JPH0499003A - Manufacture of barium ferrite magnet - Google Patents

Manufacture of barium ferrite magnet

Info

Publication number
JPH0499003A
JPH0499003A JP2208397A JP20839790A JPH0499003A JP H0499003 A JPH0499003 A JP H0499003A JP 2208397 A JP2208397 A JP 2208397A JP 20839790 A JP20839790 A JP 20839790A JP H0499003 A JPH0499003 A JP H0499003A
Authority
JP
Japan
Prior art keywords
temperature
pva
binder
manufacturing
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2208397A
Other languages
Japanese (ja)
Inventor
Masanori Kogo
古後 正徳
Mutsuo Tokuyoshi
徳吉 睦生
Takashi Ishizuka
喬 石塚
Koichi Sugawara
菅原 光一
Tamaki Oii
及位 環
Yukio Koyanagi
小柳 雪雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOTSUKOU DENSHI KK
Original Assignee
HOTSUKOU DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOTSUKOU DENSHI KK filed Critical HOTSUKOU DENSHI KK
Priority to JP2208397A priority Critical patent/JPH0499003A/en
Publication of JPH0499003A publication Critical patent/JPH0499003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably simplify a working process and reduce cost, by mixing, as main material, iron oxide for ferrite and barium carbonate, performing granulation by using PVA as binder, performing molding with necessary green density, eliminating PVA at a temperature range of 180-450 deg.C in a baking process, and obtaining a porous state. CONSTITUTION:Iron oxide for general ferrite and barium carbonate are used as starting material; BaO and Fe2O3 are mixed by setting the composition ratio as 1:5.3; PVA of 1.5 wt.% as binder is added to the starting material of 100 wt.%; green density is set as 2.79 g/m<3> and molding is performed at a pressure of 2.5Angstrom /m<3>. In the next baking process, 180-450 deg.C is set as a gradually rising temperature (4 deg.C/min is set as the upper limit), thereby completely eliminating the binder. Then carbonic acid gas generated in a temperature range of 450-800 deg.C smoothly runs away. As a result, fracture, crack and deformation are not generated independently of the rate of temperature rise in the subsequent process.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明はバリウムフェライト磁石(等方性焼結磁石)の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing barium ferrite magnets (isotropic sintered magnets).

(従来の技術λ マグネトブランバイト型のバリウムフェライト磁石(等
方性焼結磁石]の製造は、通常、主成分原料として一般
のフェライト用酸化鉄及び炭酸バリウムを用いて、原料
を秤量混合後、仮焼結、粉砕、造粒、成形、焼結の工程
を紅る−般的なセラミックの製造方法が取られており、
低コスト化を図るため前記の製造方法において、仮焼結
1粉砕の工程を省略すると、一般のフェライト用酸化鉄
と炭酸バリウムを用いた場合には製品密度の低下、割れ
、クラック、変形、特性の劣化等の問題を引き起こして
いる。
(Conventional technology λ) The production of magnetobrambite-type barium ferrite magnets (isotropic sintered magnets) usually uses general iron oxide and barium carbonate for ferrite as the main component raw materials, and after weighing and mixing the raw materials, A common ceramic manufacturing method is used, which includes preliminary sintering, crushing, granulation, molding, and sintering.
In order to reduce costs, if the preliminary sintering and pulverization steps are omitted in the above manufacturing method, if iron oxide and barium carbonate for general ferrite are used, the product density will decrease, cracks, deformation, and characteristics will occur. causing problems such as deterioration of

(発明が解決しようとする課題) 本発明は一般のフェライト用酸化鉄と炭酸バリウムを主
成分原料とし、仮焼結工程を省略して低コスト化を図9
、しかも上記の欠陥を解消できるバリウムフェライト磁
石の製造方法を提供するものである。
(Problems to be Solved by the Invention) The present invention uses iron oxide and barium carbonate as the main ingredients for general ferrite, and eliminates the temporary sintering process to reduce costs.
Moreover, the present invention provides a method for manufacturing a barium ferrite magnet that can eliminate the above-mentioned defects.

(課題を解決するための手段) 第1の発明はフェライト用酸化鉄と炭酸バリウムを主原
料として混合し、PvAをバインダーとして造粒し、所
要の圧粉密度で成形し、焼成工程で焼結して成る焼結磁
石の製造方法において、焼成工程の180°0〜450
60までの温域では温度制御手段によりPVAを除去し
てポーラス状化して成る。ここに、温度制御手段とは昇
温速度が4’ 07m1mを上限とする昇温速度で制御
するものから、180℃〜45060間の任意の温度を
所定時間キープして温度管理するものまでを含む。
(Means for Solving the Problems) The first invention mixes iron oxide for ferrite and barium carbonate as main raw materials, granulates it with PvA as a binder, shapes it to the required green density, and sinters it in the firing process. In the method for manufacturing a sintered magnet made of
In the temperature range up to 60°C, PVA is removed by a temperature control means to make it porous. Here, the temperature control means includes those that control the temperature at a heating rate with an upper limit of 4'07m1m, and those that control the temperature by keeping an arbitrary temperature between 180°C and 45060°C for a predetermined period of time. .

第2の発明はフェライト用酸化鉄と炭酸バリウムを主原
料として混合し、PVAをバインダーとして造粒し、所
要の圧粉密度で成形し、焼成工程で焼結して成る焼結磁
石の製造方法において、焼成工程の昇温始めから焼結温
度に至るまでを4°O/winを上限とする昇温速度で
緩昇温し、180°’O〜450°O間でP’VA ヲ
除去シテホーラス化して成る。
The second invention is a method for manufacturing a sintered magnet, in which iron oxide for ferrite and barium carbonate are mixed as main raw materials, granulated with PVA as a binder, molded to a required powder density, and sintered in a firing process. In the process, the temperature is slowly increased from the beginning of temperature increase in the firing process to the sintering temperature at a temperature increase rate with an upper limit of 4°O/win, and P'VA is removed between 180°O and 450°O. It is made up of

(作 用) 焼成工程の180°’o 〜450°0間を/ 71n
 f上限とする昇温速度で緩昇温することにより、PV
Aを完全に除去することができ、その後の800cbw
Jまでに炭酸ガスをスムースに除去することになる◎ (実施例] 例1 一般のフェライト用酸化鉄と炭酸バリウムを出発原料と
し、BaOとPe203の組成比率が1=5.3相当と
なる割合で混合し、前記出発原料100座量%に対し、
1.5重量%のPVAをバインダー(接着剤)として添
加して圧粉密度を2.75/WI〜3.2シlとして圧
力2.5トシ/−で直径30龍、厚さ81aIのテスト
ピースを成形し、180°c〜450°a間の緩昇温の
条件に対応する450’O以降の焼結温度(1251f
C)までの昇温速度を変えて試験したものであるが、別
表1にその結果を示すように、180°0〜45060
間の昇温速度が40シ/win以下であればその後ノ4
50°0〜1250°ayでの昇温速度に関係なく、ク
ラックや1llJn〜変形が起こらないことが分かる。
(Function) Between 180°'o and 450°0 during the firing process /71n
By slowly increasing the temperature at the temperature increase rate set as the upper limit of f, the PV
A can be completely removed and the subsequent 800 cbw
Carbon dioxide gas will be removed smoothly by J◎ (Example) Example 1 Using general ferrite iron oxide and barium carbonate as starting materials, the composition ratio of BaO and Pe203 is equivalent to 1 = 5.3. and based on 100% basis weight of the starting materials,
1.5% by weight of PVA was added as a binder (adhesive), the density of the powder was set to 2.75/WI to 3.2 sills, the pressure was 2.5 tos/-, the diameter was 30 mm, and the thickness was 81 aI. The piece is molded and the sintering temperature is set to 450'O or higher (1251f
The test was conducted by changing the heating rate up to C), and as shown in Attached Table 1, the temperature was 180°0 to 45060°.
If the temperature increase rate during the period is 40 sh/win or less, then
It can be seen that cracks and deformation do not occur regardless of the temperature increase rate from 50°0 to 1250°ay.

このことから1焼成工程の180℃〜450°O間を緩
昇温(4°VWinを上限とするλすることによりバイ
ンダーを完全に除去し、その後450℃〜800°c間
で発生する炭酸ガスがスムーズに抜は出たことが分かる
。したがって、バインダーが除去された羨・;その後の
昇温速度に関係なく、割れ、クラ7り、変形が起こらな
いことが分かる。
From this, the binder is completely removed by slowly raising the temperature between 180°C and 450°O in one firing process (λ with an upper limit of 4°VWin), and then carbon dioxide gas is generated between 450°C and 800°C. It can be seen that the binder was removed smoothly. Therefore, it can be seen that no cracking, cracking, or deformation occurs regardless of the temperature increase rate after the binder is removed.

例2 一般のフェライト用酸化鉄と炭酸バリウムを出発原料と
し、B&0と10203の組成比率が1=5.3相当と
なる割合で混合し、前記出発原料100重量%に対し、
1.5重量外のPViをバインダとして添加して造粒し
1圧粉密度を2.7!cwt〜6.2vメトシテ圧力2
.5 ト’76yd テ直径30冑、厚さ811III
のテストピースを成形し1焼成工程の180℃〜450
°0の温度域を3°で1nの昇温速度で昇温し、その後
を経済昇温速度で昇温し、各種の焼結温度で焼結したと
きの焼結密度及び磁気特性等を調査し、その結果を別表
2に示すものである。これらの結果から脱バインダー後
、炭酸ガスをガス抜きし、11511fO〜1300°
0で焼結すれば仮焼結、粉砕工程を省略しても良好な特
性のバリウムフェライト磁石を製造することが明らかで
ある。
Example 2 General iron oxide for ferrite and barium carbonate were used as starting materials, and mixed in a proportion such that the composition ratio of B&0 and 10203 was equivalent to 1 = 5.3, and based on 100% by weight of the starting materials,
1.5 weight of PVi is added as a binder and granulated to give a density of 1 green powder of 2.7! cwt~6.2v metoshite pressure 2
.. 5 '76yd Te diameter 30, thickness 811III
A test piece was molded and heated to 180℃ to 450℃ for one firing process.
We investigated the sintered density, magnetic properties, etc. of sintering at various sintering temperatures by increasing the temperature in the temperature range of 0° to 3° at a heating rate of 1n, then increasing the temperature at an economical heating rate, and sintering at various sintering temperatures. The results are shown in Attached Table 2. Based on these results, after removing the binder, degassing the carbon dioxide gas, and
It is clear that barium ferrite magnets with good characteristics can be produced by sintering at zero, even if the preliminary sintering and pulverization steps are omitted.

(発明の効果J 以上のように本発明によnば大幅に工程を簡酪化するこ
とができるため、低コストで従来と同じ性能を持つバリ
ウムフェライト磁石を提供でき、工業的に極めて有用で
あるO
(Effect of the invention J As described above, the present invention can greatly simplify the process, and therefore can provide barium ferrite magnets with the same performance as conventional ones at low cost, making them extremely useful industrially. There is an O

Claims (4)

【特許請求の範囲】[Claims] (1)フエライト用酸化鉄と炭酸バリウムを生原料とし
て混合し、PVAをバインダーとして造粒し、所要の圧
粉密度で成形し、焼成工程で焼結して成る焼結磁石の製
造方法において、焼成工程の180℃〜450℃までの
温域では温度制御手段によりPVAを除去してポーラス
状化し、クラツクや割れ発生のないことを特徴としたバ
リウムフエライト磁石の製造方法。
(1) In a method for manufacturing a sintered magnet, the raw materials are mixed with iron oxide for ferrite and barium carbonate, granulated with PVA as a binder, molded to the required powder density, and sintered in the firing process, A method for manufacturing barium ferrite magnets, characterized in that PVA is removed and made porous by a temperature control means in the temperature range of 180°C to 450°C during the firing process, and no cracks or cracks occur.
(2)温度制御手段が4℃/minを上限とする昇温速
度で昇温して成る請求項(1)記載のバリウムフエライ
ト磁石の製造方法。
(2) The method for manufacturing a barium ferrite magnet according to claim (1), wherein the temperature control means increases the temperature at a temperature increase rate with an upper limit of 4° C./min.
(3)温度制御手段が180℃〜450℃間の任意の温
度を所定時間キープして成る請求項(1)記載のバリウ
ムフエライト磁石の製造方法。
(3) The method for manufacturing a barium ferrite magnet according to claim (1), wherein the temperature control means maintains an arbitrary temperature between 180°C and 450°C for a predetermined period of time.
(4)フエライト用酸化鉄と炭酸バリウムを主原料とし
て混合し、PVAをバインダーとして造粒し、所要の圧
粉密度で成形し、焼成工程で焼結して成る焼結磁石の製
造方法において、焼成工程の昇温始めから焼結温度に至
るまでを4℃/minを上限とする昇温速度で緩昇温し
、180℃〜450℃間でPVAを除去してポーラス化
し、クラツクや割れ発生のないことを特徴としたバリウ
ムフエライト磁石の製造方法。
(4) In a method for manufacturing a sintered magnet, the ferrite iron oxide and barium carbonate are mixed as main raw materials, granulated with PVA as a binder, molded to a required powder density, and sintered in a firing process, From the beginning of the temperature rise in the firing process to the sintering temperature, the temperature is slowly raised at a rate of up to 4℃/min, and between 180℃ and 450℃, PVA is removed and made porous, causing cracks and cracks. A method for manufacturing a barium ferrite magnet characterized by no.
JP2208397A 1990-08-06 1990-08-06 Manufacture of barium ferrite magnet Pending JPH0499003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208397A JPH0499003A (en) 1990-08-06 1990-08-06 Manufacture of barium ferrite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208397A JPH0499003A (en) 1990-08-06 1990-08-06 Manufacture of barium ferrite magnet

Publications (1)

Publication Number Publication Date
JPH0499003A true JPH0499003A (en) 1992-03-31

Family

ID=16555580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208397A Pending JPH0499003A (en) 1990-08-06 1990-08-06 Manufacture of barium ferrite magnet

Country Status (1)

Country Link
JP (1) JPH0499003A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102109A (en) * 1972-04-06 1973-12-22
JPS5416039A (en) * 1977-06-06 1979-02-06 Cummins Engine Co Inc Exhaust brake valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102109A (en) * 1972-04-06 1973-12-22
JPS5416039A (en) * 1977-06-06 1979-02-06 Cummins Engine Co Inc Exhaust brake valve

Similar Documents

Publication Publication Date Title
US3019116A (en) Ceramic body and method of making the same
WO1998032140A1 (en) Ferrite material, method of manufacturing the same and deflection yoke core made from the material
CN104230321B (en) M type calcium permanent ferrites and preparation method thereof
CN104230322A (en) M-type calcium permanent magnetic ferrite and preparation method thereof
CN111153694A (en) Microwave dielectric ceramic material and preparation method thereof
CN108083641B (en) Preparation method of microcrystalline glass with high mechanical property
CN115605304A (en) Binder for injection molding compositions
CN112430104A (en) Composite additive for preparing ceramic and preparation method and application thereof
JP2002167272A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JPH0499003A (en) Manufacture of barium ferrite magnet
CN110342905A (en) High-performance water permeable brick and preparation method thereof
CN109231961B (en) Deformation-resistant rapid-fired fine pottery blank and preparation and application method thereof
KR102331481B1 (en) Ceramic powder and its manufacturing method
CN111470778A (en) Calcium barium silicon aluminum glass-based low-dielectric low-temperature co-fired ceramic material and preparation method thereof
RU2791771C1 (en) Method for producing high-temperature ceramics based on yttrium oxide
CN117326864B (en) High-resistivity high-zirconium brick and preparation method thereof
KR100269854B1 (en) Setter for ferrite production and its manufacturing method
RU2728431C1 (en) Method of making heat-resistant ceramics
KR101461581B1 (en) A composition using waste materials of steel making process and manufacturing method of formed body
RU2704991C1 (en) Method of making articles from glass wastes
JPH0443612A (en) Manufacture of magnetic oxide material
JPH0430723B2 (en)
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
CN107586125B (en) Magnetic strip material suitable for IH electromagnetic heating, preparation method of magnetic strip material, magnetic strip for electromagnetic heating coil panel and induction cooker
JPH03233908A (en) Ferrite magnetic substance and its manufacture