JPH049823A - Optical crossbar switch - Google Patents

Optical crossbar switch

Info

Publication number
JPH049823A
JPH049823A JP11000990A JP11000990A JPH049823A JP H049823 A JPH049823 A JP H049823A JP 11000990 A JP11000990 A JP 11000990A JP 11000990 A JP11000990 A JP 11000990A JP H049823 A JPH049823 A JP H049823A
Authority
JP
Japan
Prior art keywords
optical
crossbar switch
optical waveguide
waveguide
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11000990A
Other languages
Japanese (ja)
Inventor
Katsuya Tanaka
勝也 田中
Takeshi Kato
猛 加藤
Yasushi Takahashi
靖 高橋
Morihito Miyagi
盛仁 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11000990A priority Critical patent/JPH049823A/en
Publication of JPH049823A publication Critical patent/JPH049823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the switch which can be increased in scale with low loss by crossing row optical waveguides and column optical waveguides in three dimensions. CONSTITUTION:The row optical waveguides 1 (Xi: i=1 - 4) and wavelength demultiplexing deflectors 2 (Aij: i=1 - 4, j=1 - 4) are arranged on the top surface of a substrate 3. A wavelength demultiplexing deflector 2Aij demultiplexes a light signal with wavelength lambdaj and deflects it downward at right angles to the substrate 3. The column optical waveguides 4 (Yj: j=1 - 4) are arranged on a substrate 5 arranged in parallel to the substrate 3 and column optical waveguides 4Yj are provided with couplers 6 (Cj: j=1 - 4) which couples the light signal from the wavelength demultiplexing deflector 2Aij with a column optical waveguide 4Yj. Namely, the row optical waveguides 1 and column optical waveguides 4 cross each other in three dimensions, so there is no intersection present. Consequently, excessive loss at an intersection and performance deterioration due to the accumulation of crosstalk are eliminated and the switch is increased in scale.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光交換機に使用する光クロスバスイッチに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical crossbar switch used in an optical exchange.

〔従来の技術〕[Conventional technology]

従来の光クロスバスイッチは、例えば特開昭58−15
4821号公報に記載のように、行光導波路と列光導波
路を同一平面上において交差させ、その交差点において
光信号の伝播方向を制御することにより、光クロスバス
イッチを構成していた。
Conventional optical crossbar switches are disclosed, for example, in Japanese Patent Application Laid-Open No. 58-15
As described in Japanese Patent No. 4821, an optical crossbar switch was constructed by intersecting a row optical waveguide and a column optical waveguide on the same plane and controlling the propagation direction of an optical signal at the intersection.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来構造では、NXNの光クロスバスイッチにおい
てN2個の交差点が存在し、光信号は最大2N−1個の
交差点を通過しなければならず、各交差点で光信号の受
ける過剰損失とクロストークが積み重なるために、光ク
ロスバスイッチの規模が制限されていた。
In the above conventional structure, there are N2 intersections in the NXN optical crossbar switch, and the optical signal must pass through a maximum of 2N-1 intersections, and the excessive loss and crosstalk experienced by the optical signal at each intersection are reduced. Due to stacking, the scale of optical crossbar switches has been limited.

本発明の目的は、低損失で大規模化可能な光クロスバス
イッチを提供することにある。
An object of the present invention is to provide an optical crossbar switch that has low loss and can be scaled up.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、行光導波路と測光導波路を立体交差させ
ることにより解決される。
The above problem can be solved by intersecting the row optical waveguide and the photometric waveguide.

〔作用〕[Effect]

行光導波路と測光導波路は立体交差しているので、交差
点が存在しない。
Since the row optical waveguide and the photometric waveguide intersect with each other, there is no intersection.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1実施例を説明する図であり、本発
明を4×4波長選択型光クロスバスイッチに適用した例
である。第2図および第3図は波長分波器および偏向器
部分の実施例である。第1図において、行光導波路1(
Xi:i=1〜4)と波長分波偏向器2 (Ai、: 
i : 1〜4.、j=1〜4)は基板3の上面に配置
した。波長分波偏向器2のA□は波長λJの光信号を分
波し、基板3に対し垂直かつ下方向へ偏向する。測光導
波路4(YJ:j=1〜4)は、基板3と平行に配置さ
れた基板5上に配置した。測光導波路4のYJには波長
分波偏向器2のArtからの光信号を測光導波路4のY
Jの導波光とするための結合器6(CJ:j=1〜4)
を設けた。基板3の下面には、基板3上面で分波、偏向
された光信号を測光導波路4のYtの結合器6のCtに
導くためのシリンドリカルレンズ7を設けた。ここで、
シリンドリカルレンズ7の焦点線上に結合器6のCJ 
を配置し、かつ行光導波路1のXIの各波長分波偏向器
2のA 17において分波、偏向された光信号が測光導
波路4のYJの導波光となるように1行光導波路1と波
長分波偏向器2とシリンドリカルレンズ7と結合器6と
測光導波路4を配置した。ここで、シリンドリカルレン
ズ7と基板5の間には、光信号に対して透明な支持体8
があるものとする。
FIG. 1 is a diagram illustrating a first embodiment of the present invention, and is an example in which the present invention is applied to a 4×4 wavelength selective optical crossbar switch. FIGS. 2 and 3 are examples of the wavelength demultiplexer and deflector portions. In FIG. 1, a row optical waveguide 1 (
Xi: i = 1 to 4) and wavelength demultiplexing deflector 2 (Ai,:
i: 1-4. , j=1 to 4) were arranged on the upper surface of the substrate 3. A□ of the wavelength demultiplexing deflector 2 demultiplexes the optical signal of wavelength λJ and deflects it perpendicularly to the substrate 3 and downward. The photometric waveguide 4 (YJ: j=1 to 4) was placed on a substrate 5 that was placed parallel to the substrate 3. The optical signal from Art of the wavelength demultiplexing deflector 2 is sent to YJ of the photometric waveguide 4.
Coupler 6 for guiding light of J (CJ: j=1 to 4)
has been established. A cylindrical lens 7 is provided on the lower surface of the substrate 3 for guiding the optical signal split and deflected on the upper surface of the substrate 3 to the Ct of the Yt coupler 6 of the photometric waveguide 4. here,
The CJ of the coupler 6 is placed on the focal line of the cylindrical lens 7.
The optical waveguides 1 in one row are arranged so that the optical signals separated and deflected at A 17 of each wavelength demultiplexing deflector 2 of XI in the row optical waveguide 1 become the guided light of YJ in the photometric waveguide 4. A wavelength demultiplexing deflector 2, a cylindrical lens 7, a coupler 6, and a photometric waveguide 4 are arranged. Here, between the cylindrical lens 7 and the substrate 5, there is a support 8 that is transparent to optical signals.
Assume that there is.

第2図および第3図において、波長分波器9は空間的に
隔てて配置した光導波路10と光導波路11の間にグレ
ーティング12を設けた分布ブラッグ反射型方向性結合
器である。波長λの光信号を分波するためには、グレー
ティング12の波数を、波長λの光の光導波路中の波数
と等しくすればよい。波長分波器9において分波された
光信号は、第2図においてブレーズグレーティング13
を用いた偏向器14により、基板3に対し垂直な方向へ
偏向される。ここで偏向器14のかわりに第3図に示す
ようにミラー15を用いてもよい。
In FIGS. 2 and 3, the wavelength demultiplexer 9 is a distributed Bragg reflection type directional coupler in which a grating 12 is provided between an optical waveguide 10 and an optical waveguide 11 that are spaced apart from each other. In order to demultiplex an optical signal with a wavelength λ, the wave number of the grating 12 may be made equal to the wave number of the light with a wavelength λ in the optical waveguide. The optical signal demultiplexed by the wavelength demultiplexer 9 is transferred to the blaze grating 13 in FIG.
The beam is deflected in a direction perpendicular to the substrate 3 by a deflector 14 using a . Here, instead of the deflector 14, a mirror 15 may be used as shown in FIG.

また、第1図のシリンドリカルレンズ7を同様の働きを
するホログラム16に置き換えた第2実施例を第4図に
示す。
Further, a second embodiment is shown in FIG. 4 in which the cylindrical lens 7 in FIG. 1 is replaced with a hologram 16 having a similar function.

次に、実施例の動作を説明する。ここで、行光導波路1
を入力側光導波路とし、測光導波路4を出力側光導波路
とする。行光導波路1にはλ、がらλ、まで波長可変の
レーザが各チャンネルに接続されているとする1例えば
、入力側チャンネル1と出力側チャンネル2の接続を実
現するためには、入力側チャンネル1への入射光の波長
をλ2に選べばよい、入力側各行光導波路から分波、偏
向された光信号は、それぞれ接続されるべき出力何列光
導波路のチャンネルごとにシリンドリカルレンズ7によ
り合波される。
Next, the operation of the embodiment will be explained. Here, the row optical waveguide 1
is an input-side optical waveguide, and the photometric waveguide 4 is an output-side optical waveguide. Assume that a laser whose wavelength is tunable from λ to λ is connected to each channel of the optical waveguide 1.For example, in order to realize the connection between input channel 1 and output channel 2, the input channel The wavelength of the incident light to 1 may be selected to be λ2.The optical signals split and deflected from each row of input optical waveguides are combined by a cylindrical lens 7 for each channel of the output rows of optical waveguides to be connected. be done.

また、上記の波長選択型光クロスバスイッチを非晶質誘
電体材料、例えばガラス材料で構成すると、低損失かつ
本体はすべて受動である光クロスバスイッチが構成可能
であり、従来例のようにN2個の交差点での制御が必要
でなくなり、入射光の波長を制御するだけで光信号を交
換できる。
Furthermore, if the wavelength selective optical crossbar switch described above is constructed from an amorphous dielectric material, such as a glass material, it is possible to construct an optical crossbar switch with low loss and whose main body is entirely passive. This eliminates the need for control at intersections, and allows optical signals to be exchanged simply by controlling the wavelength of the incident light.

あるいは、上記の波長選択型光クロスバスイッチの波長
分波器部分を、外部から電圧あるいは電流あるいは光あ
るいは超音波を加えることにより屈折率または吸収率を
変化させることのできる材料で構成すれば、分波する波
長を外部から制御できることになり、相異なる複数の光
接続パターンをひとつの光クロスバスイッチで実現でき
る。
Alternatively, if the wavelength demultiplexer part of the wavelength selective optical crossbar switch mentioned above is made of a material whose refractive index or absorption rate can be changed by applying an external voltage, current, light, or ultrasonic wave, the wavelength demultiplexer section can be demultiplexed. The wavelength of the waves can be controlled externally, making it possible to realize multiple different optical connection patterns with a single optical crossbar switch.

尚、実施例では波長選択型4×4光クロスバスイツチを
例にとり説明したが、本発明は、一般にNXMの規模の
光クロスバスイッチに対しても適用可能である。
Although the embodiment has been described using a wavelength selective 4×4 optical crossbar switch as an example, the present invention is also generally applicable to an optical crossbar switch on the scale of NXM.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、交差点での過剰損失およびクロストー
クの積み重ねによる性能劣化を生ずることがないので、
光クロスバスイッチの大規模化が可能となる。
According to the present invention, performance deterioration due to excessive loss and crosstalk accumulation at intersections does not occur, so
It becomes possible to increase the scale of optical crossbar switches.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1実施例を示す光クロスバスイッ
チ構成図、第2図は、波長分波器と偏向器の第1実施例
を示す図、第3図は、波長分波器と偏向器の第2実施例
を示す図、第4図は、本発明の第2実施例を示す光クロ
スバスイッチ構成図である。 1・・・行光導波路、2・・・波長分波偏向器、3・・
・基板、4・・・測光導波路、5・・・基板、6・・・
結合器、7・・・シリンドリカルレンズ、8・・・支持
体、9・・・波長分波器、10・・・光導波路、11・
・・光導波路、12・・・グレーティング、13・・・
ブレーズグレーティング、Z 2 ロ 第 1 ロ y 3 図 /f   ぐ゛クー
Fig. 1 is a configuration diagram of an optical crossbar switch showing a first embodiment of the present invention, Fig. 2 is a diagram showing a first embodiment of a wavelength demultiplexer and a deflector, and Fig. 3 is a diagram showing a wavelength demultiplexer and a deflector. FIG. 4 is a configuration diagram of an optical crossbar switch showing a second embodiment of the present invention. 1... Row optical waveguide, 2... Wavelength demultiplexing deflector, 3...
・Substrate, 4... Photometric waveguide, 5... Substrate, 6...
Coupler, 7... Cylindrical lens, 8... Support, 9... Wavelength demultiplexer, 10... Optical waveguide, 11.
...Optical waveguide, 12...Grating, 13...
Blaze grating, Z 2 RO 1 ROY 3 Figure/f

Claims (1)

【特許請求の範囲】 1、複数の行からなる光導波路と複数の列からなる光導
波路の間で光結合を有する光クロスバスイッチにおいて
、行光導波路と列光導波路を立体交差させたことを特徴
とする光クロスバスイッチ。 2、特許請求の範囲第1項記載の光クロスバスイッチに
おいて、行光導波路と列光導波路をレンズ、グレーティ
ング、ホログラム、ミラーのうち少なくとも一つを用い
て光結合する構造を有する光クロスバスイッチ。 3、特許請求の範囲第1項記載の光クロスバスイッチに
おいて、構成部品をすべて非晶質誘電体材料を用いて形
成したことを特徴とする光クロスバスイッチ。 4、特許請求の範囲第1項記載の光クロスバスイッチに
おいて、少なくとも各行光導波路から各列光導波路への
光信号分岐部分を、電圧あるいは電流あるいは光あるい
は超音波を加えることにより屈折率または吸収率が変化
する材料で形成し、かつその光信号分岐部分に電圧ある
いは電流あるいは光あるいは超音波を加える手段を設け
たことを特徴とする光クロスバスイッチ。 5、特許請求の範囲第1項記載の光クロスバスイッチに
おいて、各行光導波路から各列光導波路への光信号分岐
部分が波長選択性を持つ光回路で構成されたことを特徴
とする光クロスバスイッチ。 6、特許請求の範囲第5項記載の波長選択性を持つ光信
号分岐部分の光回路が、結合部にグレーティングを有す
る分布ブラッグ反射型方向性結合器からなることを特徴
とする光クロスバスイッチ。 7、特許請求の範囲第5項記載の光クロスバスイッチに
おいて、光クロスバスイッチ本体を受動素子で構成し、
光クロスバスイッチの制御を光クロスバスイッチに入力
する光信号の波長によって行うことを特徴とする光クロ
スバスイッチ。 8、特許請求の範囲第4項又は第5項の光クロスバスイ
ッチにおいて、行光導波路から列光導波路への光信号分
岐点で分波する光の波長を外部から制御することを特徴
とする光クロスバスイッチ。
[Claims] 1. An optical crossbar switch having optical coupling between an optical waveguide consisting of a plurality of rows and an optical waveguide consisting of a plurality of columns, characterized in that the row optical waveguide and the column optical waveguide are crossed three-dimensionally. Optical crossbar switch. 2. The optical crossbar switch according to claim 1, which has a structure in which the row optical waveguide and the column optical waveguide are optically coupled using at least one of a lens, a grating, a hologram, and a mirror. 3. The optical crossbar switch according to claim 1, wherein all the constituent parts are formed using an amorphous dielectric material. 4. In the optical crossbar switch according to claim 1, at least the optical signal branching portion from each row optical waveguide to each column optical waveguide is adjusted to have a refractive index or absorption coefficient by applying a voltage, current, light, or ultrasonic wave. 1. An optical crossbar switch, characterized in that it is made of a material that changes in temperature, and is provided with means for applying voltage, current, light, or ultrasonic waves to its optical signal branching portion. 5. The optical crossbar switch according to claim 1, wherein the optical signal branching portion from each row optical waveguide to each column optical waveguide is constituted by an optical circuit having wavelength selectivity. . 6. An optical crossbar switch characterized in that the optical circuit of the optical signal branching portion having wavelength selectivity as set forth in claim 5 is comprised of a distributed Bragg reflection type directional coupler having a grating in the coupling portion. 7. In the optical crossbar switch according to claim 5, the optical crossbar switch main body is composed of passive elements,
An optical crossbar switch characterized in that the optical crossbar switch is controlled by the wavelength of an optical signal input to the optical crossbar switch. 8. The optical crossbar switch according to claim 4 or 5, characterized in that the wavelength of the light branched at the optical signal branching point from the row optical waveguide to the column optical waveguide is externally controlled. crossbar switch.
JP11000990A 1990-04-27 1990-04-27 Optical crossbar switch Pending JPH049823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11000990A JPH049823A (en) 1990-04-27 1990-04-27 Optical crossbar switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11000990A JPH049823A (en) 1990-04-27 1990-04-27 Optical crossbar switch

Publications (1)

Publication Number Publication Date
JPH049823A true JPH049823A (en) 1992-01-14

Family

ID=14524800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11000990A Pending JPH049823A (en) 1990-04-27 1990-04-27 Optical crossbar switch

Country Status (1)

Country Link
JP (1) JPH049823A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670210A (en) * 1994-10-27 1997-09-23 Silicon Valley Group, Inc. Method of uniformly coating a substrate
US6711315B1 (en) * 2001-11-09 2004-03-23 Avrio Technologies, Inc. 3-D electro optical switch
US6977098B2 (en) 1994-10-27 2005-12-20 Asml Holding N.V. Method of uniformly coating a substrate
US7018943B2 (en) 1994-10-27 2006-03-28 Asml Holding N.V. Method of uniformly coating a substrate
US7030039B2 (en) 1994-10-27 2006-04-18 Asml Holding N.V. Method of uniformly coating a substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670210A (en) * 1994-10-27 1997-09-23 Silicon Valley Group, Inc. Method of uniformly coating a substrate
US6977098B2 (en) 1994-10-27 2005-12-20 Asml Holding N.V. Method of uniformly coating a substrate
US7018943B2 (en) 1994-10-27 2006-03-28 Asml Holding N.V. Method of uniformly coating a substrate
US7030039B2 (en) 1994-10-27 2006-04-18 Asml Holding N.V. Method of uniformly coating a substrate
US6711315B1 (en) * 2001-11-09 2004-03-23 Avrio Technologies, Inc. 3-D electro optical switch

Similar Documents

Publication Publication Date Title
US5255332A (en) NxN Optical crossbar switch matrix
US6005993A (en) Deflection optical matrix switch
JP2002318398A (en) Light deflecting element, optical switching module, optical signal changeover device and optical wiring substrate
KR20040036929A (en) Free-space wavelength routing systems with interleaved channels
US6865310B2 (en) Multi-layer thin film optical waveguide switch
JP4023584B2 (en) Light switch
CN105739026A (en) High-port-number wavelength selection switch
US6766074B1 (en) Demultiplexer/multiplexer with a controlled variable path length device
US5959756A (en) Optical deflection switch
KR100198782B1 (en) Space switch using beam refraction element
US6259833B1 (en) Optical cross connect using a planar arrangement of beam steerers
US7039267B2 (en) Optical switch
JPH049823A (en) Optical crossbar switch
JPH0447804B2 (en)
JP2005501495A (en) Optical switch device for wavelength division multiplexing (WDM) telecommunications network
US6904203B2 (en) Passband flattened demultiplexer employing segmented reflectors and other devices derived therefrom
JP5168905B2 (en) Optical switch and path switching method
US6263125B1 (en) Integrated optical switch array
JP2018124402A (en) Optical input/output device
JPH04264506A (en) Optical multiplexer/demultiplexer
JP2003202606A (en) Optical switch
JP2798308B2 (en) Crossed star coupler
JPH05273603A (en) Optical switching device
CA2363624C (en) Optical switch
JPH08163031A (en) Waveguide type optical switch and waveguide type matrix optical switch