiber-reinforced plastic pipes in which a plurality of fiber-reinforced plastic pipes with different strength performance are concentrically stacked. It is a structure.

[作用] この考案は、強度性能が異なる複数の繊維強化
プラスチツクパイプを同心状に重畳した複合繊維
強化プラスチツクパイプの複数本を結束した構造
体としたことにより、強度性能の異なるパイプ間
では破壊時期がずれることにより破壊距離を増加
させ、所定圧壊荷重以下で、かつ所定圧壊距離内
で出来るだけ多くのエネルギーを吸収させること
ができるようにしたものである。
[Function] This invention creates a structure in which multiple fiber-reinforced plastic pipes with different strength performance are bundled together, in which multiple fiber-reinforced plastic pipes with different strength performance are stacked concentrically. By shifting, the fracture distance is increased, and as much energy as possible can be absorbed under a predetermined crushing load and within a predetermined crushing distance.

[実施例] 以下、本考案の繊維強化プラスチツクパイプ製
緩衝工の一実施例を第1図〜第4図により説明す
る。第1図は本考案の繊維強化プラスチツクパイ
プ(以下FRPパイプと呼称)製緩衝工構成する
複合FRPパイプの断面図を示し、1は複合FRP
パイプで、ガラス繊維等からなる繊維の剛性を含
有率、層配向等を変えて強度性能が異なる複数の
FRPパイプ1a,1b,1cを同心状に互いに
内接あるいは外接させて重畳したものである。こ
のような複合FRPパイプ1の複数本を、第2図
に示すように橋脚2の周囲に結束させた構造体で
緩衝工とするものである。
[Example] Hereinafter, an example of the fiber-reinforced plastic pipe buffer hood of the present invention will be described with reference to FIGS. 1 to 4. Figure 1 shows a cross-sectional view of a composite FRP pipe constituting a hood made of fiber-reinforced plastic pipe (hereinafter referred to as FRP pipe) of the present invention.
In pipes, fibers made of glass fiber, etc., have different stiffness, content, layer orientation, etc., resulting in different strength performance.
FRP pipes 1a, 1b, and 1c are concentrically inscribed or circumscribed and superimposed on each other. A hood is a structure in which a plurality of such composite FRP pipes 1 are bundled around a pier 2 as shown in FIG. 2.

先ず、単一なFRPパイプの荷重と変形量との
関係(以下P〜δ関係と記す)は、第4図で示す
ように圧壊荷重wを加えた場合、a/Pcr・δcr
(Pcr;限界圧壊荷重、δcr;限界たわみ距離)で
表されるエネルギー吸収効率は1/2しかない(図
中の斜線部)。
First, the relationship between the load and the amount of deformation of a single FRP pipe (hereinafter referred to as the P~δ relationship) is a/Pcr・δcr when a crushing load w is applied as shown in Figure 4.
The energy absorption efficiency expressed as (Pcr: critical crushing load, δcr: critical deflection distance) is only 1/2 (shaded area in the figure).

このような単一なFRPパイプの性能を出来る
だけ高めるためには、P〜δ関係を一定にするこ
とが必要であり、脆性材料である単一なFRPパ
イプを単に使用するだけではこの点を解決できな
い。
In order to improve the performance of such a single FRP pipe as much as possible, it is necessary to keep the P~δ relationship constant, and simply using a single FRP pipe, which is a brittle material, will not solve this problem. I can't solve it.

第1図に示すようなFRPパイプ1a,1b,
1cよりなる複合FRPパイプ1とすることによ
つて、その性能を高めることができる。即ち、こ
のような複合FRPパイプに圧壊荷重を加えた場
合、FRPパイプ1a,1b,1cには圧壊の時
期にずれが発生し、第3図に示すようなP〜δ関
係が得られ、エネルギー吸収効率が高くなる。第
2図に示すように、前記複合FRPパイプ1を複
数束ねて橋脚周囲に結束させた構造体とすること
によつて、エネルギー吸収効率の極めて高い緩衝
工とすることができる。
FRP pipes 1a, 1b as shown in Fig. 1,
By making the composite FRP pipe 1 made of 1c, its performance can be improved. That is, when a crushing load is applied to such a composite FRP pipe, a shift occurs in the crushing timing of FRP pipes 1a, 1b, and 1c, and a P~δ relationship as shown in Fig. 3 is obtained, and the energy Absorption efficiency increases. As shown in FIG. 2, by forming a structure in which a plurality of the composite FRP pipes 1 are bundled around the pier, a hood with extremely high energy absorption efficiency can be obtained.

[考案の効果] 以上、本考案の繊維強化プラスチツクパイプ製
緩衝工によれば、海水等液体による腐食あるいは
疲労亀裂等の問題が無くなり、かつ、圧壊エネル
ギーの吸収効率が高い緩衝工が得られる。
[Effects of the invention] As described above, according to the fiber-reinforced plastic pipe hood of the present invention, there is no problem of corrosion or fatigue cracking caused by liquids such as seawater, and a hood that has high crushing energy absorption efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の繊維強化プラスチツクパイプ
製緩衝工の一実施例に係る複合FRPパイプを示
す断面図、第2図は本考案の繊維強化プラスチツ
クパイプ製緩衝工の一実施例を示す概略断面図、
第3図〜第4図は複合FRPパイプ及びFRPパイ
プの圧壊荷重ρと圧壊距離δとの関係を示すグラ
フ図である。 1……複合FRPパイプ、1a,1b,1c…
…FRPパイプ、2……橋脚。
Fig. 1 is a sectional view showing a composite FRP pipe according to an embodiment of the fiber-reinforced plastic pipe hood of the present invention, and Fig. 2 is a schematic cross-section showing an embodiment of the fiber-reinforced plastic pipe hood of the present invention. figure,
3 and 4 are graphs showing the relationship between the crushing load ρ and the crushing distance δ of a composite FRP pipe and an FRP pipe. 1...Composite FRP pipe, 1a, 1b, 1c...
...FRP pipe, 2...Pier.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 強度性能が異なる複数の繊維強化プラスチツク
パイプが同心状に重畳された複合繊維強化プラス
チツクパイプの複数本を結束した構造体であるこ
とを特徴とする繊維強化プラスチツクパイプ製緩
衝工。
A shock absorber made of fiber-reinforced plastic pipes, characterized in that it is a structure in which a plurality of composite fiber-reinforced plastic pipes, in which a plurality of fiber-reinforced plastic pipes having different strength performance are concentrically stacked, are bundled.
JP1988057549U 1988-04-28 1988-04-28 Expired - Lifetime JPH0510024Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988057549U JPH0510024Y2 (en) 1988-04-28 1988-04-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988057549U JPH0510024Y2 (en) 1988-04-28 1988-04-28

Publications (2)

Publication Number Publication Date
JPH01164312U JPH01164312U (en) 1989-11-16
JPH0510024Y2 true JPH0510024Y2 (en) 1993-03-11

Family

ID=31283399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988057549U Expired - Lifetime JPH0510024Y2 (en) 1988-04-28 1988-04-28

Country Status (1)

Country Link
JP (1) JPH0510024Y2 (en)

Also Published As

Publication number Publication date
JPH01164312U (en) 1989-11-16

Similar Documents

Publication Publication Date Title
CN109137832B (en) Bridge pier protecting device
WO2021120567A1 (en) Anti-collision device combining chiral structure having negative poisson's ratio with honeycomb structure
US20140130725A1 (en) Anti-collision device made of buffering energy-absorbing type web-enhanced composite material
US3948500A (en) Shock absorbers for mooring guards
CN202989764U (en) Anticollision device of bridge pier
WO2012152047A1 (en) Cylindrical composite bridge anticollision device
CN104727279B (en) Composite material floating type net-shaped interception system and construction method
CN109137831B (en) Double-arrow type bridge pier protection device
WO2002022964A1 (en) Composite fender
CN108442325A (en) Bulk-filled thin-wall soft ship collision prevention device
JPH0510024Y2 (en)
CN205205786U (en) Float formula FRP cusp buffering energy -absorbing buffer stop
Li et al. A comparison study on the hydroelasticity of two types of floating bridges in inhomogeneous wave conditions
JPS6043515A (en) Fender
CN206987189U (en) One kind can recover function coupling beam
CN111472264A (en) Combined anti-explosion protection device for bridge pier
US4554882A (en) Fender system
CN102953324A (en) Anti-collision device of bridge pier
Hartog Recent technical manifestations of Von Karman's vortex wake
CN114919710B (en) Grid type box body floating raft structure and design method thereof
CN105672207B (en) Floating type tooth-shaped fiber reinforced plastic (FRP) buffering energy-absorption anti-collision device
GB2560485A (en) Curved pre-stress system and method
CN214271672U (en) Pier anti-collision facility with negative Poisson ratio effect
CN211312430U (en) Floating type bridge protection plate
CN212452261U (en) Section assembled ship collision prevention device unit and ship collision prevention device