JPH0499245A - Sintered hard alloy - Google Patents
Sintered hard alloyInfo
- Publication number
- JPH0499245A JPH0499245A JP21136490A JP21136490A JPH0499245A JP H0499245 A JPH0499245 A JP H0499245A JP 21136490 A JP21136490 A JP 21136490A JP 21136490 A JP21136490 A JP 21136490A JP H0499245 A JPH0499245 A JP H0499245A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- metals
- group
- cemented carbide
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 19
- 239000000956 alloy Substances 0.000 title claims abstract description 19
- 239000011230 binding agent Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 230000000737 periodic effect Effects 0.000 claims abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 abstract description 8
- -1 carbon nitrides Chemical class 0.000 abstract description 5
- 229910000831 Steel Inorganic materials 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 4
- 239000000843 powder Substances 0.000 abstract description 4
- 239000010959 steel Substances 0.000 abstract description 4
- 150000002739 metals Chemical class 0.000 abstract 6
- 229910052799 carbon Inorganic materials 0.000 abstract 2
- 238000005245 sintering Methods 0.000 abstract 2
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 239000011812 mixed powder Substances 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 12
- 238000003466 welding Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910003468 tantalcarbide Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、超硬合金に関し、特に、製缶加工のための鋼
板の深絞り加工に用いる成形金型や切削工具などの、高
い耐摩耗性を必要とする工具に適した超硬合金に関する
ものである。Detailed Description of the Invention [Industrial Application Field] The present invention relates to cemented carbide, and in particular, to highly wear-resistant materials such as forming dies and cutting tools used in deep drawing of steel plates for can manufacturing. The present invention relates to cemented carbide suitable for tools that require high properties.
[従来の技術]
工業的に生産される超硬合金として代表的なものは、炭
化タングステン(WC)の微粉末を主成分としたものを
、コバルト(CO)などの鉄族金属を結合相として焼結
したものであり、塑性加工用工具としても、従来からW
C−Co系合金が一般に用いられている。しかしなが
ら、被加工物と工具の接触面が摩擦熱によって昇温した
状態で、しかも絞り率の高い過酷な条件で使用される深
絞り加工用の成形金型においては、工具と被加工材との
間に発生する摩擦熱と工具の摩耗から、WC−Co系超
硬合金では工具表面に圧着や溶着が生じ、それらが工具
のかじりの原因となって工具寿命を低下させるという問
題があった。[Prior art] A typical industrially produced cemented carbide is one whose main component is fine powder of tungsten carbide (WC), with iron group metals such as cobalt (CO) as a binder phase. It is a sintered product, and has traditionally been used as a plastic working tool.
C--Co alloys are commonly used. However, in forming dies for deep drawing, which are used under harsh conditions with a high drawing ratio and where the contact surface between the workpiece and the tool is heated due to frictional heat, the contact between the tool and the workpiece is In WC-Co cemented carbide, crimping and welding occur on the tool surface due to the frictional heat generated during the process and wear of the tool, which causes galling of the tool and shortens the tool life.
そこで、このような問題点を改善するものとして、硬質
相としては、WCを主体としてこれに炭化タンタル(T
a C)と炭化チタン(T i C)を加え、鉄族金
属からなる結合相にはクロムやクロム化合物を固溶させ
た塑性加工用の超硬合金が、たとえば特公昭63−15
980号公報において提案されている。同公報に記載さ
れた超硬合金は、TaCやTiCの被加工材料に対する
親和性の低さを利用して工具の耐圧着性、耐溶着性を向
上し、結合相にクロム元素を含むことにより、高温にお
ける合金特性の向上を図ったものである。Therefore, in order to improve these problems, the hard phase is mainly composed of WC, and tantalum carbide (T) is added to this.
Cemented carbide for plastic working, in which titanium carbide (T i C) and titanium carbide (T i C) are added, and chromium or chromium compounds are solidly dissolved in the binder phase consisting of iron group metals, has been developed, for example, by Japanese Patent Publication No. 63-15.
This is proposed in Japanese Patent No. 980. The cemented carbide described in the publication improves the crimp resistance and welding resistance of tools by taking advantage of the low affinity of TaC and TiC for the workpiece material, and by including chromium element in the binder phase. , which aims to improve alloy properties at high temperatures.
[発明が解決しようとする課題]
しかしながら、特にスズめっきを施した鋼板などを深絞
り加工する製缶加工などにおいては、過酷な加工条件で
さらに工具寿命を延ばして、製造コストを下げることが
要望されており、上記従来の超硬合金よりいっそう耐摩
耗性を向上した超硬合金の開発が課題となっていた。[Problem to be solved by the invention] However, especially in can making processing where tin-plated steel plates are deep drawn, there is a desire to further extend tool life and reduce manufacturing costs under harsh processing conditions. Therefore, the challenge was to develop a cemented carbide with even higher wear resistance than the conventional cemented carbide mentioned above.
[課題を解決するための手段]
上記課題を解決するため本発明の超硬合金は、周期律表
のIVa族、Va族、VIa族に属する少なくとも1種
類以上の元素の炭窒化物からなる70重量%以上99重
量%以下の硬質相と、鉄族金属クロムとの合金からなる
1重量%以上30重量%以下の結合相とを含んでいる。[Means for Solving the Problems] In order to solve the above problems, the cemented carbide of the present invention comprises a carbonitride of at least one element belonging to Group IVa, Group Va, or Group VIa of the periodic table. It contains a hard phase of not less than 99% by weight and a binder phase of not less than 1% and not more than 30% by weight, which is made of an alloy with iron group metal chromium.
結合相中のクロム元素の含有量は、全結合相に対して1
重量%以上30重量%以下であり、全合金中における窒
素含有量は0.05重量以上0.4重量%以下である。The content of chromium element in the binder phase is 1 for the total binder phase.
The nitrogen content in the entire alloy is 0.05 to 0.4 weight %.
[作用]
本発明の超硬合金の組成を上記のように限定したのは、
次の理由による。[Function] The composition of the cemented carbide of the present invention is limited as described above because
Due to the following reasons.
まず、硬質相の含有量を70重量%以上としたのは、7
0重量%未満では、相対的に硬質相の含有比率が低くな
り過ぎて硬度か低下し、所望の耐摩耗性を得ることがで
きないからである。また、硬質相の含有量を99重量%
以下としたのは、99重量%をこえると結合相の含有量
が1重量%未満となって、欠陥のない良質の合金を形成
することができないからである。First, the content of the hard phase was set to 70% by weight or more because 7
This is because if it is less than 0% by weight, the content ratio of the hard phase becomes relatively too low, the hardness decreases, and the desired wear resistance cannot be obtained. In addition, the content of the hard phase is 99% by weight.
The reason why it is set below is that if the content exceeds 99% by weight, the content of the binder phase becomes less than 1% by weight, making it impossible to form a defect-free and high-quality alloy.
また、結合相中のクロムの含有量は、全結合相に対し1
重量%以上30重量%以下としたのは、1重量%未満で
はクロム添加による高温における合金特性向上の効果が
十分ではなく、30重量%をこえると、結合相の靭性が
低下するためである。In addition, the content of chromium in the binder phase is 1% relative to the total binder phase.
The reason why the range is from 1% to 30% by weight is that if it is less than 1% by weight, the effect of improving the alloy properties at high temperatures by adding chromium is not sufficient, and if it exceeds 30% by weight, the toughness of the binder phase decreases.
さらに、全合金中における窒素含有量が0.05重量%
以上0.4重量%以下としたのは、0゜05重量%以上
の窒素を含有することにより、耐溶着性が向上するが、
0.05重量%未満ではその効果が十分ではなく、また
、0.4重量%をこえると、焼結性が劣化してピンホー
ルなどの欠陥が増加し、かえって強度が低下するためで
ある。Furthermore, the nitrogen content in the entire alloy is 0.05% by weight.
The reason why the nitrogen content is 0.4% by weight or less is that the welding resistance is improved by containing nitrogen in an amount of 0.05% by weight or more.
If it is less than 0.05% by weight, the effect will not be sufficient, and if it exceeds 0.4% by weight, the sinterability will deteriorate, defects such as pinholes will increase, and the strength will decrease on the contrary.
なお、硬質相の炭窒化物の粒径は3μm以下であること
が好ましい。これは、硬質相の粒径が3μmを超えると
、同結合相量では、3μm以下のものより、合金の硬度
が低下し、工具の耐摩耗性が劣ってくると共に、さらに
硬質相が大きくなれば、その部分に応力集中を起こし、
合金の靭性を低下させ、結果として工具の寿命を低下さ
せるからである。Note that the particle size of the carbonitride in the hard phase is preferably 3 μm or less. This is because when the particle size of the hard phase exceeds 3 μm, the hardness of the alloy decreases and the wear resistance of the tool deteriorates, and the hard phase becomes even larger than when the particle size of the hard phase exceeds 3 μm for the same amount of binder phase. If the stress is concentrated in that area,
This is because it reduces the toughness of the alloy and, as a result, reduces the life of the tool.
また、硬質相の塑性として、少なくともタングステン、
チタン、タンタル、ニオブおよびバナジウムの炭窒化物
を含むのが好ましい。これは、IVa、 Va、 VI
a族の炭窒化物の中で、鉄族金属および、Crとの濡れ
性が良いことと、従来の一般的超硬合金であるWC−C
O合金よりもTi、Ta等の炭窒化物を含むことによっ
て、被加工材との親和性を低下させ、耐溶着性、耐圧着
性を向上させるためである。In addition, as the plasticity of the hard phase, at least tungsten,
Preferably, carbonitrides of titanium, tantalum, niobium and vanadium are included. This is IVa, Va, VI
Among group A carbonitrides, WC-C, which is a conventional common cemented carbide, has good wettability with iron group metals and Cr.
This is because by including carbonitrides such as Ti and Ta rather than the O alloy, the compatibility with the workpiece is lowered and the welding resistance and pressure bonding resistance are improved.
[実施例] 以下本発明を、実施例に従って具体的に説明する。[Example] The present invention will be specifically explained below according to examples.
第1表に示す9種類の成分組成の超硬合金を用意し、こ
れらの各超硬合金について、次の2とおりの工具耐久試
験を実施した。なお、第1表において*を付した数値は
、本発明の範囲を外れている。したがって、これらの9
種類の組成の超硬合金のうち、組成No、 2. 7
. 8の3種類が本発明品であり、その他の6種類はす
べて比較品である。Cemented carbide alloys having nine types of component compositions shown in Table 1 were prepared, and the following two types of tool durability tests were conducted on each of these cemented carbide alloys. Note that the numerical values marked with * in Table 1 are outside the scope of the present invention. Therefore, these 9
Among cemented carbide alloys with different compositions, composition No. 2. 7
.. Three types of No. 8 are the products of the present invention, and the other six types are all comparative products.
(以下余白)
第1表
*印は、その数値が本発明の範囲から外れていることを
示す。(Hereinafter, blank spaces) Table 1 * indicates that the value is outside the scope of the present invention.
(工具耐久試験l)
本発明による超硬合金を深絞り加工(アイアニング)用
の金型として用いた場合の耐摩耗性を評価するため、第
1表に示す9種類の組成の超硬合金で、第2表に示す深
絞り加工用のダイスを形成し、当表に示す条件で製缶加
工試験を実施した。(Tool Durability Test 1) In order to evaluate the wear resistance when the cemented carbide according to the present invention is used as a mold for deep drawing (ironing), the cemented carbide of nine types of composition shown in Table 1 was tested. A die for deep drawing shown in Table 2 was formed, and a can making test was conducted under the conditions shown in Table 2.
た場合を基準に、 これを1とした比率で示した。Based on the case where This is expressed as a ratio of 1.
(以千余[F])
第2表
この加工試験の結果を第3表の「工具耐久試験1の結果
」の欄に示す。なお、この欄に示す数値は、工具寿命の
相対比率、即ち、ダイスが摩耗して使えなくなるまでに
成形した缶の数の比率を、比較品である組成No、lか
らなるダイスを用い第3表
第3表の結果から明らかなように、本発明品を深絞り加
工用の金型として用いた場合、比較界に比べて大幅に寿
命が延びていることがわかる。中でも、本発明品である
組成No、2の超硬合金の場合の寿命の延びが著しい。(More than 1,000 [F]) Table 2 The results of this machining test are shown in the "Results of Tool Durability Test 1" column of Table 3. The values shown in this column are the relative ratio of tool life, that is, the ratio of the number of cans molded before the die wears out and becomes unusable. As is clear from the results in Table 3, when the product of the present invention is used as a mold for deep drawing, it can be seen that the life is significantly extended compared to the comparative mold. Among these, the service life of the cemented carbide of composition No. 2, which is a product of the present invention, is significantly extended.
その理由は、WClTiC,TaC,NbCの硬質相を
微細に分散させ耐摩耗性を向上し、窒素を含有して、被
加工材との耐圧着性および、耐溶着性を向上させたがら
である。なお、本発明品である組成No、 8の超硬
合金の場合の寿命の延びが比較的少ないのは、硬質相の
粒径が、好ましい範囲である3μm以下から外れている
ためと考えられる。The reason for this is that the hard phases of WClTiC, TaC, and NbC are finely dispersed to improve wear resistance, and nitrogen is contained to improve pressure adhesion resistance and welding resistance with the workpiece. The reason why the life of the cemented carbide with composition No. 8, which is the product of the present invention, is relatively small is considered to be because the grain size of the hard phase is outside the preferred range of 3 μm or less.
(工具耐久試験2)
次に、本発明による超硬合金を切削工具として用いた場
合の耐摩耗性を評価するため、第1表に示す組成のうち
、No、4.6を除く7種類の組成の超硬合金で工具チ
ップを制作し、第4表に示す条件で切削試験を実施した
。(Tool durability test 2) Next, in order to evaluate the wear resistance when the cemented carbide according to the present invention is used as a cutting tool, seven types of compositions other than No. 4.6 were tested from among the compositions shown in Table 1. A tool tip was made from cemented carbide having the composition, and a cutting test was conducted under the conditions shown in Table 4.
第4表
この切削試験の結果は、上記第3表の「工具耐久試験2
の結果」の欄に示すとおりである。この欄の数値を比較
すると、切削工具としての耐摩耗性においても、本発明
品が比較界に対しより優れていることがわかる。なお、
本発明品のうち組成No、8の超硬合金の場合の耐摩耗
性の向上が少ないのは、この場合もやはり、硬質相の粒
径が3μmを超えているためであると考えられる。また
、比較界である組成NO19の超硬合金の場合の逃げ面
摩耗量が大きいのは、全合金中の窒素含有量の分析値が
0である上に、硬質相が70−重量%を下回り、さらに
この硬質相がWCのみからなっていてTic、TaC,
NbCなどが含まれていないためであると考えられる。Table 4 The results of this cutting test are shown in Table 3 above.
The results are as shown in the "Results" column. Comparing the values in this column, it can be seen that the products of the present invention are superior to the comparative products also in terms of wear resistance as a cutting tool. In addition,
Among the products of the present invention, the improvement in wear resistance is small in the case of the cemented carbide with composition No. 8, which is considered to be because the grain size of the hard phase exceeds 3 μm in this case as well. In addition, the reason why the amount of flank wear is large in the case of the comparative cemented carbide with composition No. 19 is that the analytical value of the nitrogen content in the entire alloy is 0, and the hard phase is less than 70% by weight. , furthermore, this hard phase consists only of WC, Tic, TaC,
This is thought to be because it does not contain NbC or the like.
[発明の効果コ
以上述べたように本発明によれば、70重量%以上99
重量%以下の硬質相を含み、結合相中に所定量のクロム
を含有するとともに、全合金中に窒素を所定量含有する
ことにより、工具としての耐溶着性などの性能が向上し
、深絞り加工、切削加工のいずれの工具として用いた場
合にも、大幅に工具寿命を延ばすことができ、深絞りに
よる製缶加工や鋼材の切削加工などにおいて、加工コス
トの低減を図ることができる。[Effects of the Invention] As described above, according to the present invention, 70% by weight or more
By containing a hard phase of less than % by weight, a certain amount of chromium in the binder phase, and a certain amount of nitrogen in the entire alloy, performance such as welding resistance as a tool is improved, and deep drawing is possible. When used as a tool for either machining or cutting, the tool life can be significantly extended, and machining costs can be reduced in can manufacturing by deep drawing, cutting of steel materials, etc.
Claims (3)
くとも1種類以上の元素の炭窒化物からなる、70重量
%以上99重量%以下の硬質相と、 鉄族金属とクロムとの合金からなる、1重量%以上30
重量%以下の結合相と を含み、 前記結合相中のクロム元素の含有量は、全結合相に対し
1重量%以上30重量%以下であり、さらに、全合金中
における窒素含有量が0.02重量%以上0.4重量%
以下であること を特徴とする超硬合金。(1) A hard phase consisting of a carbonitride of at least one element belonging to Group IVa, Group Va, or Group VIa of the periodic table, with an amount of 70% to 99% by weight, an iron group metal, and chromium. consisting of an alloy, 1% by weight or more 30
% by weight or less of a binder phase, the content of the chromium element in the binder phase is 1% by weight or more and 30% by weight or less based on the total binder phase, and the nitrogen content in the entire alloy is 0.0% by weight or less. 02% by weight or more 0.4% by weight
A cemented carbide characterized by:
ことを特徴とする請求項1記載の超硬合金。(2) The cemented carbide according to claim 1, wherein the carbonitride of the hard phase has a grain size of 3 μm or less.
、タンタル、ニオブおよびバナジウムの炭窒化物を含む
ことを特徴とする請求項1記載の超硬合金。(3) The cemented carbide according to claim 1, wherein the hard phase contains carbonitrides of at least tungsten, titanium, tantalum, niobium, and vanadium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21136490A JPH0499245A (en) | 1990-08-08 | 1990-08-08 | Sintered hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21136490A JPH0499245A (en) | 1990-08-08 | 1990-08-08 | Sintered hard alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0499245A true JPH0499245A (en) | 1992-03-31 |
Family
ID=16604744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21136490A Pending JPH0499245A (en) | 1990-08-08 | 1990-08-08 | Sintered hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0499245A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105624512A (en) * | 2016-01-29 | 2016-06-01 | 柳州市安龙机械设备有限公司 | Composite roller |
-
1990
- 1990-08-08 JP JP21136490A patent/JPH0499245A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105624512A (en) * | 2016-01-29 | 2016-06-01 | 柳州市安龙机械设备有限公司 | Composite roller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3993446A (en) | Cemented carbide material | |
EP2064359B1 (en) | Metallurgical iron-based powder composition and method of production | |
GB2030175A (en) | Powder metallurgy articles with high vanadium-carbide content | |
EP0406201A1 (en) | Sintered carbonitride alloy | |
JP2622131B2 (en) | Alloys for cutting tools | |
JP3046336B2 (en) | Sintered alloy with graded composition and method for producing the same | |
JPS5823457B2 (en) | Tough cermet | |
US5736658A (en) | Low density, nonmagnetic and corrosion resistant cemented carbides | |
CN113396233A (en) | Hard powder particles with improved compressibility and green strength | |
JP2003519283A (en) | High speed steel manufactured by powder metallurgy | |
JP3325957B2 (en) | Method for producing titanium-based carbonitride alloy | |
US4290807A (en) | Hard alloy and a process for the production of the same | |
JPH06220569A (en) | Sintered titanium based carbide-nitride alloy and production thereof | |
DE2420768A1 (en) | CARBONITRIDE ALLOYS FOR CUTTING TOOLS AND WEAR PARTS | |
JP2893886B2 (en) | Composite hard alloy material | |
JPH0499245A (en) | Sintered hard alloy | |
US4212670A (en) | Titanium oxycarbonitride based hard alloy | |
JPH07188859A (en) | Powder high speed steel | |
JPS5914534B2 (en) | Tough cermet with a softened surface layer | |
JPS5937742B2 (en) | High wear resistance sintered high speed steel | |
JPH10298699A (en) | Cemented carbide | |
JPS5917176B2 (en) | Sintered hard alloy with hardened surface layer | |
JPS5937741B2 (en) | Sintered high-speed steel with excellent wear resistance and toughness | |
JPH08176719A (en) | Nitrogen-containing sintered hard alloy | |
JPS6056781B2 (en) | Cermets for cutting tools and hot working tools |