JPH049872B2 - - Google Patents

Info

Publication number
JPH049872B2
JPH049872B2 JP60158324A JP15832485A JPH049872B2 JP H049872 B2 JPH049872 B2 JP H049872B2 JP 60158324 A JP60158324 A JP 60158324A JP 15832485 A JP15832485 A JP 15832485A JP H049872 B2 JPH049872 B2 JP H049872B2
Authority
JP
Japan
Prior art keywords
reaction tank
deposited film
exhaust
substrate
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60158324A
Other languages
Japanese (ja)
Other versions
JPS6220874A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60158324A priority Critical patent/JPS6220874A/en
Publication of JPS6220874A publication Critical patent/JPS6220874A/en
Publication of JPH049872B2 publication Critical patent/JPH049872B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5093Coaxial electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は気相法による堆積膜形成装置、就中、
プラズマCVD法、グロー放電法、アーク放電法
等放電エネルギーを利用して堆積膜を形成する装
置に関し、とりわけ電子写真感光体等の光導電部
材を構成する膜体を形成するのに適した装置に関
する。 〔従来の技術〕 堆積膜製造法の1つとして、熱、光乃至は放電
エネルギーを利用するCVD(Chemical Vapor
Deposition)法やグロー放電法、アーク放電法が
あり、とりわけ低温プラズマを利用するCVD法
が近年脚光を浴びている。この方法は反応槽内を
高真空に減圧し、原料ガスを反応槽内に供給した
後グロー放電によつて原料ガスを分解し、反応槽
内に配置された基体上に成膜を形成する方法で、
例えば非晶質珪素膜の生成に応用されている。こ
の方法でシランガス(SiH4)を原料ガスとして
作成した非晶質珪素膜は、非晶質珪素の禁止帯中
に存在する局在準位が比較的少なく、置換型不純
物のドーピングにより、価電子制御が可能であ
り、電子写真感光体としても優れた特性が有する
ものが得られ、熱い期待が寄せられている。 ところで、例えば電子写真感光体は、円筒状
(ドラム状)の堆積膜形成用基体上に、光導電層
を設けたものが一般的であるが、プラズマCVD
によつて円筒状の電子写真感光体を作成する場
合、従来、第3図に示した様な構成の装置を用い
ていた。 即ち、この装置は真空槽容器51、該容器の上
蓋又はゲート52、電源53と接続された直流又
は高周波カソード電極54、容器内を減圧にする
ための排気系55、堆積膜形成用のガスを導入す
るためのガス導入系56、及び基体加熱用ヒータ
57等を備えている。真空槽容器51内に収容さ
れる通常導電性の円筒状基体58は、電気的に接
地された回転軸59に取付けられ、駆動モーター
60にて、堆積膜形成中回転される。又、61は
プラズマを閉じ込めるためのシールド板である。 ところで、この種の真空槽容器は、回転機構が
容器の軸芯部分に位置するため、容器内を排気し
たり減圧にするための排気孔は軸芯部分からずら
して設けられる。即ち、従来は例えば第4図の様
に径の大きな単一の排気孔62を設けたり、ある
いは第5図の様に径の小さな複数の排気孔63,
63,63,63を設けたりしていたが、次の様
な問題点があつた。 () 第4図の排気口では真空槽容器内のガスの
流れが不均一となり容器内の均一なプラズマ反
応が得られず基板上に形成される堆積膜の均一
性に乏しい。 () ()の欠点を補うために第5図の装置で
は、中心に対し対称形に排気口を複数に位置せ
しめた。容器内均一反応を得るためには排気口
の数は多い程良いが一方問題点として、 反応炉形態が複雑化する、 排気管の継手が増大するためリーク防止上
不利になり装置信頼性に乏しい、 有効排気量を同一にするために排気口の総
有効面積を同じにすると排気口(管)の数n
と1本当りの排気口(管)の有効内直径do
の関係は、do=d1/√nとなり数を多くする程 1本当りの有効径は小さくなる。この事は、
プラズマ反応中に生成する副反応物である粉
体により反応工程中に粉詰まりを生じ易く、
そのため真空槽容器内の内圧を一定に保つ事
が難しく、安定した膜形成が得られない、 そこで本発明者らは従来の堆積膜成形法に付随す
る、上述した問題点を解決すべく鋭意検討した結
果、特定構造、構成の装置を用いて堆積膜を形成
すると意想外にも成膜の均一性が得られ、反応工
程中の内圧(放電)の安定性が向上すると共に形
成される堆積膜に所望される特性も得られ易くな
る事を見出し本発明を完成するに至つた。 〔発明の目的及び概要〕 本発明の目的は、放電現象を利用した堆積膜を
形成する際に成膜の均一性を維持し放電の安定性
を向上させながら、均一で優良な特性を備えた堆
積膜を形成することのできる堆積膜形成装置を提
供することにある。 上記目的は、ほぼ軸芯を合せて収容される円筒
状基体との間で放電を起す事により前記基体上に
堆積膜を形成するための円筒状反応槽と、該反応
槽内に設けられた、原料ガスを供給するためのガ
ス供給管と、前記反応槽と連通されている排気管
とを有する堆積膜形成装置に於いて、前記反応槽
は円筒状基体を静止した状態で収容するものであ
つて、前記ガス供給管及び前記排気孔を夫々複数
有し、それ等が前記反応槽の軸芯に対して互いに
点対称の関係にあり、前記排気管は前記反応槽の
端部において排気孔を介して前記反応槽と連通さ
れており、且つ前記排気管が前記反応槽との接続
部に於いて単一であることを特徴とする堆積膜形
成装置によつて達成される。 〔実施例〕 以下、添付した図面に従つて本発明の実施例を
説明する。 第1図は円筒状導電性基体を装着した本発明の
堆積膜形成装置の一構成例を示した模式図であ
る。 第1図に示した装置は、例えばステンレス、ア
ルミニウム、ニツケル、及びこれらを基質とする
合金等の導電性を有する構造材から成りカソード
電極として作用し得る円筒状の反応槽容器1と、
この容器1とは環状碍子2を介して固定された容
器底板3に懸架部材4を介して固定され、反応槽
容器1とほぼ軸芯を合せて配置されている円筒状
の導電性基体受け台5とで基本的に構成され、こ
の受け台5上に反応槽容器とほぼ軸芯を合せて円
筒状の導電性基体6が載置されている。第2図は
第1図において、円筒状の導電性基体受け台5を
輪切りにする直線で切断した場合の断面図であ
る。 前記懸架部材4(点線部分及び破線部分)は第
2図に示した如く、基体受け台を支持するための
円板状の支持体7及びこの支持体7と容器底板3
とを架橋し、排気孔9を形成するための4本の脚
部材8で構成され、脚部材8の間隙部分が排気孔
9となつている。円板状の支持体7上にはこれと
ほぼ軸芯を合わせて導電性基体受け台5(斜線部
分)が設けられており、導電性基体受け台5の内
側には抵抗発熱体19(斜線部分)が配されてい
る。ここに示した例においては、支持体7及び脚
部材8は懸架部材4と同一平面を形成している。 脚部材8の本数は任意に決めることができる
が、排気孔の配置を均一にするために、容器1の
軸芯に対して一定角度でそれぞれ放射する様に配
置されていることが好ましい。 懸架部材4の下方には、上端ラツパ状に拡幅し
底板3の裏面に固定された排気管10が配置され
て、図示しないロータリーポンプ、メカニカルブ
ースターポンプ等適宜の真空排気手段が接続され
ている。11はバルブである。 12は環状碍子13を介して容器1に着脱自在
乃至摺動自在に取付けられた上蓋又はゲートであ
る。 なお前記基体受け台は円筒状である必要はな
く、基体を安定して載置し得る形状のものであれ
ば良いが、基体と同じ円筒状とすることにより、
ヒータ等を配置する上で装置構造を簡略化するこ
とができる。また更に円筒状受け台の径を基体と
ほぼ同じか、やや大きめとして形状を揃えること
によりグロー放電の安定化に寄与することができ
る。 14,14は堆積膜形成用のガスの導入管であ
り、成膜の均一性を保つために、基体長さとほぼ
同じ長さに亘つて均一に分布した複数のガス導入
孔15,15,15……を有することが好まし
く、また同じ理由により、反応槽容器と基体との
間隙部分で基体軸芯のまわりにほほ均一な角度を
なしてほぼ同心円状に複数配置されていることが
好ましい。さらにまた同じ理由により、前記排気
孔9との関係では、排気孔とガス導入管14が反
応槽容器の軸芯に対して互いに点対称の関係にあ
ることが好ましい。第1図及び第2図に示した例
では図示しないものを含めて、互いにほぼ90°を
なして4本のガス導入管が配置されている。 それぞれのガス導入管14,14……は、上端
を閉じており、下端は、底板3に例えば蝶着され
たシール部材を兼ねたコネクタ6により反応槽外
部のガス導入管17に接続され、この導入管17
は更に堆積膜形成用のガス供給源であるボンベ等
に接続されている。 また、第1図中18は反応槽容器1と電気的に
接続された高周波マツチングボツクスであり、こ
のマツチングボツクスは図示しない例えば実用的
な高周波帯域1キロ〜1ギガHzの高周波を発振す
る高周波発振器に接続されて、容器1に高周波電
力を供給することができる。更に19は抵抗発熱
体であり、所望の基体温度を維持する様温度管理
を行なうことができる。 この様な構成の装置を用いて本発明方法を実施
するに際しては、先づ上蓋又はゲート2を開けて
円筒状の導電性基体6を容器1内に入れ、基体受
け台5上に容器1とほぼ軸芯を合せて載置する。
次いで上蓋又はゲート12を閉じ、排気管10か
ら排気して反応槽容器内を10-2〜10-6Torr程度
の真空度まで減圧した後、ガス導入管14,14
……から堆積膜形成用ガスを導入すると共に容器
1に高周波電力を供給してグロー放電を生起せし
め、基体6を静止させたまま堆積膜を形成させ
る。 更にグロー放電の条件は、基体温度として150
〜350℃が好ましく、カソード(反応槽容器)は、
所望に応じて冷却される。 以下、本発明の効果を実証するための具体的実
施例を説明する。 実施例1、比較例1、比較例2 第1図及び第2図に示した装置を用い比較例と
して第4図及び第5図に示した装置を用いて電子
写真感光体用光導電部材を作成した。 装置条件として有効排気量は同排気能力真空ポ
ンプにて不活性ガスを一定量容器内に導入した場
合排気管の全長は同一にし容器内内圧が同一にな
る様に排気孔径及び排気管径を設定した。 なお、光導電部材の作製条件は、下記のとおり
とした。 〔作製条件〕堆積膜の積層順序 使用原料ガス 膜厚(μm) 電荷注入阻止層 SiH4、B2H6 0.6 光導電層 SiH4 20 表面保護層 SiH4、C2H4 0.1 基体(アルミニウムシリンダー)5の温度:250
℃±5℃に制御 堆積膜形成時の堆積室内内圧:0.3Torr 放電周波数:13.56MHz 堆積膜形成速度:20Å/sec 放電電力:0.18W/cm2 ガス流速:200m/s ガス流量:電荷注入阻止層 SiH4200SCCM
B2H6 SiH4に対し200ppm 光導電層 SiH4200SCCM 表面保護層 SiH410SCCM CH4200SCCM かくして本発明の堆積膜形成装置(第1図及び
第2図、実施例1、第4図(第3図)に示した装
置(比較例1)、第5図(第3図)に示した装置
(比較例2)のそれぞれを用いた場合のグロー放
電状況(放電の均一性、周方向電位ムラ、母線
(軸芯)方向電位ムラ)、反応槽内圧の安定性(内
圧変動量ΔP)、排気孔粉詰り状況、形成された光
導電部材により形成された画像流れの状況及び光
導電部材の歩留りを測定乃至は評価した。結果を
第1表に示した。
[Industrial Application Field] The present invention relates to a deposited film forming apparatus using a vapor phase method, particularly,
This article relates to devices for forming deposited films using discharge energy such as plasma CVD methods, glow discharge methods, and arc discharge methods, and in particular to devices suitable for forming film bodies constituting photoconductive members such as electrophotographic photoreceptors. . [Prior art] One of the methods for manufacturing deposited films is CVD (Chemical Vapor Deposition), which uses heat, light, or discharge energy.
There are three methods: deposition method, glow discharge method, and arc discharge method, and in particular, CVD method using low-temperature plasma has been attracting attention in recent years. In this method, the pressure inside the reaction tank is reduced to a high vacuum, the raw material gas is supplied into the reaction tank, and then the raw material gas is decomposed by glow discharge to form a film on the substrate placed in the reaction tank. in,
For example, it is applied to the production of amorphous silicon films. The amorphous silicon film created by this method using silane gas (SiH 4 ) as a raw material gas has relatively few localized levels in the forbidden band of amorphous silicon, and due to doping with substitutional impurities, valence electrons are reduced. It can be controlled and has excellent properties as an electrophotographic photoreceptor, and is therefore highly anticipated. By the way, for example, an electrophotographic photoreceptor generally has a photoconductive layer provided on a cylindrical (drum-shaped) base for forming a deposited film, but plasma CVD
When producing a cylindrical electrophotographic photoreceptor by this method, an apparatus having a configuration as shown in FIG. 3 has conventionally been used. That is, this device includes a vacuum chamber container 51, an upper lid or gate 52 of the container, a DC or high frequency cathode electrode 54 connected to a power source 53, an exhaust system 55 for reducing the pressure inside the container, and a gas for forming a deposited film. It is equipped with a gas introduction system 56 for introducing gas, a heater 57 for heating the substrate, and the like. A normally conductive cylindrical substrate 58 housed in a vacuum chamber 51 is attached to an electrically grounded rotating shaft 59 and rotated by a drive motor 60 during deposition film formation. Further, 61 is a shield plate for confining plasma. By the way, in this type of vacuum chamber container, since the rotation mechanism is located at the axial center of the container, the exhaust hole for evacuating the inside of the container or reducing the pressure is provided offset from the axial center. That is, conventionally, for example, a single exhaust hole 62 with a large diameter is provided as shown in FIG. 4, or a plurality of exhaust holes 63 with a small diameter are provided as shown in FIG.
63, 63, 63, but the following problems arose. () At the exhaust port shown in FIG. 4, the flow of gas inside the vacuum chamber becomes non-uniform, making it impossible to obtain a uniform plasma reaction within the chamber, resulting in poor uniformity of the deposited film formed on the substrate. () In order to compensate for the drawbacks of (), the device shown in Fig. 5 has a plurality of exhaust ports located symmetrically with respect to the center. In order to obtain a uniform reaction within the container, the greater the number of exhaust ports, the better, but on the other hand, the problem is that the shape of the reactor becomes complicated, and the number of joints for the exhaust pipe increases, which is disadvantageous in terms of leak prevention and poor equipment reliability. , If the total effective area of the exhaust ports is the same in order to make the effective displacement the same, the number of exhaust ports (pipes) n
The relationship between and the effective inner diameter d o of each exhaust port (pipe) is d o = d 1 /√n, and the larger the number, the smaller the effective diameter per one pipe. This thing is
Powder, which is a by-product generated during plasma reaction, tends to cause powder clogging during the reaction process.
As a result, it is difficult to maintain a constant internal pressure inside the vacuum chamber, making it difficult to form a stable film. Therefore, the present inventors have conducted extensive studies to solve the above-mentioned problems associated with conventional deposited film forming methods. As a result, when a deposited film is formed using a device with a specific structure and configuration, unexpectedly uniform film formation is obtained, and the stability of the internal pressure (discharge) during the reaction process is improved, and the deposited film formed is improved. The present invention was completed by discovering that the desired characteristics can be easily obtained. [Objective and Summary of the Invention] The object of the present invention is to maintain the uniformity of the film formation and improve the stability of the discharge when forming a deposited film using a discharge phenomenon, while maintaining uniform and excellent characteristics. An object of the present invention is to provide a deposited film forming apparatus capable of forming a deposited film. The above object is to provide a cylindrical reaction vessel for forming a deposited film on the substrate by generating an electric discharge between the cylindrical substrate housed with their axes aligned, and a cylindrical reaction vessel provided within the reaction vessel. In a deposited film forming apparatus having a gas supply pipe for supplying raw material gas and an exhaust pipe communicating with the reaction tank, the reaction tank accommodates a cylindrical substrate in a stationary state. The gas supply pipe and the exhaust hole each have a plurality of them, and are symmetrical with respect to the axis of the reaction tank, and the exhaust pipe has a plurality of exhaust holes at an end of the reaction tank. This is accomplished by a deposited film forming apparatus that is in communication with the reaction tank via a deposited film forming apparatus, and has a single exhaust pipe at a connection portion with the reaction tank. [Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. FIG. 1 is a schematic diagram showing a configuration example of a deposited film forming apparatus of the present invention equipped with a cylindrical conductive substrate. The apparatus shown in FIG. 1 includes a cylindrical reaction vessel 1 which is made of a conductive structural material such as stainless steel, aluminum, nickel, or an alloy made of these materials as a substrate, and which can function as a cathode electrode.
This container 1 is a cylindrical conductive substrate holder that is fixed via a suspension member 4 to a container bottom plate 3 that is fixed via an annular insulator 2, and is arranged to be approximately aligned with the axis of the reaction tank container 1. 5, and a cylindrical conductive substrate 6 is placed on this pedestal 5 with its axis substantially aligned with the reaction tank container. FIG. 2 is a cross-sectional view of FIG. 1 taken by cutting the cylindrical conductive substrate holder 5 along a straight line. As shown in FIG. 2, the suspension member 4 (dotted line portion and broken line portion) includes a disk-shaped support 7 for supporting the base holder, and this support 7 and the container bottom plate 3.
It is comprised of four leg members 8 for bridging and forming exhaust holes 9, and the gaps between the leg members 8 serve as the exhaust holes 9. A conductive substrate holder 5 (shaded area) is provided on the disk-shaped support 7 so as to be approximately aligned with the axis thereof, and a resistance heating element 19 (shaded area) is provided inside the conductive substrate holder 5. part) are arranged. In the example shown here, the support 7 and the leg member 8 form the same plane as the suspension member 4 . Although the number of leg members 8 can be determined arbitrarily, it is preferable that the leg members 8 are arranged so as to radiate from each other at a constant angle with respect to the axis of the container 1 in order to make the arrangement of the exhaust holes uniform. Below the suspension member 4, an exhaust pipe 10 whose upper end is widened into a flap shape and fixed to the back surface of the bottom plate 3 is arranged, and is connected to an appropriate evacuation means such as a rotary pump or a mechanical booster pump (not shown). 11 is a valve. Reference numeral 12 denotes an upper lid or gate detachably or slidably attached to the container 1 via an annular insulator 13. Note that the substrate holder does not have to be cylindrical, and may have any shape as long as it can stably place the substrate, but by making it the same cylindrical shape as the substrate,
The device structure can be simplified in terms of arranging heaters and the like. Furthermore, by making the diameter of the cylindrical pedestal substantially the same as or slightly larger than that of the base body, it is possible to contribute to stabilization of glow discharge. Reference numerals 14 and 14 denote gas introduction pipes for forming a deposited film, and in order to maintain uniformity of film formation, a plurality of gas introduction holes 15, 15, 15 are uniformly distributed over a length that is almost the same as the length of the substrate. ..., and for the same reason, it is preferable that a plurality of them are arranged substantially concentrically at substantially uniform angles around the axis of the substrate in the gap between the reaction tank container and the substrate. Furthermore, for the same reason, in relation to the exhaust hole 9, it is preferable that the exhaust hole and the gas introduction pipe 14 are in a point-symmetrical relationship with respect to the axis of the reaction tank container. In the example shown in FIGS. 1 and 2, four gas introduction pipes, including those not shown, are arranged at approximately 90 degrees to each other. Each of the gas introduction pipes 14, 14, . Introductory tube 17
is further connected to a cylinder or the like which is a gas supply source for forming the deposited film. Further, numeral 18 in FIG. 1 is a high frequency matching box electrically connected to the reaction tank container 1, and this matching box (not shown) oscillates a high frequency in a practical high frequency band of 1 km to 1 GHz, for example. It can be connected to a high frequency oscillator to supply high frequency power to the container 1. Furthermore, 19 is a resistance heating element, which allows temperature control to maintain a desired substrate temperature. When carrying out the method of the present invention using an apparatus having such a configuration, first open the top cover or gate 2, put the cylindrical conductive substrate 6 into the container 1, and place the container 1 and the container 1 on the substrate holder 5. Place it so that its axis is almost aligned.
Next, the upper lid or gate 12 is closed and the exhaust pipe 10 is evacuated to reduce the pressure inside the reaction tank to a degree of vacuum of about 10 -2 to 10 -6 Torr.
A deposited film forming gas is introduced from . Furthermore, the conditions for glow discharge are 150°C as the substrate temperature.
~350°C is preferred, and the cathode (reactor vessel) is
Cooled as desired. Hereinafter, specific examples for demonstrating the effects of the present invention will be described. Example 1, Comparative Example 1, Comparative Example 2 A photoconductive member for an electrophotographic photoreceptor was prepared using the apparatus shown in FIGS. 1 and 2 and the apparatus shown in FIGS. 4 and 5 as a comparative example. Created. As for the equipment conditions, the effective displacement is the same as when a certain amount of inert gas is introduced into the container using a vacuum pump with the same exhaust capacity.The overall length of the exhaust pipe is the same, and the exhaust hole diameter and exhaust pipe diameter are set so that the internal pressure inside the container is the same. did. The conditions for producing the photoconductive member were as follows. [Fabrication conditions] Lamination order of deposited film Raw material gas used Film thickness (μm) Charge injection blocking layer SiH 4 , B 2 H 6 0.6 Photoconductive layer SiH 4 20 Surface protective layer SiH 4 , C 2 H 4 0.1 Substrate (aluminum cylinder ) 5 temperature: 250
Controlled at ℃±5℃ Deposition chamber internal pressure during deposited film formation: 0.3 Torr Discharge frequency: 13.56MHz Deposited film formation rate: 20 Å/sec Discharge power: 0.18 W/cm 2 Gas flow rate: 200 m/s Gas flow rate: Charge injection prevention Layer SiH 4 200SCCM
B 2 H 6 200 ppm relative to SiH 4 Photoconductive layer SiH 4 200 SCCM Surface protective layer SiH 4 10 SCCM CH 4 200 SCCM Thus, the deposited film forming apparatus of the present invention (Figs. 1 and 2, Example 1, Fig. 4) Glow discharge conditions (discharge uniformity, circumferential potential unevenness) when using the apparatus shown in Figure 3 (Comparative Example 1) and the apparatus shown in Figure 5 (Comparative Example 2) , potential unevenness in the direction of the bus line (axis)), stability of the internal pressure of the reaction tank (internal pressure variation ΔP), dust clogging of the exhaust hole, image blurring formed by the formed photoconductive member, and yield of the photoconductive member were measured or evaluated.The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上説明した実施例にも基いて本発明の効果を
説明すると、以下の点に要約される。 1 円筒状基体とほぼ同心円状に排気孔を配置す
る事により、基体を回転させなくとも均一放電
が得られ、均一な膜が得られる。 2 排気孔を1つにする事により、有効排気径に
対し排気管表面積比を小さく出来、そのため、
反応工程中の粉詰まりを防止出来る。 3 粉詰り防止により反応工程中、内圧が安定
し、帯電能が安定し、画像流れを生じない。安
定した特性が再現する。 4 装置構成が単純化されリークが防止出来る。 5 装置構成が単純化され装置コストメリツトが
ある。
The effects of the present invention will be summarized as follows based on the embodiments described above. 1. By arranging the exhaust hole approximately concentrically with the cylindrical substrate, uniform discharge can be obtained without rotating the substrate, and a uniform film can be obtained. 2 By reducing the number of exhaust holes to one, the ratio of the exhaust pipe surface area to the effective exhaust diameter can be reduced.
It can prevent powder clogging during the reaction process. 3. By preventing powder clogging, the internal pressure is stabilized during the reaction process, the charging ability is stabilized, and image blurring does not occur. Stable characteristics are reproduced. 4. The device configuration is simplified and leaks can be prevented. 5. The device configuration is simplified and the device cost is advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基体を装着した本発明の堆積膜形成装
置の一構成例を説明するための模式図である。第
2図は、第1図に示した装置の反応槽容器端部に
おける排気孔の配置を説明するための模式図であ
る。第3図は従来の堆積膜形成装置の構成を説明
するための模式図である。第4図及び第5図は、
第3図に示した様な従来の堆積膜形成装置下端に
おける排気孔の配置例を説明するための模式図で
ある。 1……反応槽容器、3……容器底板、4……懸
架部材、5……基体受け台、6……基体、9……
排気孔、10……排気管、12……上蓋又はゲー
ト、14……ガス導入管、18……高周波マツチ
ングボツクス。
FIG. 1 is a schematic diagram for explaining a configuration example of a deposited film forming apparatus of the present invention equipped with a base. FIG. 2 is a schematic diagram for explaining the arrangement of exhaust holes at the end of the reaction tank of the apparatus shown in FIG. 1. FIG. 3 is a schematic diagram for explaining the configuration of a conventional deposited film forming apparatus. Figures 4 and 5 are
FIG. 4 is a schematic diagram for explaining an example of the arrangement of exhaust holes at the lower end of the conventional deposited film forming apparatus as shown in FIG. 3; DESCRIPTION OF SYMBOLS 1... Reaction tank container, 3... Container bottom plate, 4... Suspension member, 5... Substrate pedestal, 6... Substrate, 9...
Exhaust hole, 10...Exhaust pipe, 12...Top lid or gate, 14...Gas introduction pipe, 18...High frequency matching box.

Claims (1)

【特許請求の範囲】[Claims] 1 ほぼ軸芯を合せて収容される円筒状基体との
間で放電を起す事により前記基体上に堆積膜を形
成するための円筒状反応槽と、該反応槽内に設け
られた、原料ガスを供給するためのガス供給管
と、前記反応槽と連通されている排気管とを有す
る堆積膜形成装置に於いて、前記反応槽は円筒状
基体を静止した状態で収容するものであつて、前
記ガス供給管及び前記排気孔を夫々複数有し、そ
れ等が前記反応槽の軸芯に対して互いに点対称の
関係にあり、前記排気管は前記反応槽の端部にお
いて排気孔を介して前記反応槽と連通されてお
り、且つ前記排気管が前記反応槽との接続部に於
いて単一であることを特徴とする堆積膜形成装
置。
1. A cylindrical reaction vessel for forming a deposited film on the substrate by generating an electric discharge between a cylindrical substrate housed with their axes aligned, and a raw material gas provided in the reaction vessel. In a deposited film forming apparatus having a gas supply pipe for supplying a gas, and an exhaust pipe communicating with the reaction tank, the reaction tank accommodates a cylindrical substrate in a stationary state, A plurality of the gas supply pipes and a plurality of the exhaust holes are provided, and these are in a point-symmetrical relationship with respect to the axis of the reaction tank, and the exhaust pipe is provided at an end of the reaction tank through the exhaust hole. A deposited film forming apparatus, characterized in that the apparatus is in communication with the reaction tank, and the exhaust pipe is a single exhaust pipe at a connection part with the reaction tank.
JP60158324A 1985-07-19 1985-07-19 Accumulated film formation device Granted JPS6220874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158324A JPS6220874A (en) 1985-07-19 1985-07-19 Accumulated film formation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158324A JPS6220874A (en) 1985-07-19 1985-07-19 Accumulated film formation device

Publications (2)

Publication Number Publication Date
JPS6220874A JPS6220874A (en) 1987-01-29
JPH049872B2 true JPH049872B2 (en) 1992-02-21

Family

ID=15669149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158324A Granted JPS6220874A (en) 1985-07-19 1985-07-19 Accumulated film formation device

Country Status (1)

Country Link
JP (1) JPS6220874A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970761A (en) * 1982-10-18 1984-04-21 Toshiba Corp Film forming device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970761A (en) * 1982-10-18 1984-04-21 Toshiba Corp Film forming device

Also Published As

Publication number Publication date
JPS6220874A (en) 1987-01-29

Similar Documents

Publication Publication Date Title
US5910342A (en) Process for forming deposition film
US4612207A (en) Apparatus and process for the fabrication of large area thin film multilayers
JP2582553B2 (en) Functional deposition film forming apparatus by plasma CVD
JPS6041047A (en) Formation of deposited film
JPH0459390B2 (en)
JPH049872B2 (en)
JPH06342764A (en) Plasma cvd method and device by use of ultrashort wave
JPH079059B2 (en) Method for producing carbon thin film
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JP2554867B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPH0368948B2 (en)
JPS62235471A (en) Deposited film forming device by plasma cvd method
JP2553337B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPS6257710B2 (en)
JPS5852651A (en) Manufacture of electrophotographic receptor
JPH02110919A (en) Filming device
JP4165855B2 (en) Thin film manufacturing method
JPH0742570B2 (en) Method for producing carbon thin film
JPS63223181A (en) Production of amorphous silicon film
JPH01215982A (en) Device for forming film
JPH0686664B2 (en) Deposited film forming device by glow discharge method
JPS624874A (en) Method for forming accumulated film and device used therefor
JPS63125679A (en) Formation of deposited film
JPS624872A (en) Film formation device
JPS62146263A (en) Apparatus for producing electrophotographic sensitive body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term