JPH0498107A - Method and device for measuring curved surface - Google Patents

Method and device for measuring curved surface

Info

Publication number
JPH0498107A
JPH0498107A JP21592090A JP21592090A JPH0498107A JP H0498107 A JPH0498107 A JP H0498107A JP 21592090 A JP21592090 A JP 21592090A JP 21592090 A JP21592090 A JP 21592090A JP H0498107 A JPH0498107 A JP H0498107A
Authority
JP
Japan
Prior art keywords
measured
displacement
interference fringes
curvature
displacement sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21592090A
Other languages
Japanese (ja)
Inventor
Akihisa Itabashi
彰久 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP21592090A priority Critical patent/JPH0498107A/en
Publication of JPH0498107A publication Critical patent/JPH0498107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the shape of a surface and the accuracy of the surface at a high speed and with a high accuracy by turning a measuring surface, and by measuring the displacement of the measured surface caused by the rotation. CONSTITUTION:In this method, by turning a turning table 8, the approximate values of both the amount of displacement of a measuring surface 7a' measured by a displacement sensor 13 and the deviation of the radius of curvature of the measuring object from that of the designed value between points O and O', or x(=x'-x), y(=y'-y), and z(=z'-z) are obtained. At that time, by moving the displacement sensor 13 in the up-and-down direction (z-axis direction) by means of a sensor transfer means 14 so as to bring the principal longitude line R of the measured object into line with the z-axis of the displacement sensor, further accurate measurement can be enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光の干渉作用を用いて曲面の状態を測定する
技術に関し、特に、曲面の一部について干渉縞を形成し
、該測定部分を主経線に沿って走査し、測定面全体を測
定する場合、走査に伴って干渉縞を連続的に確実に形成
する方法及び装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a technique for measuring the state of a curved surface using the interference effect of light. The present invention relates to a method and apparatus for continuously and reliably forming interference fringes as the scan is performed when scanning along the principal meridian to measure the entire measurement surface.

〔従来の技術〕[Conventional technology]

レーザビームプリンタやレーザファクシミリ等の用いら
れる光走査光学系は、一般にポリゴンミラーの面倒れ補
正を行うために、シリンドリカルレンズやトロイダルレ
ンズ等を用いたアナモフィックな光学系で構成される。
Optical scanning optical systems used in laser beam printers, laser facsimiles, and the like are generally constructed of anamorphic optical systems using cylindrical lenses, toroidal lenses, etc. in order to correct the tilt of a polygon mirror.

なお、シリンドリカル面は、トロイダル面において一方
の曲率半径が無限大の場合と考えることができるので、
本明細書においてトロイダル面という場合は特に区別し
ない限りシリンドリカル面も含むものとする。
Note that a cylindrical surface can be thought of as a toroidal surface where one radius of curvature is infinite, so
In this specification, the term toroidal surface includes a cylindrical surface unless otherwise specified.

これらのレンズは、感光体上の形成ドツトの高密度化や
均一化の要求から、0.1μm程度の面精度が必要とさ
れる。こうした背景から、トロイダル面を波長λ以下の
高精度で測定する必要が生している。
These lenses are required to have a surface precision of about 0.1 .mu.m due to the demand for higher density and uniformity of dots formed on the photoreceptor. Against this background, there is a need to measure toroidal surfaces with high precision below the wavelength λ.

一般に、面を高精度で測定するものとしては、レーザ干
渉計が広く知られているが、ごの干渉計は、平面または
球面の測定はできるが、トロイダル面等のように、面内
の直交する主経線の曲率中心が異なる曲面については測
定できない。
In general, laser interferometers are widely known for measuring surfaces with high precision.Although laser interferometers can measure flat or spherical surfaces, they cannot measure orthogonal surfaces in a plane, such as toroidal surfaces. It is not possible to measure curved surfaces whose principal meridians have different centers of curvature.

そのため、従来このようなトロイダル面を高精度に測定
する方法としては、■ダイヤモンドやルビー等の接触針
を被測定面に当接して走査させる「接触針方式Jや、■
光を微小スポットとして被測定面に照射し、このスポッ
トを被測定面全体に走査させる「光プローブ方式」等が
あった。
Therefore, conventional methods for measuring such toroidal surfaces with high precision include (1) the "contact needle method J" in which a diamond or ruby contact needle is brought into contact with the surface to be measured, and (2)
There was an ``optical probe method,'' which irradiated a surface to be measured with light in the form of a minute spot and scanned this spot over the entire surface to be measured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、■の「接触針方式」では、硬い針を被測定面に
当接させるので、被測定面を傷付けたり、汚したりする
という問題があった。また、■の[光プローブ方式」で
は、被測定面を傷付けたり、汚したりするという問題は
ないが、点で被測定面を走査していくために、測定に長
時間かかるという問題があった。
However, in the "contact needle method" (2), a hard needle is brought into contact with the surface to be measured, which has the problem of damaging or staining the surface to be measured. In addition, with the [optical probe method] described in (■), there is no problem of damaging or staining the surface to be measured, but there is a problem that it takes a long time to measure because the surface to be measured is scanned point by point. .

本発明は上記の問題に鑑みてなされたもので、被測定面
を傷付けることなく、高速でしかも高精度に面形状およ
び面精度(面粗さ、面うねり)を測定する測定装置を提
供することを目的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a measuring device that measures surface shape and surface accuracy (surface roughness, surface waviness) at high speed and with high accuracy without damaging the surface to be measured. It is an object.

(課題を解決するだめの手段) 上記の目的を達成するために本発明の測定方法は、同一
光源からの可干渉光を被測定面と基準になる参照面とに
照射し、これら両面からの反射光を重畳して干渉縞を作
り面精度を測定する方法において、 被測定面を、該面上の直交する主経線の何れか一方の曲
率に合わせて回転し、該回転に伴う被測定面の変位を変
位センサで測定することにより、前記主経線の曲率中心
と理論中心とのずれを求め、被測定面を移動して前記ず
れを補正し、被測定面としての曲面上の何れか他方の主
経線と平行な測定部分について干渉縞を作り、該測定部
分を前記一方の主経線に沿って走査して面全体の測定を
する構成を採用している。
(Means for Solving the Problems) In order to achieve the above object, the measurement method of the present invention irradiates coherent light from the same light source onto a surface to be measured and a reference surface that serves as a reference, and measures In a method of measuring surface accuracy by superimposing reflected light to create interference fringes, the surface to be measured is rotated according to the curvature of one of the orthogonal principal meridians on the surface, and the surface to be measured due to the rotation is The deviation between the center of curvature of the principal meridian and the theoretical center is determined by measuring the displacement of A configuration is adopted in which interference fringes are created for a measurement portion parallel to the principal meridian of the plane, and the measurement portion is scanned along the one principal meridian to measure the entire surface.

又、本発明の測定装置は、同一光源からの可干渉光を被
測定面と基準になる参照面とに照射し、これら両面から
の反射光を重畳して干渉縞を作り面精度を測定する装置
において、 被測定面としての曲面上の直交する主経線の一方に沿っ
て干渉縞を形成する干渉光学系と、被測定面を他方の主
経線の曲率に合わせて走査する回転台と、該回転台上の
被測定面までの距離の変位量を測定する変位センサと、
被測定物の移送手段とを有する構成としている。
Furthermore, the measuring device of the present invention irradiates coherent light from the same light source onto a surface to be measured and a reference surface that serves as a reference, and superimposes reflected light from both surfaces to form interference fringes and measure surface accuracy. The apparatus includes: an interference optical system that forms interference fringes along one of orthogonal principal meridians on a curved surface to be measured; a rotary table that scans the surface to be measured in accordance with the curvature of the other principal meridian; a displacement sensor that measures the amount of displacement in the distance to the surface to be measured on the rotary table;
The structure includes a means for transporting the object to be measured.

又は、回転面と垂直な方向における被測定物と前記変位
センサとの相対距離を変化させるセンサ移動手段とを有
する構成が望ましい。
Alternatively, a configuration including a sensor moving means for changing the relative distance between the object to be measured and the displacement sensor in a direction perpendicular to the rotation surface is desirable.

〔作 用〕[For production]

先ず、被測定面としての曲面を何れか一方の主経線に沿
って回転し、変位センサによって、被測定面の曲率中心
と理論上の中心とのずれを測定する。そして求め牧れた
ずれに応じ、移送手段によって被測定物を移動し、被測
定面の曲率中心と理論上の中心とをほぼ一致させておく
。この後、曲面の一部分について干渉縞を形成し、その
干渉縞によってその部分の面精度を測定し、次に、回転
台を回転して次の測定部分を測定し、順次回転台の回転
によって面全体を測定する。なお、センサ移送手段を使
用すれば、測定面の変位量を正確に測定できる。
First, a curved surface as a surface to be measured is rotated along one of the principal meridians, and a displacement sensor measures the deviation between the center of curvature of the surface to be measured and the theoretical center. Then, according to the calculated deviation, the object to be measured is moved by the transfer means, so that the center of curvature of the surface to be measured and the theoretical center are approximately aligned. After this, interference fringes are formed on a part of the curved surface, and the surface accuracy of that part is measured using the interference fringes.Then, the rotating table is rotated to measure the next measurement part, and the rotating table is rotated in order to measure the surface accuracy of that part. Measure the whole thing. Note that if the sensor transfer means is used, the amount of displacement of the measurement surface can be accurately measured.

〔実施例〕〔Example〕

以下に図面を用いて本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本発明における干渉光学系としては、通常の球面や平面
の測定等に用いられるフィゾー型干渉計、マイケルソン
干渉計等と同じ構成のものが使用でき、第1図(a) 
、 (b)に示す実施例では、フィゾー型干渉計を使用
している。
As the interference optical system in the present invention, one having the same configuration as a Fizeau interferometer, a Michelson interferometer, etc. used for ordinary measurements of spherical and flat surfaces can be used, and as shown in Fig. 1(a).
, (b) uses a Fizeau interferometer.

同図において1は光源で、可干渉性の高いガスレーザま
たは半導体レーザ等が使用される。2a、2bはビーム
エクスパンダで、光源1からの狭い光束を適当な大きさ
に拡げるためのものである。
In the figure, reference numeral 1 denotes a light source, and a highly coherent gas laser, semiconductor laser, or the like is used. Beam expanders 2a and 2b are used to expand the narrow beam of light from the light source 1 to an appropriate size.

3は空間フィルタで、ゴースト光や反射光等の不要な光
をカットする。4は光アイソレータでビームスプリッタ
4aとλ/4板4bとで構成されている。ビームエクス
パンダ2a、2bで拡大された光束は、対物レンズ6を
経て、被測定物7の被測定面としてのトロイダル面7a
に達する。以上の光源1から対物レンズ6によって干渉
光学系Sが構成されている。
3 is a spatial filter that cuts unnecessary light such as ghost light and reflected light. 4 is an optical isolator composed of a beam splitter 4a and a λ/4 plate 4b. The light flux expanded by the beam expanders 2a and 2b passes through the objective lens 6 and reaches the toroidal surface 7a as the surface to be measured of the object to be measured 7.
reach. An interference optical system S is constituted by the light source 1 and the objective lens 6 described above.

上記トロイダル面7aは、頂点で直交する主経線AB 
、CDを有するが、このうち一方の主経線CDを母線と
し、これを他方の主経線ABに沿って回転して形成した
もので、以後主経線CDの方をG主経線、ABの方をR
主経線ということにする。
The toroidal surface 7a has a principal meridian AB orthogonal to it at the apex.
, CD, which is formed by taking one principal meridian CD as a generatrix and rotating it along the other principal meridian AB.Hereafter, principal meridian CD will be referred to as G principal meridian, and AB will be referred to as R
Let's call it the main meridian.

対物レンズ6の最終面は、半透鏡としての参照面となっ
ており、予め決められた曲率半径の球面として形成され
ている。即ち参照面6aの曲率中心は、トロイダル面7
aのG主経線(CD)の仕上がり曲率中心とほぼ一致す
る位置に配置される。
The final surface of the objective lens 6 serves as a reference surface as a semi-transparent mirror, and is formed as a spherical surface with a predetermined radius of curvature. That is, the center of curvature of the reference surface 6a is the toroidal surface 7
It is placed at a position that almost coincides with the center of finished curvature of the G principal meridian (CD) of a.

また、参照面6aまたはトロイダル面7aは、XZ断面
内で若干チルト可能に配置される。そして、この参照面
6で対物レンズ6に入射する光の一部が反射され、残り
が透過してトロイダル面7aを照射する。
Further, the reference surface 6a or the toroidal surface 7a is arranged to be slightly tiltable within the XZ cross section. A part of the light incident on the objective lens 6 is reflected by this reference surface 6, and the rest is transmitted and illuminates the toroidal surface 7a.

8は被測定物7を固定する回転台で、トロイダル面7a
のR主経線(AB)の曲率中心と一致した回転軸を有し
、図示しないDCサーボモータやステッピングモータ等
によって駆動され、被測定面であるトロイダル面7a上
をR主経線に沿って走査可能になっている。
8 is a rotary table for fixing the object to be measured 7, which has a toroidal surface 7a.
It has a rotation axis that coincides with the center of curvature of the R principal meridian (AB) of , and is driven by a DC servo motor, a stepping motor, etc. (not shown), and can scan the toroidal surface 7a, which is the surface to be measured, along the R principal meridian. It has become.

参照面6aおよびトロイダル面7aで反射すれた可干渉
光は来た光路を戻り重畳される。そして光アイソレータ
4まで戻ってくると、λ/4板4bおよびビームスプリ
ッタ4aの作用により、ビームスプリッタ4aの反射面
4Cで全て反射され、集束レンズ9を経てイメージセン
サ10に達する。
The coherent light beams reflected by the reference surface 6a and the toroidal surface 7a return along the optical path from which they came and are superimposed. When the light returns to the optical isolator 4, it is all reflected by the reflecting surface 4C of the beam splitter 4a due to the action of the λ/4 plate 4b and the beam splitter 4a, and reaches the image sensor 10 via the focusing lens 9.

したがって、対物レンズ6および集束レンズ9を光軸方
向に移動させることによって、第2図に示すようにイメ
ージセンサ10上に干渉縞の像11を結像することがで
きる。
Therefore, by moving the objective lens 6 and the focusing lens 9 in the optical axis direction, an image 11 of interference fringes can be formed on the image sensor 10 as shown in FIG.

ところで、参照面6aは通常は球面であり、被測定面は
トロイダル面7aであるから、干渉縞が形成されるのは
、両面がほぼ平行と見なせるG主経線に平行な細長い矩
形状の測定部分11’だけになる。もっとも、このよう
な干渉縞11は、参照面6aがシリンドリカル面や球面
であっても同様に形成できる。
By the way, since the reference surface 6a is usually a spherical surface and the surface to be measured is a toroidal surface 7a, the interference fringes are formed in the elongated rectangular measurement portion parallel to the G principal meridian, where both surfaces can be considered to be almost parallel. There will only be 11'. However, such interference fringes 11 can be similarly formed even if the reference surface 6a is a cylindrical surface or a spherical surface.

以上によって、イメージセンサ10上に干渉縞11が形
成されると、この干渉縞はトロイダル面7aの可干渉光
が照射されたG主経線に沿ったほぼ中央部にある細長い
測定部分11′に相当する面精度を表すことになる。
As described above, when the interference fringe 11 is formed on the image sensor 10, this interference fringe corresponds to the elongated measurement portion 11' located approximately at the center along the G principal meridian irradiated with the coherent light of the toroidal surface 7a. It represents the surface accuracy.

回転台8を、R主経線に沿って回動することによって、
トロイダル面7a全体についての面形状及び面の粗さや
面のうねりといった面精度の観測ができる。さらに、イ
メージセンサlOの出力データを図示しないマイクロコ
ンピュータ等で処理することによって、面精度を定量的
に把握することができる。
By rotating the rotating table 8 along the R principal meridian,
Surface accuracy such as surface shape, surface roughness, and surface waviness of the entire toroidal surface 7a can be observed. Furthermore, by processing the output data of the image sensor IO with a microcomputer (not shown) or the like, surface accuracy can be quantitatively understood.

上記の測定において、回転台80回転に伴いイメージセ
ンサ10上に連続的に干渉縞11を発生させるためには
、当然ながら被測定面としてのl・ロイダル面7aのR
主経線の曲率中心を理論1−の中心である回転台8の回
転軸と対物レンズ6の光軸との交点(以後「理論中心」
という)に正確に一致させておく必要がある。そしてこ
の調整は、回転台8上に設けられた移送手段12によっ
て、被測定物7をX、3’及び2方向に移動して行われ
る。
In the above measurement, in order to continuously generate interference fringes 11 on the image sensor 10 as the rotary table 80 rotates, it is necessary to
The center of curvature of the principal meridian is the center of theory 1, which is the intersection of the rotation axis of the rotary table 8 and the optical axis of the objective lens 6 (hereinafter referred to as the "theoretical center").
) must match exactly. This adjustment is performed by moving the object 7 to be measured in the X, 3', and two directions using the transfer means 12 provided on the rotary table 8.

しかし、この調整は非常に微妙であり、むずかしく、熟
練者であっても、場合によっては1時間程度かかってし
まう。
However, this adjustment is very delicate and difficult, and may take about an hour even for an expert.

そこで、本発明では、第3図(a) 、 (b)に示す
ような構成を採用した。同図において、13は、回転台
8とは独立して設けられ、レーザ変位計又は静電容量変
位計等からなる高精度な変位センサである。又、この変
位センサ13はセンサ移送手段14によって回転台8と
垂直な方向(Z軸方向)に移動可能でもある。
Therefore, in the present invention, a configuration as shown in FIGS. 3(a) and 3(b) is adopted. In the figure, reference numeral 13 is a highly accurate displacement sensor that is provided independently of the rotary table 8 and is composed of a laser displacement meter, a capacitance displacement meter, or the like. Further, this displacement sensor 13 is also movable in a direction perpendicular to the rotary table 8 (Z-axis direction) by a sensor transfer means 14.

実際のセツティング位置が、第3図に示す一点鎖線7′
の位置で、被測定面7a’の曲率中心が07 (x′ 
、y′ 、x′)にあるとする。これに対しぐ本来のセ
ツティング位置が実線で示す被測定物7の位置で、被測
定面7aの曲率中心が、前述の理論中心0(X、ysZ
)にあるとすれば、干渉縞を連続的に形成させるために
、被測定物7′を移動して曲率中心0′を理論中心Oに
重ねる必要がある。
The actual setting position is indicated by the dashed-dotted line 7' in Figure 3.
At the position, the center of curvature of the surface to be measured 7a' is 07 (x'
, y', x'). In contrast, the original setting position is the position of the object to be measured 7 shown by the solid line, and the center of curvature of the surface to be measured 7a is at the theoretical center 0 (X, ysZ
), it is necessary to move the object to be measured 7' so that the center of curvature 0' overlaps the theoretical center O in order to continuously form interference fringes.

この方法として本発明は、回転台8を回転させ、変位セ
ンサ13により測定された被測定面一1 a/の変位量
と、被測定物7′の曲率半径の設計値からOとO′のず
れ量Δx (−x′−x)’ +Δy(−y’ −y)
及びΔz (−z’−z)の概略値を知ることとしてい
る。
As this method, the present invention rotates the turntable 8, and calculates O and O' from the displacement amount of the surface to be measured 1a/ measured by the displacement sensor 13 and the design value of the radius of curvature of the object to be measured 7'. Displacement amount Δx (-x'-x)'+Δy(-y' -y)
and Δz (-z'-z).

このとき、センサ移送手段14によって変位センサ13
を上下に(Z軸方向に)移動させ、被測定物7′のR主
経線と変位センサのZ座標を揃えることにより、より正
確な測定が可能になる。
At this time, the displacement sensor 13 is moved by the sensor transfer means 14.
By moving up and down (in the Z-axis direction) and aligning the R principal meridian of the object to be measured 7' with the Z coordinate of the displacement sensor, more accurate measurement becomes possible.

また、変位センサ13の読み取り値からマイクロコンピ
ュータ等で変位量ΔX、Δy、Δzの値を求めることは
公知の手段ででき、また、パルスステージ等からなる移
送手段12をやはり公知の手段を用いてマイクロコンピ
ュータ等でコントロールすれば、非常に短時間に被測定
物7のセツティングをすることができ、人手による煩わ
しい調整作業を行なう必要がない。
Further, the values of the displacement amounts ΔX, Δy, and Δz can be determined using a microcomputer or the like from the reading values of the displacement sensor 13 using known means, and the transfer means 12 consisting of a pulse stage or the like can also be determined using known means. If controlled by a microcomputer or the like, the object to be measured 7 can be set in a very short time, and there is no need for troublesome manual adjustment work.

ただし、実際の被測定面7aの曲率半径と設計値とが一
致することは稀であり、上記の手順だけでは微小なセツ
ティング誤差が除去しきれない。
However, it is rare that the actual radius of curvature of the surface to be measured 7a matches the design value, and the above procedure alone cannot remove minute setting errors.

したがって、このままの状態で測定した場合、その測定
結果にはセツティング誤差が含まれることになり、正し
い面の測定結果とは言えない。
Therefore, if the measurement is made in this state, the measurement result will include a setting error and cannot be said to be a measurement result of the correct surface.

しかし、測定装置Sが測定して得た面データを、例えば
前述のマイクロコンピュータのソフト上でy軸、y軸、
2軸まわりに回転させたり、シフトさせることにより、
被測定面7aが理想のトロイダル面(面粗さ、面うねり
のないトロイダル面)にフィツトする位置を算出でき、
誤差を除去することができるので問題はない。
However, the surface data obtained by measurement by the measuring device S can be stored on the y-axis, y-axis, etc. on the aforementioned microcomputer software, for example.
By rotating or shifting around two axes,
The position where the surface to be measured 7a fits onto an ideal toroidal surface (a toroidal surface without surface roughness and surface waviness) can be calculated,
There is no problem because the error can be removed.

S・・・干渉光学系、■・・・光源、7・・・被測定物
、7a・・・被測定面、訃・・回転台、11′・・・測
定部分、12・・・移送手段、13・・・変(ガセンサ
、14・・・センサ移送手段。
S...Interference optical system, ■...Light source, 7...Measurement object, 7a...Measurement surface, S...Rotary table, 11'...Measurement part, 12...Transportation means , 13... Change (gas sensor), 14... Sensor transfer means.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、被測定物を回転台
上に取り付ける場合、被測定面の曲率中心と理論中心と
を実用上差し支えない程度の誤差範囲内に短時間でセッ
トすることができる。従って、干渉縞を走査の間に連続
的に形成することが簡単にできるようになり、測定時間
の短縮にもなる。
As explained above, according to the present invention, when mounting an object to be measured on a rotary table, it is possible to set the center of curvature of the surface to be measured and the theoretical center within a practically acceptable error range in a short time. can. Therefore, interference fringes can be easily formed continuously during scanning, and measurement time can also be shortened.

Claims (5)

【特許請求の範囲】[Claims] (1)同一光源からの可干渉光を被測定面と基準になる
参照面とに照射し、これら両面からの反射光を重畳して
干渉縞を作り面精度を測定する方法において、 被測定面を該面上の直交する主経線の何れか一方の曲率
に合わせて回転し、該回転に伴う被測定面の変位を変位
センサで測定することにより、前記主経線の曲率中心と
理論中心とのずれを求め、被測定面を移動して前記ずれ
を補正し、被測定面としての曲面上の何れか他方の主経
線と平行な測定部分について干渉縞を作り、該測定部分
を前記一方の主経線に沿って走査して面全体の測定をす
ることを特徴とする曲面の測定方法。
(1) In a method in which coherent light from the same light source is irradiated onto a surface to be measured and a reference surface that serves as a reference, and the reflected light from both surfaces is superimposed to create interference fringes and measure surface accuracy, the surface to be measured is rotated to match the curvature of one of the orthogonal principal meridians on the surface, and the displacement of the surface to be measured due to the rotation is measured by a displacement sensor, thereby determining the relationship between the center of curvature of the principal meridian and the theoretical center. Determine the deviation, correct the deviation by moving the surface to be measured, create interference fringes for a measurement part parallel to the other principal meridian on the curved surface as the measurement surface, and A method for measuring curved surfaces characterized by measuring the entire surface by scanning along meridians.
(2)同一光源からの可干渉光を被測定面と基準になる
参照面とに照射し、これら両面からの反射光を重畳して
干渉縞を作り面精度を測定する装置において、 被測定面としての曲面上の直交する主経線の一方に沿っ
て干渉縞を形成する干渉光学系と、被測定面を他方の主
経線の曲率に合わせて走査する回転台と、該回転台上の
被測定面までの距離の変位量を測定する変位センサと、
被測定物の移送手段とを有することを特徴とする曲面の
測定装置。
(2) In a device that irradiates coherent light from the same light source onto a surface to be measured and a reference surface that serves as a reference, and superimposes the reflected light from both surfaces to create interference fringes and measure surface accuracy, the surface to be measured. an interference optical system that forms interference fringes along one of the orthogonal principal meridians on a curved surface, a rotary table that scans the surface to be measured in accordance with the curvature of the other principal meridian, and a device to be measured on the rotary table. a displacement sensor that measures the amount of displacement of the distance to the surface;
What is claimed is: 1. A curved surface measuring device comprising a means for transporting an object to be measured.
(3)同一光源からの可干渉光を被測定面と基準になる
参照面とに照射し、これら両面からの反射光を重畳して
干渉縞を作り面精度を測定する装置において、 被測定面としての曲面の直交する主経線の一方に沿って
干渉縞を形成する干渉光学系と、被測定面を他方の主経
線の曲率に合わせて走査する回転台と、該回転台上の被
測定面までの距離の変位量を測定する変位センサと、回
転面と垂直な方向における被測定物と前記変位センサと
の相対距離を変化させるセンサ移動手段とを有すること
を特徴とする曲面の測定装置。
(3) In a device that irradiates coherent light from the same light source onto a surface to be measured and a reference surface that serves as a reference, and superimposes the reflected light from both surfaces to create interference fringes and measure surface accuracy, the surface to be measured. an interference optical system that forms interference fringes along one of the orthogonal principal meridians of a curved surface; a rotary table that scans the surface to be measured in accordance with the curvature of the other principal meridian; and a surface to be measured on the rotary table. A measuring device for a curved surface, comprising: a displacement sensor that measures the amount of displacement of the distance to the surface; and a sensor moving means that changes the relative distance between the object to be measured and the displacement sensor in a direction perpendicular to the rotating surface.
(4)同一光源からの可干渉光を被測定面と基準になる
参照面とに照射し、これら両面からの反射光を重畳して
干渉縞を作り面精度を測定する装置において、 被測定面としての曲面の直交する主経線の一方に沿って
干渉縞を形成する干渉光学系と、被測定面を他方の主経
線の曲率に合わせて走査する回転台と、該回転台上の被
測定面までの距離の変位量を測定する変位センサと、被
測定物の移送手段と、回転面と垂直な方向における被測
定物と前記変位センサとの相対距離を変化させるセンサ
移動手段とを有することを特徴とする曲面の測定装置。
(4) In a device that irradiates coherent light from the same light source onto a surface to be measured and a reference surface that serves as a reference, and superimposes the reflected light from both surfaces to create interference fringes and measure surface accuracy, the surface to be measured. an interference optical system that forms interference fringes along one of the orthogonal principal meridians of a curved surface; a rotary table that scans the surface to be measured in accordance with the curvature of the other principal meridian; and a surface to be measured on the rotary table. A displacement sensor that measures the amount of displacement of the distance to the object, a means for transporting the object to be measured, and a sensor moving means that changes the relative distance between the object to be measured and the displacement sensor in a direction perpendicular to the rotation surface. Characteristic curved surface measuring device.
(5)変位センサがレーザ式変位計又は、静電容量式変
位計からなることを特徴とする請求項2から4の何れか
に記載の曲面の測定装置。
(5) The curved surface measuring device according to any one of claims 2 to 4, wherein the displacement sensor is a laser displacement meter or a capacitance displacement meter.
JP21592090A 1990-08-17 1990-08-17 Method and device for measuring curved surface Pending JPH0498107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21592090A JPH0498107A (en) 1990-08-17 1990-08-17 Method and device for measuring curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21592090A JPH0498107A (en) 1990-08-17 1990-08-17 Method and device for measuring curved surface

Publications (1)

Publication Number Publication Date
JPH0498107A true JPH0498107A (en) 1992-03-30

Family

ID=16680451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21592090A Pending JPH0498107A (en) 1990-08-17 1990-08-17 Method and device for measuring curved surface

Country Status (1)

Country Link
JP (1) JPH0498107A (en)

Similar Documents

Publication Publication Date Title
KR20000070669A (en) Interferometer system and lithographic apparatus comprising such a system
JP2003057016A (en) High speed measuring method for shape of large caliber surface and measuring instrument therefor
JP2002333305A (en) Interference measuring apparatus and lateral coordinate measuring method
JPH0498107A (en) Method and device for measuring curved surface
JPH07229721A (en) Device for generating aspherical wave and method for measuring aspherical shape
JPH02259510A (en) Method and instrument for measuring surface shape or the like
JPH04269608A (en) Method and apparatus for measuring toroidal surface
JP2753545B2 (en) Shape measurement system
JP2915599B2 (en) Method and apparatus for measuring toroidal surface
JP3041063B2 (en) Method and apparatus for measuring toroidal surface
JPH05231839A (en) Method and device for measuring toroidal surface
JPH04145318A (en) Measuring device for toroidal face
JPH03276044A (en) Method and instrument for measuring radius of curvature of curved surface
JPH04244903A (en) Method and device for measuring toroidal surface
JPH05248833A (en) Method and apparatus for measuring surface of revolution
JPH05231838A (en) Method and device for measuring curved surface
JP2877935B2 (en) Surface accuracy measuring method and measuring device
JPH0611322A (en) Method and instrument for measuring toroidal surface
JPH0469510A (en) Method and instrument for measuring toroidal surface
JP2527176B2 (en) Fringe scanning shearing interferometer
JP3237022B2 (en) Projection exposure equipment
Cao et al. Lens Decenter Test Based On Laser Beam Interference
JP3393910B2 (en) Surface shape measurement method
JP2000258292A (en) Method and apparatus for measuring refractive index distribution
JPH04147029A (en) Method for measuring toroidal surface