JPH05100107A - Reflection mirror - Google Patents

Reflection mirror

Info

Publication number
JPH05100107A
JPH05100107A JP11380891A JP11380891A JPH05100107A JP H05100107 A JPH05100107 A JP H05100107A JP 11380891 A JP11380891 A JP 11380891A JP 11380891 A JP11380891 A JP 11380891A JP H05100107 A JPH05100107 A JP H05100107A
Authority
JP
Japan
Prior art keywords
layer
resin
refractive index
fine powder
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11380891A
Other languages
Japanese (ja)
Inventor
Tatsuo Ota
達男 太田
Tomohito Nakano
智史 中野
Setsuo Tokuhiro
節夫 徳弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP11380891A priority Critical patent/JPH05100107A/en
Publication of JPH05100107A publication Critical patent/JPH05100107A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To increase reflectivity and to prevent the degradation in the reflectivity at and under a high temp. and high humidity and the peeling of a metallic layer by providing at least one layer of resin layers contg. the fine powder of a low-refractive index material on the light reflection surface of the metallic layer. CONSTITUTION:The metallic layer 2 is provided on a high-polymer base body 5 and at least one layer of the resin layers 1 contg. the fine powder of the low-refractive index material are provided on the light reflection surface of the metallic layer 2. Further, a high-refractive index layer is provided thereon and an under coat layer may be provided under the metallic layer 2. One or >=2 kinds among magnesium fluoride, silicon oxide, aluminum fluoride, calcium fluoride, lithium fluoride, sodium fluoride, and thorium fluoride are used as the fine powder of the low-refractive index material to be incorporated into the resin layer 1. The resin binder resin of the fine powder is properly selected from resins having film formability; for example, polyester resin, acrylic resin, vinyl resin, polycarbonate resin, polyolefin resin, polyurethane resin, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はミラー、特に高分子基体
上に金属層を設けた光反射ミラーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mirror, and more particularly to a light reflecting mirror having a metal layer provided on a polymer substrate.

【0002】[0002]

【従来の技術】高分子基体、例えば、アクリル樹脂、ポ
リカーボネート樹脂からなる成形体の上に、光反射のた
めの金属層としてアルミニウム、又は銀、クロム、等の
層を設け、さらにこの金属層の保護層及び増反射膜とし
て酸化シリコン層を蒸着法で形成する事が一般に行われ
ている。しかし、このような構成のミラーは、高温環境
60℃以上の環境に放置したとき、酸化シリコン層に微
少クラックが発生し、その為反射率の低下が生じる。さ
らに、高温高湿環境に放置したとき、クラック発生部を
中心に金属層の白濁及び膜の剥離が生じ、反射鏡として
の性能劣化が大きい。
2. Description of the Related Art A layer of aluminum, silver, chromium or the like is provided as a metal layer for light reflection on a molded body made of a polymer substrate such as an acrylic resin or a polycarbonate resin. It is common practice to form a silicon oxide layer as a protective layer and a reflection enhancing film by vapor deposition. However, when the mirror having such a structure is left in a high temperature environment of 60 [deg.] C. or higher, minute cracks are generated in the silicon oxide layer, resulting in a decrease in reflectance. Furthermore, when left in a high-temperature and high-humidity environment, the metallic layer becomes cloudy and the film peels off around the cracked part, and the performance as a reflecting mirror is greatly deteriorated.

【0003】また、例えば実用新案公開昭和57−13
0305号公報に記載された反射ミラーは、図7に見る
ように、基体の上に、紫外線硬化樹脂層、金属反射
層および紫外線硬化トップコート層の3層からなる
構成を有する反射層を設けている。このように、トップ
コートとして紫外線硬化樹脂を設けた場合、金属反射層
の光反射率の増加効果が十分でなく、性能的に不満足と
なる。
In addition, for example, utility model publication
As shown in FIG. 7, the reflecting mirror described in Japanese Patent No. 0305 has a reflective layer having a three-layer structure including an ultraviolet curable resin layer, a metal reflective layer and an ultraviolet curable top coat layer on a substrate. There is. As described above, when the ultraviolet curable resin is provided as the top coat, the effect of increasing the light reflectance of the metal reflective layer is not sufficient and the performance becomes unsatisfactory.

【0004】[0004]

【発明が解決しようとする課題】高分子基体上に金属層
からなる光反射層を設けたミラーにおいて、金属層のみ
の表面反射に比較して大巾に反射率を増加させ、しかも
高温及び高湿環境に設置しても反射率の低下及び金属層
の剥離が生じない光反射ミラーを得ようとするものであ
る。
DISCLOSURE OF THE INVENTION In a mirror in which a light reflecting layer made of a metal layer is provided on a polymer substrate, the reflectance is greatly increased as compared with the surface reflection of only the metal layer, and at high temperature and high temperature. An object of the present invention is to obtain a light-reflecting mirror in which the reflectance is not reduced and the metal layer is not peeled off even when installed in a humid environment.

【0005】[0005]

【課題を解決するための手段】本発明のミラーにおいて
は、高分子基体上に設けた金属層の光反射面の上に、低
屈折率材料微粉末を含む樹脂層を少なくとも1層設ける
ことを特徴とする。また、上記の光反射面上の低屈折率
材料微粉末を含む低屈折率樹脂層に接して、さらに高屈
折率層を設けてもよい。この高屈折率層は、高屈折率材
料微粉末を含む樹脂層としてもよく、或は無機物質から
なる層とすることも出来る。
In the mirror of the present invention, at least one resin layer containing fine powder of low refractive index material is provided on the light reflecting surface of the metal layer provided on the polymer substrate. Characterize. Further, a high refractive index layer may be further provided in contact with the low refractive index resin layer containing the low refractive index material fine powder on the light reflecting surface. The high refractive index layer may be a resin layer containing fine powder of a high refractive index material, or may be a layer made of an inorganic substance.

【0006】具体的には、 低屈折率樹脂層 樹脂層に含ませる低屈折率材料微粉末(例えば平均粒子
径が0.3〜200nm好ましくは0.5〜100nm)と
して、フッ化マグネシウム(例えば屈折率1.38)、
酸化シリコン(例えば屈折率1.46)、フッ化アルミ
ニウム(例えば屈折率1.33〜1.39)、フッ化カ
ルシウム(例えば屈折率1.44)、フッ化リチウム
(例えば屈折率1.36〜1.37)、フッ化ナトリウ
ム(例えば1.32〜1.34)、フッ化トリウム(例
えば1.45〜1.5)の中から一種類または二種類以
上を用いる。
Specifically, a low-refractive-index resin layer, a low-refractive-index material fine powder (for example, an average particle size of 0.3 to 200 nm, preferably 0.5 to 100 nm) contained in a resin layer is magnesium fluoride (for example, Refractive index 1.38),
Silicon oxide (eg, refractive index 1.46), aluminum fluoride (eg, refractive index 1.33 to 1.39), calcium fluoride (eg, refractive index 1.44), lithium fluoride (eg, refractive index 1.36 to). 1.37), sodium fluoride (for example, 1.32 to 1.34), and thorium fluoride (for example, 1.45 to 1.5) are used alone or in combination of two or more.

【0007】また、微粉末のバインダー樹脂として、膜
形成性を有する樹脂、例えばポリエステル樹脂、アクリ
ル樹脂、ビニール樹脂、ポリカーボネート樹脂、ポリオ
レフィン樹脂、ポリウレタン樹脂、メラミン樹脂、エポ
キシ樹脂、ポリアミド樹脂、アルキド樹脂、塩化ビニル
樹脂、フッ素樹脂、シリコン樹脂等の中から適宜選定す
れば良い。
As the fine powder binder resin, a film-forming resin such as polyester resin, acrylic resin, vinyl resin, polycarbonate resin, polyolefin resin, polyurethane resin, melamine resin, epoxy resin, polyamide resin, alkyd resin, It may be appropriately selected from vinyl chloride resin, fluororesin, silicone resin and the like.

【0008】有機樹脂バインダーおよび低屈折率材料微
粉末に、バインダーを溶解し得る有機溶剤を加えて塗料
組成物を調製するが、溶剤の種類およびその量も格別限
定されるものではなく、有機樹脂バインダーの溶解性、
塗布方法に適したものを沸点および粘性を考慮して適宜
選定する。一般に、溶剤の量は、溶剤を含む組成物合計
量に対して50〜98重量%の範囲である。反射防止塗
料組成物の調製は多くの樹脂塗料と同様な方法に従って
行うことができ、また、塗料組成物の対象物品への塗布
も薄い膜厚を形成できる方法であれば格別限定されるこ
とはなく通常の塗布方法を採用できる。特に膜厚が薄く
且つ表面が平滑な塗膜が得られる点で、ディッピング、
スピンコート、グラビア印刷等の方法が好適である。塗
膜は、必要に応じて、用いた有機樹脂バインダーの種類
に応じて適当な条件下に紫外線照射硬化または熱硬化等
の常法による硬化処理を行う。
An organic solvent capable of dissolving the binder is added to the organic resin binder and the fine powder of low refractive index material to prepare a coating composition, but the kind and the amount of the solvent are not particularly limited. Binder solubility,
The one suitable for the coating method is appropriately selected in consideration of the boiling point and the viscosity. Generally, the amount of solvent will range from 50 to 98% by weight, based on the total composition including the solvent. The antireflection coating composition can be prepared according to a method similar to that of many resin coating materials, and the application of the coating composition to a target article is not particularly limited as long as it can form a thin film thickness. Instead, a normal coating method can be adopted. Dipping, especially in that a thin film and smooth surface can be obtained
Methods such as spin coating and gravure printing are suitable. The coating film is, if necessary, subjected to a curing treatment by an ordinary method such as ultraviolet irradiation curing or heat curing under appropriate conditions depending on the type of the organic resin binder used.

【0009】 金属層 Al、Cr、Cu、Ag、Au等の金属の単体又は合金
材料を、膜厚1000〜5000Åで用いる。膜の形成
法としては、真空蒸着法、スバッタ法、イオンプレーテ
ィング法が用いられる。
Metal Layer A simple substance of metal such as Al, Cr, Cu, Ag and Au or an alloy material is used with a film thickness of 1000 to 5000Å. As a method for forming the film, a vacuum vapor deposition method, a grasshopper method, or an ion plating method is used.

【0010】 高屈折率層 −1 高屈折率高分子層 高屈折率材料微粉末(例えば平均粒径が0.3〜200
nm、好ましくは0.5〜100nm)として、酸化セリウ
ム(例えば屈折率2.2〜2.5)、硫化亜鉛(例えば
屈折率2.2〜2.3)、酸化チタン(例えば屈折率
2.2〜2.7)、酸化ジルコニウム(例えば屈折率
1.95〜2.0)、酸化アルミニウム(例えば屈折率
1.59〜1.62)を用いることが出来る。この中か
ら1種類又は2種類以上を用い、微粉末バインダー樹脂
としては、前記低屈折率高分子層のバインダー樹脂とし
て挙げたものの中から選定し、同様な方法で調整、塗
膜、加熱硬化又は紫外線硬化がなされる。塗膜厚は、λ
0を反射率最大とする設計波長として、一般にλ0/2の
光学膜厚を持つものとする。
High Refractive Index Layer -1 High Refractive Index Polymer Layer High Refractive Index Material Fine powder (for example, having an average particle size of 0.3 to 200)
nm, preferably 0.5 to 100 nm), cerium oxide (for example, refractive index 2.2 to 2.5), zinc sulfide (for example, refractive index 2.2 to 2.3), titanium oxide (for example, refractive index 2. 2 to 2.7), zirconium oxide (for example, refractive index 1.95 to 2.0), and aluminum oxide (for example, refractive index 1.59 to 1.62) can be used. One or two or more of these are used, and the fine powder binder resin is selected from those listed as the binder resin for the low refractive index polymer layer, and is adjusted, coated, heat-cured or cured by the same method. UV cured. Coating thickness is λ
0 as the design wavelength and reflectance maximum, generally assumed to have an optical thickness of lambda 0/2.

【0011】−2 高屈折率無機層 高屈折率材料として、酸化チタン、酸化タンタル、酸化
セリウム、酸化ジルコニウム、硫化亜鉛、酸化チタンと
酸化プラセオジウムの混合物の1種又は混合物が用いら
れ、真空蒸着法・スパッタ法により、光学膜厚λ0/2
の層を形成する。
-2 High Refractive Index Inorganic Layer As the high refractive index material, one or a mixture of titanium oxide, tantalum oxide, cerium oxide, zirconium oxide, zinc sulfide, and a mixture of titanium oxide and praseodymium is used. by the sputtering method, an optical thickness of λ 0/2
To form a layer of.

【0012】 アンダーコート層 高分子基体と金属層の間には、無機材料又は高分子樹脂
からなる単独又は複数の層から成るアンダーコート層を
設けるのがよい。 −1 無機材料単独層としては、膜厚100〜200
0Åのクロム金属、チタン金属、又はその窒化物を真空
蒸着法、スパッタ法により設ける。 −2 高分子樹脂単独層としては、紫外線硬化樹脂、
例えばスリーボンド社製TB3003、大日本インキ製
ユニディック17−80p(商標)、広栄化学工業
(株)製コーエイハードM−101(商標)をスピナー
塗布又はディッピング塗布で塗膜厚1〜5μmに形成
し、紫外光を照射し硬化させる。 −3 上記高分子樹脂層(−2)を設けた後、無機
材料層(−1)を設けてもよい。
Undercoat Layer An undercoat layer composed of a single layer or a plurality of layers made of an inorganic material or a polymer resin is preferably provided between the polymer substrate and the metal layer. -1 As the inorganic material single layer, a film thickness of 100 to 200
A 0Å chromium metal, a titanium metal, or a nitride thereof is provided by a vacuum deposition method or a sputtering method. -As the polymer resin single layer, an ultraviolet curable resin,
For example, TB3003 manufactured by ThreeBond Co., Unidick 17-80p (trademark) manufactured by Dainippon Ink and Koei Hard M-101 (trademark) manufactured by Koei Chemical Industry Co., Ltd. are formed into a coating film thickness of 1 to 5 μm by spinner coating or dipping coating. , UV light is irradiated to cure. -3 After providing the polymer resin layer (-2), the inorganic material layer (-1) may be provided.

【0013】 基体 樹脂材料からなり、ポリメチルメタアクリレート、ポリ
カーボネート、ポリスチレン、ポリエーテルサルホン、
ポリエーテルケトン、または非晶質ポリオレフィン樹脂
等の樹脂成形体が用いられる。
Substrate Made of resin material, polymethylmethacrylate, polycarbonate, polystyrene, polyethersulfone,
A resin molding such as polyether ketone or amorphous polyolefin resin is used.

【0014】 保護コート さらに、金属層の保護のための保護コート層を設ける場
合もある。コート層が樹脂材料の場合、紫外線硬化型樹
脂を用い、大日本インキ製ユニティックV−9080、
同V−5500(商標)を厚さ0.5〜5μmにスピナ
塗布又はディッピング塗布により形成し、紫外光を照射
し硬化させる。尚、当然、これらのアンダーコート、保
護コートとして熱硬化樹脂を使用することも出来る。
Protective coat Further, a protective coat layer may be provided for protecting the metal layer. When the coating layer is a resin material, an ultraviolet curable resin is used, and Unitic V-9080 manufactured by Dainippon Ink,
The same V-5500 (trademark) is formed with a thickness of 0.5 to 5 μm by spinner coating or dipping coating, and is irradiated with ultraviolet light to be cured. Of course, a thermosetting resin can be used as the undercoat and the protective coat.

【0015】[0015]

【実施例】【Example】

実施例1 図1に示すように、PMMA(ポリメチルメタクリレー
ト)基体上に、真空度2×10-5Torr以下で金属アル
ミの蒸着膜を厚さ2000Åに形成した。一方、ポリ
エステル樹脂[大日本インキ製ウォーターゾルS−12
3(商標)]0.4重量部、平均粒径130Å(50〜2
50Åに分布)のMgF2微粉末7重量部およびメチル
エチルケトン/トルエン混合溶剤(混合重量比50:5
0)40重量部をボールミル中で混合撹拌し、塗料組成
物を得た。これを上記の金属層を形成した基体上にディ
ッピング法で塗布し、乾燥膜厚185mμの層1を形成
した。但し膜の屈折率1.35、設計波長λ500mμ
とし光学膜厚をλ0/2としたものである。波長450n
mでの光反射率は、塗布前は87%であったが塗布後9
0%に成り向上した。分光反射率を図8の曲線1に示
す。又60℃、90%湿度で1週間放置した後の光反射
率変化は1%の低下のみであり、また外観においても白
濁、クラック発生の劣化はなかった。又MgF2 微粉末
を混合する高分子材料として市販の紫外線硬化樹脂[大
日本インキ製ユニティックV−9080、又はV−55
00樹脂(商標)]を代りに用い、紫外線照射により低屈
折高分子層の形成を形成したが、ほぼ同様の結果を得
た。
Example 1 As shown in FIG. 1, a vapor deposition film of metal aluminum was formed on a PMMA (polymethylmethacrylate) substrate at a vacuum degree of 2 × 10 −5 Torr or less to a thickness of 2000 Å. On the other hand, polyester resin [Dainippon Ink Watersol S-12
3 (trademark)] 0.4 part by weight, average particle diameter 130Å (50 to 2
7 parts by weight of MgF 2 fine powder having a distribution of 50Å) and a mixed solvent of methyl ethyl ketone / toluene (mixing weight ratio 50: 5)
0) 40 parts by weight were mixed and stirred in a ball mill to obtain a coating composition. This was applied onto the substrate having the above metal layer formed thereon by a dipping method to form a layer 1 having a dry film thickness of 185 mμ. However, the refractive index of the film is 1.35 and the design wavelength is λ500mμ.
And to optical film thickness of the is obtained by the λ 0/2. Wavelength 450n
The light reflectance at m was 87% before coating, but 9 after coating.
It improved to 0%. The spectral reflectance is shown by curve 1 in FIG. In addition, the change in light reflectance after leaving at 60 ° C. and 90% humidity for 1 week was only a decrease of 1%, and the appearance was not clouded or cracked. Further, a commercially available UV curable resin [Unitic V-9080 or V-55 manufactured by Dainippon Ink Co., Ltd. is used as a polymer material for mixing fine MgF 2 powder.
No. 00 resin (trademark)] was used instead to form a low-refractive polymer layer by irradiation with ultraviolet rays, but almost the same result was obtained.

【0016】実施例2 図2に示すように、PMMA基体上に、真空度3×1
-5Torr以下で厚さ2500Åの銀材料の蒸着膜を形
成し、さらに実施例1と同様にMgF2 微粉末を含む低
屈折率高分子層を設け、さらに高屈折率層として、
酸素ガス圧2×10-4Torrに保持した真空層で、酸化チタ
ンを蒸着材料として電子銃加熱で蒸着し、光学膜厚λ0
/2mμの酸化チタン(TiO2) 層を形成した。すな
わち波長450nmでの光反射率は92%に向上し銀単独
層に比較し4%の向上が得られた。その分光反射率を図
8の曲線2に示す。60℃、90%湿度の対環境テスト
後においても、表面の外観変化は見られず、反射率の低
下も生じなかった。
Example 2 As shown in FIG. 2, a vacuum degree of 3 × 1 was set on a PMMA substrate.
A vapor deposition film of a silver material having a thickness of 2500 Å at 0 -5 Torr or less is formed, and a low refractive index polymer layer containing MgF 2 fine powder is further provided in the same manner as in Example 1, and further as a high refractive index layer,
A vacuum layer kept at an oxygen gas pressure of 2 × 10 -4 Torr was deposited by electron gun heating using titanium oxide as a deposition material to obtain an optical film thickness λ 0.
A / 2 mμ titanium oxide (TiO 2 ) layer was formed. That is, the light reflectance at a wavelength of 450 nm was improved to 92%, which was 4% higher than that of the silver single layer. The spectral reflectance is shown by the curve 2 in FIG. Even after the environment test at 60 ° C. and 90% humidity, no change in the appearance of the surface was observed and the reflectance did not decrease.

【0017】実施例3 図3に示すように、PMMA基体上に、蒸着材料とし
てクロムを用い、窒素ガス圧を1〜3×10-4Torrに維
持し、高周波イオンプレーティング蒸着によって200
Å〜300Åの窒化クロム層を形成し、さらに蒸着材
料をアルミとして真空度2×10-5Torr以下で膜厚約2
500Åの反射膜を形成し、さらに実施例1と同様に
MgF2 微粉末を含む低屈折率高分子層を形成した。
光反射防止効果及び60℃、90%湿度における耐環境
性能は実施例1と同じ効果が得られた。
Example 3 As shown in FIG. 3, chromium was used as a vapor deposition material on a PMMA substrate, the nitrogen gas pressure was maintained at 1 to 3 × 10 -4 Torr, and high frequency ion plating vapor deposition was performed to obtain 200.
A chromium nitride layer of Å ~ 300Å is formed, and the vapor deposition material is aluminum, and the film thickness is about 2 at a vacuum degree of 2 × 10 -5 Torr or less.
A 500 Å reflective film was formed, and a low refractive index polymer layer containing MgF 2 fine powder was formed in the same manner as in Example 1.
The same effects as in Example 1 were obtained for the light reflection preventing effect and the environment resistance performance at 60 ° C. and 90% humidity.

【0018】実施例4 図4に示すように、ポリメチルメタアクリレート樹脂か
らなる反射鏡基体の上に、アンダーコート層として
紫外硬化樹脂(スリーボンド製TB3003)をスピナ
ー塗布により硬化膜厚2μmで形成し、さらに金属層
としてアルミ材料を真空蒸着(低抗加熱)で膜厚200
0Åに形成した。光反射率は、波長450nmで88%が
得られた。さらにその上に、実施例2と同様に低屈折率
高分子層185mμと、高屈折率層として酸化チタ
ン(TiO2)層113mμを積層した。光反射率は波
長450nmで92%に向上し、又60℃、90%湿度環
境における耐環境テストにおいてもクラック、白濁等の
アルミ鏡面の劣化は生じず、光反射率は92%に維持さ
れていた。
Example 4 As shown in FIG. 4, an ultraviolet curable resin (TB3003 manufactured by ThreeBond Co., Ltd.) as an undercoat layer was formed on a reflecting mirror substrate made of polymethylmethacrylate resin by a spinner to have a cured film thickness of 2 μm. , And aluminum film as metal layer by vacuum evaporation (low resistance heating) to a film thickness of 200
Formed to 0Å. The light reflectance was 88% at a wavelength of 450 nm. Further thereon, a low refractive index polymer layer 185 mμ and a titanium oxide (TiO 2 ) layer 113 mμ as a high refractive index layer were laminated in the same manner as in Example 2. The light reflectance is improved to 92% at a wavelength of 450 nm, and the aluminum mirror surface does not deteriorate such as cracks or cloudiness even in the environment resistance test at 60 ° C and 90% humidity, and the light reflectance is maintained at 92%. It was

【0019】実施例5 図5に示すように、PMMA基板へフッ化マグネシウ
ム微粉末を混入した実施例1と同等の低屈折率樹脂層
(膜厚185mμ)を設け、さらに反射層としてA
l材料を真空蒸着法で2×10-5Torr以下の真空度の中
で2000Å積層し、保護層として、紫外線硬化型の
大日本インキ製ユニテック樹脂V−5500(商標)を
スピン塗布して膜厚約2μmの膜を形成した。光反射率
88%(波長450nm)の初期特性が得られ、又60
℃、90%湿度における1週間放置の耐環境テストにお
いても金属膜のクラック白濁は生じず反射率の低下は見
られなかった。この実施例においては、基体と低屈折
率層の間に高屈折率層を設けてもよいことは云うまで
もない。
Example 5 As shown in FIG. 5, a low-refractive-index resin layer (film thickness 185 mμ) equivalent to that of Example 1 in which fine powder of magnesium fluoride was mixed into a PMMA substrate was provided, and A was used as a reflective layer.
The material is laminated by a vacuum deposition method in a vacuum degree of 2 × 10 -5 Torr or less at 2000 Å, and a UV-curable unitech resin V-5500 (trademark) made by Dainippon Ink Co. A film having a thickness of about 2 μm was formed. Initial characteristics with a light reflectance of 88% (wavelength 450 nm) were obtained, and 60
Even in an environment resistance test in which the metal film was left standing for 1 week at 90 ° C. and 90% humidity, the cloudiness of the metal film did not occur and no decrease in reflectance was observed. In this embodiment, it goes without saying that a high refractive index layer may be provided between the substrate and the low refractive index layer.

【0020】以上の実施例は金属膜の厚さ2000〜3
000Åであり、光反射率80%以上であった。金属膜
の厚さ数10〜数100Åに設定した半透明反射鏡にお
いても同様の反射率の向上、耐環境性の向上が得られ
る。
In the above embodiment, the thickness of the metal film is 2000 to 3
It was 000Å, and the light reflectance was 80% or more. Even in a semi-transparent reflecting mirror in which the thickness of the metal film is set to several tens to several hundreds of liters, similar improvements in reflectance and environmental resistance can be obtained.

【0021】比較例 図6に示すように、メチルメタアクリレート基板上に
アンダーコート層として紫外線硬化樹脂(スリーボン
ド製TB3003)を厚さ2μmにスピナー塗布し、さ
らに、反射層としてアルミ材料を真空蒸着法で厚さ2
000Åに形成した。光反射率は88%が得られたが、
60℃、90%湿度の環境に1週間放置したとき、表面
が白濁化し反射率が70%に低下してしまった。
Comparative Example As shown in FIG. 6, a UV curing resin (TB3003 manufactured by ThreeBond) was spinner-coated to a thickness of 2 μm as an undercoat layer on a methylmethacrylate substrate, and an aluminum material was vacuum-deposited as a reflective layer. And thickness 2
Formed to 000Å. Although the light reflectance was 88%,
When left in an environment of 60 ° C. and 90% humidity for 1 week, the surface became cloudy and the reflectance decreased to 70%.

【0022】[0022]

【発明の効果】基体としてポリメチルメタクリレート
(PMMA)樹脂の成形体を用い、図1〜図6に示すよ
うに、金属層の上に低屈折率樹脂層を設けた場合、
さらに高屈折率層を積層した場合、これらにアンダー
コート層を設けた場合、及び比較例図6のように金属
層のみからなる場合、さらに裏面入射の各構成につい
て、光反射率及び耐環境テスト(60℃、90%湿度に
1週間放置)を行ったときの光反射率の変化が大きい波
長450nmでの反射率値と外観の変化を表1に示す。
When a molded body of polymethylmethacrylate (PMMA) resin is used as the substrate and a low refractive index resin layer is provided on the metal layer as shown in FIGS. 1 to 6,
Further, when a high refractive index layer is laminated, an undercoat layer is provided on these layers, and when only a metal layer is formed as shown in FIG. Table 1 shows the reflectance value and the change in appearance at a wavelength of 450 nm where the change in light reflectance is large when left at 60 ° C. and 90% humidity for 1 week.

【0023】[0023]

【表1】 構 成 初期値 耐環境性 光反射率 1週間放置後の光 (波長450nm) 反射率、外観性 1 実施例1 (図1) 層MgF2微粉末、層Al層 90% 89% 2 実施例2 (図2) 層層実施例1と同じ 層TiO2コート層 92% 90% 3 実施例3 (図3) 層層実施例1と同じ 層窒化クロム層 90% 90% 4 実施例4 (図4) 層層層実施例2と同じ 層紫外線硬化樹脂 92% 92% 5 実施例5 (図5) 層実施例1と同じ 層Al層、層保護層 88% 88% 6 比較例 (図6) 88% 70% 層層実施例4と同じ 白濁化[Table 1] Initial configuration value Environmental resistance Light reflectance Light after standing for 1 week (wavelength 450 nm) Reflectivity, appearance 1 Example 1 (Fig. 1) Layer MgF 2 fine powder, layer Al layer 90% 89% 2 Example 2 (FIG. 2) Layer layer Same as Example 1 TiO 2 coat layer 92% 90% 3 Example 3 (FIG. 3) Layer layer Same as Example 1 Chromium nitride layer 90% 90% 4 Example 4 (FIG. 4) Layer Layer Layer Same as Example 2 UV curable resin 92% 92% 5 Example 5 (FIG. 5) Same as Layer Example 1 Layer Al layer, Layer protective layer 88% 88% 6 Comparative Example ( (Fig. 6) 88% 70% Layer The same white turbidity as in Example 4.

【0024】上記のように本発明においては、反射率の
増加をもたらす低屈折率の微粉末を樹脂層に含ませるこ
とによって耐環境性を向上させたので、高温、高湿度の
悪環境下においても、性能劣化の少ない反射鏡を得るこ
とが出来た。
As described above, in the present invention, since the environment resistance is improved by including the fine powder having the low refractive index which causes the increase in the reflectance in the resin layer, it is possible to improve the environment resistance under the high temperature and high humidity environment. In addition, we were able to obtain a reflecting mirror with little performance deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】反射層の上に低屈折率層1層のみを有する本発
明の反射ミラーの実施例の構成図
FIG. 1 is a configuration diagram of an embodiment of a reflection mirror of the present invention having only one low refractive index layer on a reflection layer.

【図2】低屈折率層の上に高屈折率層を有する本発明の
反射ミラーの実施例の構成図
FIG. 2 is a configuration diagram of an embodiment of a reflection mirror of the present invention having a high refractive index layer on a low refractive index layer.

【図3】反射層の下にアンダーコート層、上に低屈折率
層を有する本発明の反射ミラーの実施例の構成図
FIG. 3 is a structural diagram of an embodiment of a reflection mirror of the present invention having an undercoat layer below a reflection layer and a low refractive index layer above it.

【図4】反射層の下にアンダーコート層、上に低屈折率
層と高屈折率層を有する本発明の反射ミラーの実施例の
構成図
FIG. 4 is a structural diagram of an embodiment of a reflective mirror of the present invention having an undercoat layer below a reflective layer and a low refractive index layer and a high refractive index layer above it.

【図5】反射層の裏に保護コート層を有する本発明の実
施例である裏面反射鏡の構成図
FIG. 5 is a configuration diagram of a back reflector which is an embodiment of the present invention having a protective coating layer on the back side of a reflecting layer.

【図6】反射層の上に樹脂層を有しない比較例である反
射ミラーの構成図
FIG. 6 is a configuration diagram of a reflective mirror that is a comparative example having no resin layer on the reflective layer.

【図7】従来の反射ミラーの1例を示す構成図FIG. 7 is a configuration diagram showing an example of a conventional reflection mirror.

【図8】実施例1、2の分光反射率曲線図FIG. 8 is a spectral reflectance curve diagram of Examples 1 and 2.

【符号の説明】 低屈折率樹脂層 金属層 高屈折率層 アンダーコート層 基体 保護コート 紫外線硬化樹脂層 紫外線硬化トップコート層[Explanation of Codes] Low Refractive Index Resin Layer Metal Layer High Refractive Index Layer Undercoat Layer Substrate Protective Coating UV Curing Resin Layer UV Curing Topcoat Layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高分子基体上に金属層を設けた光反射体
において、金属層の光反射面の上に、低屈折率材料微粉
末を含む樹脂層を少なくとも1層設けた光反射ミラー
1. A light-reflecting mirror having a metal layer provided on a polymer substrate, wherein at least one resin layer containing fine powder of low refractive index material is provided on the light-reflecting surface of the metal layer.
【請求項2】 上記の光反射面上の低屈折率材料微粉末
を含む低屈折率樹脂層に接して、さらに高屈折率層を設
けた請求項1の光反射ミラー
2. The light reflecting mirror according to claim 1, further comprising a high refractive index layer provided in contact with the low refractive index resin layer containing the low refractive index material fine powder on the light reflecting surface.
【請求項3】 上記高屈折率層を、高屈折率材料微粉末
を含む樹脂層とした請求項2の光反射ミラー
3. The light reflecting mirror according to claim 2, wherein the high refractive index layer is a resin layer containing fine powder of high refractive index material.
【請求項4】 上記高屈折率層を、無機物質からなる層
とした請求項2の光反射ミラー
4. The light reflecting mirror according to claim 2, wherein the high refractive index layer is a layer made of an inorganic material.
【請求項5】 基体側が光の入射面となっており、上記
低屈折率層または低屈折率層と高屈折率層との積層が基
体と金属層の間に設けられている請求項1または2の光
反射ミラー
5. The light-incident surface is on the substrate side, and the low refractive index layer or a laminate of the low refractive index layer and the high refractive index layer is provided between the substrate and the metal layer. 2 light reflection mirrors
【請求項6】 上記金属層の裏側に保護層が設けられて
いる請求項5の光反射ミラー
6. The light reflecting mirror according to claim 5, wherein a protective layer is provided on the back side of the metal layer.
JP11380891A 1991-04-19 1991-04-19 Reflection mirror Withdrawn JPH05100107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11380891A JPH05100107A (en) 1991-04-19 1991-04-19 Reflection mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11380891A JPH05100107A (en) 1991-04-19 1991-04-19 Reflection mirror

Publications (1)

Publication Number Publication Date
JPH05100107A true JPH05100107A (en) 1993-04-23

Family

ID=14621584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11380891A Withdrawn JPH05100107A (en) 1991-04-19 1991-04-19 Reflection mirror

Country Status (1)

Country Link
JP (1) JPH05100107A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311207A (en) * 1996-05-17 1997-12-02 Matsushita Electric Ind Co Ltd Mirror, film, and television image receiver
JP2002139610A (en) * 2000-10-31 2002-05-17 Mitsubishi Chemicals Corp Method for manufacturing projection lens
JP2008175929A (en) * 2007-01-17 2008-07-31 Nikon Corp Method for manufacturing reflection mirror and optical instrument
JP2010028047A (en) * 2008-07-24 2010-02-04 Kyocera Corp Light-emitting device, substrate for light-emitting device, and lighting system using light-emitting device
JP2011138034A (en) * 2009-12-28 2011-07-14 Sumitomo Osaka Cement Co Ltd Method for forming reflection enhancement film, reflection enhancement film, and coating material for forming reflection enhancement film
JP2014502373A (en) * 2010-11-18 2014-01-30 コーニング インコーポレイテッド Strengthened and protected silver coating on aluminum for optical mirrors
JP2017062425A (en) * 2015-09-25 2017-03-30 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
JP2018025740A (en) * 2016-08-09 2018-02-15 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
JP2018025718A (en) * 2016-08-12 2018-02-15 コニカミノルタ株式会社 Light reflection film, method for manufacturing light reflection film, backlight unit for liquid crystal display

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311207A (en) * 1996-05-17 1997-12-02 Matsushita Electric Ind Co Ltd Mirror, film, and television image receiver
JP2002139610A (en) * 2000-10-31 2002-05-17 Mitsubishi Chemicals Corp Method for manufacturing projection lens
JP2008175929A (en) * 2007-01-17 2008-07-31 Nikon Corp Method for manufacturing reflection mirror and optical instrument
JP2010028047A (en) * 2008-07-24 2010-02-04 Kyocera Corp Light-emitting device, substrate for light-emitting device, and lighting system using light-emitting device
JP2011138034A (en) * 2009-12-28 2011-07-14 Sumitomo Osaka Cement Co Ltd Method for forming reflection enhancement film, reflection enhancement film, and coating material for forming reflection enhancement film
JP2014502373A (en) * 2010-11-18 2014-01-30 コーニング インコーポレイテッド Strengthened and protected silver coating on aluminum for optical mirrors
US10001588B2 (en) 2010-11-18 2018-06-19 Corning Incorporated Enhanced, protected silver coatings on aluminum for optical mirror and method of making same
JP2017062425A (en) * 2015-09-25 2017-03-30 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
JP2018025740A (en) * 2016-08-09 2018-02-15 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
JP2018025718A (en) * 2016-08-12 2018-02-15 コニカミノルタ株式会社 Light reflection film, method for manufacturing light reflection film, backlight unit for liquid crystal display

Similar Documents

Publication Publication Date Title
JP3708429B2 (en) Method for manufacturing vapor deposition composition, method for manufacturing optical component having vapor deposition composition and antireflection film
US20060014101A1 (en) Radiation-curable anti-reflective coating system
JPH05503372A (en) D. C. Reactive sputtered anti-reflective coating
CN113671604A (en) Optical article comprising an antireflection coating for low illumination conditions in the visible region
CN106896423B (en) Composite high refractive index layer for antireflective stacks
JPH08110401A (en) Transparent high refractive index film and transparent laminated body
KR100553010B1 (en) Composition for vapor deposition, method for forming antireflection film using it, and optical element
JPH05100107A (en) Reflection mirror
JP2002122820A (en) Ophthalmic lens having hard coating layer and antireflection film
CN1196946C (en) Antireflection film
JPS5949501A (en) Transparent material having antireflection film
KR101753879B1 (en) Organic light emitting diode display
JP3221764B2 (en) Anti-reflection coating for optical parts made of synthetic resin
JP3012712B2 (en) Optical member having antireflection film
JP3068252B2 (en) Optical member having antireflection film
JP3186437B2 (en) Coating solution for forming anti-reflective film and substrate with anti-reflective film
JPH0461324B2 (en)
JP3445773B2 (en) Plastic mirror coated lens
JPH10305510A (en) Reflective film
JP2004300580A (en) Method for manufacturing vapor deposition composition, and method for manufacturing optical component having vapor deposition composition and reflection preventive film
JP3068243B2 (en) Optical member having antireflection film
JP2639667B2 (en) Dual wavelength anti-reflection coating
JPS6045201A (en) Plastic lens
JPH0915402A (en) Optical articles having antireflection film and its production
JPS6296901A (en) Synthetic resin lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711