JPH0499861A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH0499861A
JPH0499861A JP21491090A JP21491090A JPH0499861A JP H0499861 A JPH0499861 A JP H0499861A JP 21491090 A JP21491090 A JP 21491090A JP 21491090 A JP21491090 A JP 21491090A JP H0499861 A JPH0499861 A JP H0499861A
Authority
JP
Japan
Prior art keywords
sputtering
film
oxygen
metal
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21491090A
Other languages
Japanese (ja)
Inventor
Yukiyasu Sugano
菅野 幸保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21491090A priority Critical patent/JPH0499861A/en
Publication of JPH0499861A publication Critical patent/JPH0499861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film of the oxynitride of a high m.p. metal having uniform quality by sputtering a target made of the high m.p. metal in an atmosphere contg. gas contg. nitrogen and oxygen as constituent elements. CONSTITUTION:For example, dinitrogen oxide (N2O) is used as gas contg. nitrogen and oxygen as constituent elements, an Si wafer and a Ti substrate are placed opposite to each other in the sputtering chamber of a magnetron sputtering device and reactive sputtering is carried out. Since the gas contg. oxygen and nitrogen has lower reactivity with a high m.p. metal than gaseous O2, even when the high m.p. metal is not uniformly sputtered in the surface of the target, the resulting reaction product hardly undergoes a change in the compsn. and the uniformity of the quality of an oxynitride film formed on the substrate placed opposite to the target can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜形成方法に関し、特にスバ・ツタリングに
より膜質の均一な高融点金属の酸窒化膜を形成する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a thin film, and more particularly to a method for forming an oxynitride film of a refractory metal with uniform film quality by means of sputtering.

〔発明の概要〕[Summary of the invention]

本発明は、高融点金属の酸窒化膜を形成するに際し、窒
素と酸素とを構成元素とするガスを含む雰囲気中で反応
性スパッタリングを行うことにより、高融点金属の酸化
反応を制御して膜質均一性の向上を図るものである。
When forming an oxynitride film of a high melting point metal, the present invention performs reactive sputtering in an atmosphere containing a gas containing nitrogen and oxygen as constituent elements to control the oxidation reaction of the high melting point metal and improve the film quality. This aims to improve uniformity.

〔従来の技術〕[Conventional technology]

半導体装置のデザイン・ルールの微細化に伴い、アルミ
ニウム配線の信頼性を向上させるためにその下層に配さ
れるバリヤメタル、あるいはパターニング時の反射防止
を目的として設けられる反射防止膜等を構成する材料層
として、T iOX N yに代表されるような高融点
金属の酸窒化膜が多用されるようになってきている。こ
れらの酸窒化膜は一般に反応性スパッタリングにより成
膜されている。たとえば上記のT i 0XNyは、0
□ガスとN2ガスとの混合ガス雰囲気中、もしくはこれ
にアルゴン等の希ガスを添加した混合ガス雰囲気中にお
いてTiターゲットをスパッタリングすることにより成
膜される。
With the miniaturization of semiconductor device design rules, material layers that make up barrier metals placed below aluminum wiring to improve reliability, or anti-reflection films provided to prevent reflections during patterning. As such, oxynitride films of high melting point metals such as TiOXNy are increasingly being used. These oxynitride films are generally formed by reactive sputtering. For example, the above T i 0XNy is 0
The film is formed by sputtering a Ti target in a mixed gas atmosphere of □ gas and N2 gas, or in a mixed gas atmosphere to which a rare gas such as argon is added.

スパッタリングにおいては成膜速度も工業上重要なファ
クターである。しかし、高融点金属は金銀、銅等の低融
点金属に比べてスパッタリング率が低いので、高融点金
属ターゲットに対してスパッタリングを行う場合には、
電力効率に優れるマグネトロン・スパッタリング方式が
通常適用されている。
In sputtering, film formation speed is also an important industrial factor. However, since high melting point metals have a lower sputtering rate than low melting point metals such as gold, silver and copper, when performing sputtering on a high melting point metal target,
A magnetron sputtering method, which has excellent power efficiency, is usually applied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、マグネトロン・スパッタリング方式による反応
性スパッタリングでは、得られる膜の膜質を面内にわた
って均一化することが困難である。
However, with reactive sputtering using a magnetron sputtering method, it is difficult to make the quality of the obtained film uniform over the entire surface.

これは、マグネトロン・スパッタリング方式では磁束の
存在により、ターゲットに衝突するイオンの面内分布を
均一化することができないからである。すなわち、電子
が磁力線を巻くようにサイクロイド運動を行っている領
域では多(のイオンが生成するので、該領域近傍のター
ゲット表面では多くのイオンが衝突してスパッタ量が多
くなるが、それ以外の領域ではイオンの生成量が少ない
ためターゲットのスパッタ量も少なくなる。
This is because in the magnetron sputtering method, the presence of magnetic flux makes it impossible to make the in-plane distribution of ions colliding with the target uniform. In other words, a large number of ions are generated in a region where electrons are moving in a cycloidal manner as if winding magnetic lines of force, so many ions collide with the target surface near the region, resulting in a large amount of sputtering. Since the amount of ions produced in this region is small, the amount of target sputtering is also reduced.

さらに反応性スパッタリングの機構を考えた場合、ター
ゲット表面におけるスパッタ量は反応の進行度に影響し
、ひいては膜質に影響する。特に、高融点金属の酸窒化
膜がバリヤメタルとして使用される場合には、抵抗の面
内分布が大きな問題となる。つまり、スパッタ量の少な
い領域では酸化および窒化が余分に進行するので、対向
配置される基板上には抵抗の比較的高い膜が形成され、
スパッタ量の多い領域ではより高融点金属の単体に近い
組成を有し抵抗の比較的低い膜が形成されてしまう。従
来の酸窒化膜の形成方法では、スパッタリング雰囲気中
に酸素供給源として02ガスが添加されているが、0□
ガスと高融点金属との反応性が高く酸化反応が極めて速
やかに進行するために、スパッタ量の不均一性の影響が
抵抗率の変化に大きく反映され易い。たとえば、5イン
チ・ウェハ上にT i O,N、を成膜した場合、ウェ
ハ面に沿ってみた場合のシート抵抗の分布は約20%に
も及んでしまう。
Furthermore, when considering the mechanism of reactive sputtering, the amount of sputtering on the target surface affects the progress of the reaction, which in turn affects the film quality. In particular, when an oxynitride film of a high melting point metal is used as a barrier metal, the in-plane distribution of resistance becomes a big problem. In other words, oxidation and nitridation proceed excessively in areas where the amount of sputtering is small, so a film with relatively high resistance is formed on the opposing substrates.
In a region where the amount of sputtering is large, a film having a composition closer to that of a single high melting point metal and having a relatively low resistance is formed. In the conventional method for forming an oxynitride film, 02 gas is added as an oxygen supply source to the sputtering atmosphere, but 0□
Since the reactivity between the gas and the high-melting point metal is high and the oxidation reaction progresses extremely quickly, the influence of non-uniformity in the amount of sputtering tends to be largely reflected in the change in resistivity. For example, when a film of T i O,N is formed on a 5-inch wafer, the sheet resistance distribution when viewed along the wafer surface reaches about 20%.

そこで本発明は、上述の問題を解決し、反応性スパッタ
リングにより高融点金属の酸窒化膜を形成する際の膜質
均一性を向上させることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and improve the uniformity of film quality when forming an oxynitride film of a high melting point metal by reactive sputtering.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の薄膜形成方法は上述の目的を達成するために提
案されるものであり、窒素と酸素とを構成元素とするガ
スを含む雰囲気中で高融点金属からなるターゲットのス
パッタリングを行うことにより前記高融点金属の酸窒化
膜を形成することを特徴とするものである。
The thin film forming method of the present invention is proposed to achieve the above-mentioned object, and the thin film forming method of the present invention is proposed by sputtering a target made of a high melting point metal in an atmosphere containing a gas containing nitrogen and oxygen as constituent elements. This method is characterized by forming an oxynitride film of a high melting point metal.

〔作用〕[Effect]

本発明では、反応性スパッタリングにより高融点金属の
酸窒化膜を形成するための酸素供給源として、スパッタ
リング雰囲気中に従来の02ガスに替えて、酸素と窒素
とを構成元素とするガスが添加されている。酸素と窒素
とを構成元素とするガスは、0゜ガスに比べて高融点金
属との反応性が低いので、ターゲット表面における高融
点金属のスパッタ量が面内でばらついても反応生成物の
組成が変動しにくい。したがって、上記ターゲットに対
向配置される基板上においても、形成される酸窒化膜の
膜質均一性が改善される。
In the present invention, a gas containing oxygen and nitrogen as constituent elements is added to the sputtering atmosphere in place of the conventional 02 gas as an oxygen supply source for forming an oxynitride film of a high melting point metal by reactive sputtering. ing. Gases whose constituent elements are oxygen and nitrogen have lower reactivity with high-melting point metals than 0° gases, so even if the sputtering amount of high-melting point metals on the target surface varies within the surface, the composition of the reaction product will remain constant. is difficult to change. Therefore, the uniformity of the film quality of the oxynitride film formed is improved even on the substrate disposed opposite to the target.

〔実施例〕〔Example〕

以下、本発明の薄膜形成方法の具体的な適用例を実験結
果にもとづいて説明する。
Hereinafter, specific application examples of the thin film forming method of the present invention will be explained based on experimental results.

実験例 ここでは、窒素と酸素とを構成元素とするガスとして酸
化二窒素N20 を使用し、シリコン・ウェハ上にTi
C1+Ny膜を成膜する実験を行った。
Experimental Example Here, dinitrogen oxide N20 is used as a gas containing nitrogen and oxygen as constituent elements, and Ti is deposited on a silicon wafer.
An experiment was conducted to form a C1+Ny film.

すなわち、マグネトロン・スパッタリング装置のスパッ
タ・チャンバー内に5インチ径のシリコン・ウェハとT
i基板とを対向配置し、N2ガス流量445CCM、 
NzOガス流量65CCM、  ガス圧3.7mTor
r+  ターゲット電力3kWの条件で反応性スパッタ
リングを行った。その結果、シリコン・ウェハ上に成膜
速度600人/分にてT i O,N。
That is, a 5-inch diameter silicon wafer and a T
The i-substrate is placed facing the N2 gas flow rate of 445 CCM,
NzO gas flow rate 65CCM, gas pressure 3.7mTor
Reactive sputtering was performed under the conditions of r+ target power of 3 kW. As a result, T i O,N was deposited on silicon wafers at a deposition rate of 600 people/min.

膜が成膜された。このT i OXN、膜は、酸素含量
がほぼ20原子%、抵抗率が約1mΩ・cmであり、シ
ート抵抗の面内分布はほぼ10%以内と良好であった。
A film was deposited. This T i OXN film had an oxygen content of about 20 atomic %, a resistivity of about 1 mΩ·cm, and a good in-plane distribution of sheet resistance of about 10% or less.

なお、T i 0XNy膜の成膜条件は上述の条件に限
られるものではなく、たとえば雰囲気ガスにAr等の希
ガスを適宜添加したり、基板バイアスを併用することが
できる。これらの場合には、成膜速度が上昇して酸素の
取り込み量が減少するので、N2ガスに対するN20ガ
スの流量比を上述の条件よりも高める必要がある。
Note that the conditions for forming the Ti 0 In these cases, the film formation rate increases and the amount of oxygen taken in decreases, so it is necessary to increase the flow rate ratio of N20 gas to N2 gas compared to the above-mentioned conditions.

また、窒素と酸素とを構成元素とするガスとしては、上
述のN20 の他、NO,N20.、NO。
In addition to the above-mentioned N20, gases containing nitrogen and oxygen as constituent elements include NO, N20. , NO.

(もしくは二量体のN20.)、No3等が実用上好適
である。上記の構成元素からなる化合物としては、他に
N20.とN、O,がある。前者は常温常圧で固体の化
合物であるが、昇華し得る条件が設定されれば使用可能
である。しかし、後者は極めて不安定な固体であり、実
用性には乏しい。
(or dimer N20.), No.3, etc. are practically suitable. Other examples of compounds consisting of the above constituent elements include N20. There are N, O, and N. The former is a solid compound at room temperature and pressure, but it can be used if conditions are set that allow it to sublimate. However, the latter is an extremely unstable solid and is of little practical use.

比較実験例 ここでは、従来どおり酸素供給源として02ガスを使用
し、マグネトロン・スパッタリング装置を使用する反応
性スパッタリングにより、同様にシリコン・ウェハ上に
Ti 0XNy膜を成膜する実験を行った。
Comparative Experimental Example Here, an experiment was conducted in which a Ti 0XNy film was similarly formed on a silicon wafer by reactive sputtering using a magnetron sputtering device, using 02 gas as an oxygen supply source as before.

条件は、N2ガス流量47 SCCM、 O□ガス流量
35CCM、  ガス圧3.7 mTorr、ターゲッ
ト電力3kW、成膜速度600人/分とした。形成され
たTi O,N、膜は、全体としての酸素含量がほぼ2
0原子%、抵抗率が約1mΩ・cmであり、この意味で
は上述の実験例と同等であった。しかし、ウェハ面内で
酸素含量のバラツキがあるために、シート抵抗の面内分
布は約20%にも及び、前述の実験例と比べて膜質均一
性が大きく劣化していた。
The conditions were as follows: N2 gas flow rate 47 SCCM, O□ gas flow rate 35 CCM, gas pressure 3.7 mTorr, target power 3 kW, and film formation rate 600 people/min. The formed TiO,N film has an overall oxygen content of approximately 2
The resistivity was 0 atomic % and the resistivity was about 1 mΩ·cm, and in this sense, it was equivalent to the above-mentioned experimental example. However, due to variations in oxygen content within the wafer plane, the in-plane distribution of sheet resistance reached about 20%, and the film quality uniformity was significantly degraded compared to the above-mentioned experimental example.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明を適用すれば
、従来の方法よりも高融点金属の酸化反応が穏やかに進
行するために、酸窒化膜の組成の面内分布が緩和され、
膜質均一性を向上させることができる。したがって、本
発明は高集積度を有する半導体装置の製造等に特に有効
である。
As is clear from the above explanation, when the present invention is applied, the oxidation reaction of the high melting point metal proceeds more gently than in the conventional method, so the in-plane distribution of the composition of the oxynitride film is relaxed,
Film quality uniformity can be improved. Therefore, the present invention is particularly effective for manufacturing semiconductor devices with a high degree of integration.

Claims (1)

【特許請求の範囲】[Claims] 窒素と酸素とを構成元素とするガスを含む雰囲気中で高
融点金属からなるターゲットのスパッタリングを行うこ
とにより前記高融点金属の酸窒化膜を形成することを特
徴とする薄膜形成方法。
A method for forming a thin film, comprising forming an oxynitride film of a high melting point metal by sputtering a target made of a high melting point metal in an atmosphere containing a gas containing nitrogen and oxygen as constituent elements.
JP21491090A 1990-08-16 1990-08-16 Formation of thin film Pending JPH0499861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21491090A JPH0499861A (en) 1990-08-16 1990-08-16 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21491090A JPH0499861A (en) 1990-08-16 1990-08-16 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH0499861A true JPH0499861A (en) 1992-03-31

Family

ID=16663598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21491090A Pending JPH0499861A (en) 1990-08-16 1990-08-16 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH0499861A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743668B2 (en) * 2000-09-18 2004-06-01 Motorola, Inc. Process for forming a metal oxy-nitride dielectric layer by varying the flow rate of nitrogen into the chamber
JP2009149953A (en) * 2007-12-21 2009-07-09 National Institute Of Advanced Industrial & Technology Method for manufacturing nitride semiconductor and nitride semiconductor device
JP2015160995A (en) * 2014-02-27 2015-09-07 シャープ株式会社 METHOD FOR MANUFACTURING AlNO BUFFER LAYER AND METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR ELEMENT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743668B2 (en) * 2000-09-18 2004-06-01 Motorola, Inc. Process for forming a metal oxy-nitride dielectric layer by varying the flow rate of nitrogen into the chamber
JP2009149953A (en) * 2007-12-21 2009-07-09 National Institute Of Advanced Industrial & Technology Method for manufacturing nitride semiconductor and nitride semiconductor device
JP2015160995A (en) * 2014-02-27 2015-09-07 シャープ株式会社 METHOD FOR MANUFACTURING AlNO BUFFER LAYER AND METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR ELEMENT

Similar Documents

Publication Publication Date Title
KR0172772B1 (en) Method of forming ruo2 film of semiconductor equipment
US4248688A (en) Ion milling of thin metal films
JPS634703B2 (en)
US5605724A (en) Method of forming a metal conductor and diffusion layer
US5350488A (en) Process for etching high copper content aluminum films
US6787861B2 (en) Non-crystalline oxides for use in microelectronic, optical, and other applications
JPH0258332A (en) Method of passivating surface of compound semiconductor
US6693345B2 (en) Semiconductor wafer assemblies comprising photoresist over silicon nitride materials
US4790920A (en) Method for depositing an al2 O3 cap layer on an integrated circuit substrate
JP2005340721A (en) Method of depositing dielectric film having high dielectric constant
JPH07326618A (en) Wiring structure and its preparation
JPH0499861A (en) Formation of thin film
US20190212656A1 (en) PVD Films For EUV Lithography
US10988838B2 (en) Color film and method of forming the same
KR20050103973A (en) Hafnium alloy target and process for producing the same
JPH05279846A (en) Target for sputtering and formation of sputtered tion film
JPS59168643A (en) Compacting treatment method of oxide film
JP3552238B2 (en) Method of forming ohmic contact portion of LSI
JPH06172989A (en) Metal oxide film forming method
JPH01234578A (en) Dry etching method for thin copper film
JP3288010B2 (en) Method for forming metal wiring of semiconductor device
JPS63132475A (en) Thin film and manufacture thereof
JPS641548B2 (en)
JPH0590264A (en) Semiconductor device and manufacture thereof
TW483941B (en) Method for controlling thickness of titanium nitride film