JPH0499118A - Vacuum reaction vessel - Google Patents

Vacuum reaction vessel

Info

Publication number
JPH0499118A
JPH0499118A JP20524290A JP20524290A JPH0499118A JP H0499118 A JPH0499118 A JP H0499118A JP 20524290 A JP20524290 A JP 20524290A JP 20524290 A JP20524290 A JP 20524290A JP H0499118 A JPH0499118 A JP H0499118A
Authority
JP
Japan
Prior art keywords
molten metal
reaction vessel
gas
vacuum reaction
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20524290A
Other languages
Japanese (ja)
Inventor
Shigeru Inoue
茂 井上
Tetsushi Numata
哲始 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20524290A priority Critical patent/JPH0499118A/en
Publication of JPH0499118A publication Critical patent/JPH0499118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To increase gas-liquid interface area without blowing a gas and to improve a degassing reaction velocity by reducing atmospheric pressure in contacting with the free surface of a molten metal flowing through on adjacent trough state flowing passage of the molten metal. CONSTITUTION:Main body 11 of a vacuum reaction vessel 10 is wholly formed as the rectangular basin shape, and by covering the vessel 10 with a cover 18, the inner part of the treating system is held airtightly, and further, the gas exhaust duct 19 is arranged at the suitable position in the cover 18. The inner part of this main body 11 is sectioned into the trough-state molten metal flowing passage 15 with plural partitions 12 and formed so that the flowing passage 15 at the downstream side is surely adjacent to the flowing passage 15 at the upstream side across the partition 12 from an inlet of flow 13 to an outlet of flow 14. The pressure in this vacuum reaction vessel 10 is reduced to about 1Torr, and the molten steel 2 is supplied into the vessel 10 and allowed to flow slowly in the flowing passage 15 at about 2.5m/min flowing velocity. [C] in the molten steel 2 is sufficiently reacted with [O] under the reduced pressure and a large quantity of carbon monoxide gas 4 is generated. By this method, the free surface A of the molten steel is widened and degassing reaction is efficiently executed.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、溶湯を減圧下で脱ガス精錬する真空反応容
器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a vacuum reaction vessel for degassing and refining molten metal under reduced pressure.

[従来の技術] 近時、炭素や窒素の含有量を極微量に調整した極低炭素
鋼および極低窒素鋼の需要が高まり、これらを迅速かつ
安定に溶製する技術として脱ガス精錬法が注目されてい
る。脱ガス精錬法は、真空反応容器内に溶鋼を導入し、
減圧下で溶鋼を脱ガス処理する精錬技術である。真空反
応容器には種々のものがあるが、処理量の増大化に対応
するために、容器内における反応速度を更に向上させる
必要が生じている。
[Conventional technology] Recently, there has been an increase in demand for ultra-low carbon steel and ultra-low nitrogen steel with carbon and nitrogen contents adjusted to extremely small amounts, and degassing refining methods have been developed as a technology for quickly and stably melting these steels. Attention has been paid. The degassing refining method introduces molten steel into a vacuum reaction vessel,
This is a refining technology that degasses molten steel under reduced pressure. Although there are various types of vacuum reaction vessels, there is a need to further improve the reaction rate within the vessels in order to cope with an increase in throughput.

従来の真空反応容器は、RH脱ガス槽やDH脱ガス槽の
ように、本体が竪型円筒形をなし、本体下部槽に浸漬管
を有する。脱ガス処理する場合は、浸漬管を介して溶鋼
を槽内に吸い上げ、減圧下にてスプラッシュを発生させ
、溶鋼中[C]、[N]等をガス化し、これを排気する
A conventional vacuum reaction vessel, like an RH degassing tank or a DH degassing tank, has a vertical cylindrical main body and has a dip tube in the lower tank of the main body. In the case of degassing treatment, molten steel is sucked up into a tank through a dipping pipe, splash is generated under reduced pressure, and [C], [N], etc. in the molten steel are gasified and then exhausted.

[発明が解決しようとする課題] しかしながら、従来の真空反応容器においては、竪型円
筒形であるために、場面の面積(自由表面積)を増やす
には一定の限界があり、このままでは反応速度が比較的
小さく、脱ガス速度等を向上させることが一般に困難で
ある。このため、槽内の溶鋼にガスを吹き込み、気液界
面積を増大させ、脱ガス速度等の向上を図る。しかし、
ガスの吹き込みにより耐火物の損耗が大きく、耐火物原
単位が増大するという欠点がある。特に、極低炭素鋼や
極低窒素鋼を溶製すると、容器内張り耐火物の溶損が大
きく、内張り耐火物を顛繁に補修する必要があり、コス
ト高となる。
[Problem to be solved by the invention] However, since conventional vacuum reaction vessels have a vertical cylindrical shape, there is a certain limit to increasing the surface area (free surface area), and if this continues, the reaction rate will decrease. It is relatively small, and it is generally difficult to improve the degassing rate, etc. For this purpose, gas is blown into the molten steel in the tank to increase the gas-liquid interface area and improve the degassing rate. but,
There is a drawback that the blowing of gas causes a large amount of wear and tear on the refractories, and the unit consumption of the refractories increases. In particular, when ultra-low carbon steel or ultra-low nitrogen steel is melted, the refractory lining of the container suffers from significant erosion, and the refractory lining must be frequently repaired, resulting in high costs.

この発明は、かかる事情に鑑みてなされたものであって
、ガスを吹き込むことなく、気液界面積を増やすことが
でき、反応速度を向上することができる真空反応容器を
提供することを目的とする。
This invention was made in view of the above circumstances, and an object of the present invention is to provide a vacuum reaction vessel that can increase the gas-liquid interface area and improve the reaction rate without blowing gas. do.

[課題を解決するための手段] 減圧下の脱ガス反応速度は、下記(1)式に示すように
、容器内における溶湯の自由表面積Aおよび溶湯量Vに
より支配される。
[Means for Solving the Problems] The degassing reaction rate under reduced pressure is controlled by the free surface area A of the molten metal in the container and the amount V of the molten metal, as shown in the following equation (1).

−d c/d t −KX (A/V)X   ([C
コ  −  [Cコ  、 ) ・・・ (1)上記(
1)式から明らかなように、溶湯の自由表面積Aが増え
るほど、また、溶湯量Vが少なくなるほど、脱ガス反応
速度が大きくなる。ところで、溶湯量Vを少なくすると
、通流路壁を介しての熱損失量が大きくなり、溶湯が著
しく温度降下する。従って、溶湯量■を一定量以下に減
らすことができない。このため、処理溶湯の自由表面積
Aを増やし、脱ガス反応速度を大きくすることが考えら
れる。
-d c/d t -KX (A/V)X ([C
ko - [C ko, ) ... (1) Above (
As is clear from equation 1), as the free surface area A of the molten metal increases and as the amount V of the molten metal decreases, the degassing reaction rate increases. By the way, when the amount V of molten metal is reduced, the amount of heat loss through the passage walls increases, and the temperature of the molten metal drops significantly. Therefore, the amount of molten metal cannot be reduced below a certain amount. For this reason, it is conceivable to increase the free surface area A of the treated molten metal to increase the degassing reaction rate.

発明者等は、処理溶湯の自由表面積へを広くして、脱ガ
ス反応速度を増大化するという観点から、脱ガス反応槽
の形状につき種々検討を重ねた結果、溶湯通流路を広く
て浅い樋状に形成することに想到した。
In order to increase the free surface area of the molten metal to be treated and increase the degassing reaction rate, the inventors conducted various studies on the shape of the degassing reaction tank, and as a result, they designed a wide and shallow molten metal flow path. I came up with the idea of forming it in the shape of a gutter.

この発明に係る真空反応容器は、自由表面を有する溶湯
か通流する樋状の溶湯通流路と、通流溶湯の自由表面に
接する雰囲気を減圧する減圧手段と、を有し、前記溶湯
通流路が相互隣接していることを特徴とする。
The vacuum reaction vessel according to the present invention has a trough-like molten metal flow path through which molten metal having a free surface flows, and a pressure reducing means for reducing the pressure of the atmosphere in contact with the free surface of the flowing molten metal, It is characterized in that the flow paths are adjacent to each other.

[作 用コ この発明に係る真空反応容器においては、溶湯通流路を
樋状に形成しているので、溶湯JIVに対する自由表面
積Aの割合が大きくなり、脱ガス反応速度が増大する。
[Function] In the vacuum reaction vessel according to the present invention, since the molten metal passage is formed in the shape of a gutter, the ratio of the free surface area A to the molten metal JIV increases, and the degassing reaction rate increases.

第3図に示すように、樋状の通流路15を溶湯2が緩や
かに流れると、通流路15が浅いので溶湯量■は比較的
小さくなるが、気液界面となる湯面3が広いので自由表
面積Aが大きくなり、溶湯中[Cコと[0コが反応して
一酸化炭素ガス4が多量に発生する。
As shown in FIG. 3, when the molten metal 2 flows slowly through the trough-like passage 15, the amount of molten metal becomes relatively small because the passage 15 is shallow, but the molten metal surface 3, which forms the gas-liquid interface, Since it is wide, the free surface area A becomes large, and [C and [0] in the molten metal react and a large amount of carbon monoxide gas 4 is generated.

また、溶湯通流路15を相互隣接させているので、通流
路壁を介する熱損失が少なく、溶湯2の温度降下が防止
される。
Furthermore, since the molten metal passages 15 are arranged adjacent to each other, there is little heat loss through the walls of the passages, and a drop in the temperature of the molten metal 2 is prevented.

[実施例] 以下、添付の図面を参照しながら、この発明の実施例に
ついて具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

第1図はこの発明の実施例に係る真空反応容器を模式的
に示す平面図、第2図は真空反応容器の溶湯通流路の横
断面図、第3図は真空反応容器の溶湯通流路の縦断面図
である。
Fig. 1 is a plan view schematically showing a vacuum reaction vessel according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a molten metal passage in the vacuum reaction vessel, and Fig. 3 is a molten metal passage in the vacuum reaction vessel. FIG.

真空反応容器10の本体11は、全体が矩形の水盤状に
形成され、耐火物で内張すされ、外側が鉄皮で覆われて
いる。本体11には蓋18が被せられ、処理系内が気密
に保持されている。排気ダクト19が蓋18の適所に設
けられ、排気ダクト19を介して処理系内のガスが排気
されるようになっている。
The main body 11 of the vacuum reaction vessel 10 is entirely formed in the shape of a rectangular basin, lined with a refractory material, and covered with an iron shell on the outside. The main body 11 is covered with a lid 18 to keep the inside of the processing system airtight. An exhaust duct 19 is provided at a suitable location on the lid 18, and gas within the processing system is exhausted through the exhaust duct 19.

本体11の内部は複数の仕切り12によりクランク状に
仕切られ、樋状の溶湯通流路15が流入口13から流出
口14に至るまで形成されている。
The inside of the main body 11 is partitioned into a crank shape by a plurality of partitions 12, and a gutter-like molten metal passage 15 is formed from an inlet 13 to an outlet 14.

すなわち、下流側の通流路15か仕切り12を隔てて上
流側の通流路15に必す隣接するように形成されている
。流入口13および流出口14のそれぞれは、溶鋼鍋(
図示せず)の供給部および返戻部に連通されている。溶
鋼供給部には、溶鋼鍋から流入口13へ向かう力を溶鋼
に付与する装置(図示せず)が設けられている。
That is, it is formed so as to be adjacent to the downstream passage 15 or the upstream passage 15 with the partition 12 in between. Each of the inlet 13 and the outlet 14 is connected to a molten steel ladle (
It is connected to a supply section and a return section (not shown). The molten steel supply section is provided with a device (not shown) that applies a force to the molten steel from the molten steel ladle toward the inlet 13.

なお、真空反応容器の本体11は縦4m×横4mの大き
さであり、通流路15は幅1mX深さ約014mである
The main body 11 of the vacuum reaction vessel has a size of 4 m in length x 4 m in width, and the flow path 15 has a width of 1 m and a depth of about 014 m.

次に、上記の真空反応容器10を用いて極低炭素鋼を溶
製する場合について説明する。
Next, a case will be described in which ultra-low carbon steel is melted using the vacuum reaction vessel 10 described above.

処理前の溶鋼2は未脱酸状態であり、[C]量が約30
0ppIll、[0]量が約6001)I)IIである
The molten steel 2 before treatment is in an undeoxidized state and has a [C] content of about 30
0ppIll, [0] amount is approximately 6001)I)II.

溶鋼鍋を脱ガス設偏に搬入し、溶鋼供給部および返戻部
をそれぞれ流入口13および流出口14に接続する。真
空反応容器10の内部を約1トルまで減圧し、鍋内の溶
鋼を容器10に供給する。このとき、溶鋼2を通流路1
5内にて毎分2.5mの流速で緩やかに通流させるので
、通流するうちに溶鋼中[C]が減圧下で[0] と十
分に反応し、−酸化炭素ガス4が多量に発生する。また
、通流路15か上流側と下流側とで相互隣接しているた
めに、処理系全体として放熱量か少ない。
The molten steel ladle is carried into a degassing facility, and the molten steel supply section and return section are connected to the inlet 13 and the outlet 14, respectively. The pressure inside the vacuum reaction vessel 10 is reduced to about 1 Torr, and the molten steel in the pot is supplied to the vessel 10. At this time, the molten steel 2 passes through the passage 1
Since the flow is carried out slowly at a flow rate of 2.5 m/min in the molten steel 5, the [C] in the molten steel fully reacts with [0] under reduced pressure while flowing, and a large amount of -carbon oxide gas 4 is produced. Occur. Furthermore, since the flow passages 15 are adjacent to each other on the upstream and downstream sides, the amount of heat radiated from the entire processing system is small.

第4図は、横軸に通流距離をとり、縦軸に溶鋼中[C]
量をとって、脱炭反応の推移を樋各部でサンプリングし
て調査した結果を示すグラフ図である。図から明らかな
ように、15mの脱炭処理で[C]量を極低炭素鋼レベ
ルの15ppmまで低下させることかでき、本実施例の
条件ではわずか6分間の脱炭処理となる。
In Figure 4, the horizontal axis shows the flow distance, and the vertical axis shows the molten steel [C]
It is a graph diagram showing the results of sampling and investigating the transition of the decarburization reaction at each part of the gutter. As is clear from the figure, the amount of [C] can be reduced to 15 ppm, the level of ultra-low carbon steel, with decarburization treatment of 15 m, and under the conditions of this example, decarburization treatment takes only 6 minutes.

なお、上記実施例では、樋状の溶湯通流路を1段のみ設
けたが、これに限られることなく、2段または3段に通
流路を積み重ねる構造としてもよい。樋状通流路を多段
構造とすると、溶鋼の熱損失量が更に低減される。
In the above embodiment, only one trough-like molten metal passage was provided, but the present invention is not limited to this, and the structure may be such that two or three tiers of passages are stacked. When the trough-like flow path has a multi-stage structure, the amount of heat loss of the molten steel is further reduced.

[発明の効果〕 この発明によれば、溶湯通流路を樋状に形成しであるの
で、処理溶湯の自由表面積Aを広くとることかてき、脱
ガス反応速度が飛躍的に増大する。
[Effects of the Invention] According to the present invention, since the molten metal flow path is formed in the shape of a gutter, the free surface area A of the treated molten metal can be widened, and the degassing reaction rate can be dramatically increased.

このため、極低炭素鋼や極低窒素鋼を短時間の処理で溶
製することかできる。
Therefore, ultra-low carbon steel and ultra-low nitrogen steel can be produced in a short time.

また、溶湯量Vを小さくするために、溶湯深さを浅くす
ると共に、通流路内の流速を緩やかにするので、内張り
耐火物の損耗か軽減され、耐火物原単位を低減すること
ができる。
In addition, in order to reduce the amount of molten metal V, the depth of the molten metal is made shallow and the flow velocity in the passage is slowed down, which reduces wear and tear on the refractory lining and reduces the unit consumption of refractories. .

また、気液界面積の増大化のために吹き込んでいたガス
を不要にすることができるので、操業コストを低減する
ことかできる。
Furthermore, since the gas that was blown in to increase the gas-liquid interface area can be made unnecessary, operating costs can be reduced.

更に、溶湯通流路を相互隣接させているので、熱損失量
が少なくなり、溶湯の温度降下を低減することができる
Furthermore, since the molten metal passages are arranged adjacent to each other, the amount of heat loss is reduced, and the temperature drop of the molten metal can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る真空反応容器を模式的
に示す平面図、第2図は真空反応容器の溶湯通流路の横
断面図、第3図は真空反応容器の溶湯通流路の縦断面図
、第4図はこの発明の実施例の効果を説明するためのグ
ラフ図である。 10;真空反応容器、12.仕切り、13;流入口、1
4.流出口、15.溶湯通流路、出願人代理人 弁理士
 鈴江武彦 第3図 涌慶距離(m) 第4 図
Fig. 1 is a plan view schematically showing a vacuum reaction vessel according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a molten metal passage in the vacuum reaction vessel, and Fig. 3 is a molten metal passage in the vacuum reaction vessel. FIG. 4, which is a longitudinal cross-sectional view of the road, is a graph diagram for explaining the effects of the embodiment of the present invention. 10; vacuum reaction vessel, 12. Partition, 13; Inlet, 1
4. Outlet, 15. Molten metal flow path, Applicant's representative Patent attorney Takehiko Suzue Figure 3 Wakukei distance (m) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 自由表面を有する溶湯が通流する樋状の溶湯通流路と、
通流溶湯の自由表面に接する雰囲気を減圧する減圧手段
と、を有し、前記溶湯通流路が相互隣接していることを
特徴とする真空反応容器。
a trough-like molten metal passageway through which molten metal flows, having a free surface;
1. A vacuum reaction vessel comprising a pressure reducing means for reducing the pressure of an atmosphere in contact with a free surface of flowing molten metal, and wherein the molten metal flow paths are adjacent to each other.
JP20524290A 1990-08-03 1990-08-03 Vacuum reaction vessel Pending JPH0499118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20524290A JPH0499118A (en) 1990-08-03 1990-08-03 Vacuum reaction vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20524290A JPH0499118A (en) 1990-08-03 1990-08-03 Vacuum reaction vessel

Publications (1)

Publication Number Publication Date
JPH0499118A true JPH0499118A (en) 1992-03-31

Family

ID=16503753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20524290A Pending JPH0499118A (en) 1990-08-03 1990-08-03 Vacuum reaction vessel

Country Status (1)

Country Link
JP (1) JPH0499118A (en)

Similar Documents

Publication Publication Date Title
US3743500A (en) Non-polluting method and apparatus for purifying aluminum and aluminum-containing alloys
US5143355A (en) Apparatus for manufacturing oxygen-free copper
KR960031629A (en) Manufacturing method and manufacturing apparatus for cast iron cast iron
US3367396A (en) Installation for the vacuum treatment of melts, in particular steel melts, and process for its operation
US9267187B2 (en) Vapor-reinforced expanding volume of gas to minimize the contamination of products treated in a melting furnace
JPH02293033A (en) Method and apparatus for treating liquids using gas
US3664652A (en) Method and apparatus for the treatment of molten metal
US4481032A (en) Process for adding calcium to a bath of molten ferrous material
JPH0499118A (en) Vacuum reaction vessel
JP2012521957A (en) Method and apparatus for reducing tin oxide during float glass manufacture
JPH029087B2 (en)
US4344773A (en) Apparatus for the gasification of carbon and/or carbon-containing media
AU2022296120A1 (en) Molten steel refining method
US4627601A (en) Installation for the production of steel by pre-smelting of pig iron
JPH11315315A (en) Metallurgical reaction apparatus for treating molten metal under reduced pressure
JP2819424B2 (en) Manufacturing method of ultra-low carbon steel
CS30390A3 (en) Process and apparatus for preventing generation of flue gases in metallurgical processes and during molten metal conveying
US3271128A (en) Prerefining blast furnace iron
JPH08120324A (en) Apparatus and method for vacuum-refining molten steel
JPH08269534A (en) Vacuum degassing treatment device for molten steel
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
RU2017829C1 (en) Ferrous metals molten bath purification method
RU2331673C1 (en) Circulating vacuumising device with screen for suppression of metal drops
JPS5822319A (en) Manufacture for steel having super low hydrogen and super low sulfur content
SU831296A1 (en) Intermediate ladle for casting steel