JPH0498028A - Cooling or cooling/heating device - Google Patents

Cooling or cooling/heating device

Info

Publication number
JPH0498028A
JPH0498028A JP2214054A JP21405490A JPH0498028A JP H0498028 A JPH0498028 A JP H0498028A JP 2214054 A JP2214054 A JP 2214054A JP 21405490 A JP21405490 A JP 21405490A JP H0498028 A JPH0498028 A JP H0498028A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
cooling
tank
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2214054A
Other languages
Japanese (ja)
Other versions
JPH0781729B2 (en
Inventor
Yasuo Ogawa
小川 康夫
Yasushi Furuya
泰 古谷
Shinji Nomichi
伸治 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2214054A priority Critical patent/JPH0781729B2/en
Publication of JPH0498028A publication Critical patent/JPH0498028A/en
Publication of JPH0781729B2 publication Critical patent/JPH0781729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To reduce energy loss caused by the movements of an ice making part and an ice storage part when both are different and by ice melting, and satisfy all conditions for prevailing an ice storage/cooling system by freezing water in a storage/cooling fluid part by dropping the same onto the heat transfer surface of a heat exchanger part of a water flowing-down type heat exchanger in the case of an ice making mode, and sending water in a return water storage part to a water/heat exchanger for cooling of the same in the case of a cold water cooling mode and simultaneously heating ice frozen on the heat transfer surface of the water flowing-down type heat exchanger part to drop the same into a tank. CONSTITUTION:Upon ice making, a refrigerant flows into a water flowing-down heat exchanger 7 and is chilled with water sprinkled from a sprinkler device 9 by a pump 6 to freeze a heat transfer surface of the water flowing-down type heat exchanger part 7. Thereafter, the operation is changed over to a cooling/water cooling mode, whereby water sucked into a cold water pump 4 is chilled by water heat exchangers 16, 17 and returned again to a tank intermediate temperature part 15 through pipings 18, 19. The refrigerant reduced in pressure by an expansion valve 46 is heated by an upstream water heat exchanger 16 and hence evaporated, and further chilled by the ice frozen in the water flowing-down heat exchanger 7 with part thereof being condensed. On the other hand, the ice frozen on the heat transfer surface of the water flowing-down heat exchanger 7 is heated and dropped onto a cold fluid tank part 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷却又は冷却・加熱装置に関し、特に夏に冷房
のための冷却を行なう氷蓄熱システムを具備する冷却又
は冷却・加熱装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling or cooling/heating device, and particularly relates to a cooling or cooling/heating device equipped with an ice heat storage system that performs cooling for air conditioning in summer. be.

なお、本文で用いる「ヒートポンプ」とは温熱を得る加
熱専用機だけでなく、冷凍機も含んだ広義のヒートポン
プを意味する。
Note that the term "heat pump" used in this text refers to heat pumps in a broad sense, including not only dedicated heating machines that obtain heat, but also refrigerators.

〔従来技術〕[Prior art]

従来、夏期、昼間の冷房等による寛カピークをカットす
る目的及び冷凍容量を少なくする目的のため夜間に冷水
を製造し、該冷水を貯蔵しておき、昼間にこの冷水によ
る冷房を行なうシステムがある。
Conventionally, there has been a system in which cold water is produced at night, stored, and used for cooling during the day in order to cut down on the relaxation peak caused by air conditioning during the daytime and to reduce the refrigeration capacity. .

しかしながら、この場合は冷熱を水の顕熱によってのみ
蓄えるので、昼間の冷房負荷をまかなうためには、膨大
な蓄水量が必要であった。
However, in this case, cold heat is stored only by the sensible heat of water, so a huge amount of water is required to cover the daytime cooling load.

このため、最近では冷水にかわり氷を蓄えるシステムが
注目されている。即ち、このシステムは氷の潜熱を利用
した冷熱を蓄えるので水に比べて約1/10の容積で蓄
冷することが可能であることから、近年の地価高騰等に
鑑み、その普及が期待されているシステムである。その
ため、数多くの氷蓄冷システムが運転され始めている。
For this reason, systems that store ice instead of cold water have been attracting attention recently. In other words, this system uses the latent heat of ice to store cold energy, making it possible to store cold in approximately 1/10 the volume of water, so it is expected to become more widespread in light of the recent rise in land prices. It is a system that has For this reason, many ice storage systems have begun to operate.

また、特許出願等においても数多くの氷蓄冷システムが
提案きれている。
Additionally, numerous ice storage systems have been proposed in patent applications and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これまでに数多くの氷蓄冷システムが提
案されているにもかかわらず、従来システムは種々の欠
点があり、その普及はまだ十分とは言い難い、その原因
は氷蓄冷システムに必要な下記の10条件を全て満足す
るシステムがないためと思われる。即ち、氷蓄冷システ
ムが普及するためには下記の10条件が必要である。
However, although many ice storage systems have been proposed to date, conventional systems have various drawbacks, and their widespread use is still far from sufficient.This is due to the following requirements for ice storage systems: This seems to be because there is no system that satisfies all 10 conditions. In other words, the following 10 conditions are necessary for ice cold storage systems to become widespread.

条件1、設備費低減のため、昼夜間運転できるシステム
であること。
Condition 1: The system must be able to operate day and night to reduce equipment costs.

条件2、同じく設備費低減のため、スタティック方式の
場合は氷蓄熱槽のI PF(水充填率)が大きいこと。
Condition 2: In the case of a static method, the IPF (water filling factor) of the ice storage tank must be large in order to reduce equipment costs.

そのためには、最大製氷時における水通路などのデッド
スペースができるだけノ」1さいことが望ましい。但し
、遠方に氷含有冷流体を輸送する場合には、その他の条
件もあるので、必ずしも必要な条件ではない。この場合
にはこの氷が輸送し易いことが重要な要件となる。
To this end, it is desirable that dead spaces such as water passages be as small as possible during maximum ice making. However, when transporting ice-containing cold fluid to a long distance, there are other conditions, so this is not necessarily a necessary condition. In this case, an important requirement is that the ice be easy to transport.

条件3、同しく設備費低減のため、製氷用伝熱面積が小
さいこと。
Condition 3: In order to reduce equipment costs, the heat transfer area for ice making must be small.

条件4、運転費及び圧縮機容量低減のため、中小形機で
はブラインを介きない直膨方式であること。
Condition 4: In order to reduce operating costs and compressor capacity, small and medium-sized machines must use a direct expansion method that does not require brine.

条件5、運転費低減のため、冷却負荷があるときは氷を
介さずに、冷水で蒸発器を冷却するようになっているこ
と。
Condition 5: In order to reduce operating costs, when there is a cooling load, the evaporator is cooled with cold water instead of using ice.

条件6、厚い着氷により蒸発器伝熱面と水との熱伝導が
阻害されないこと。
Condition 6: Heat conduction between the evaporator heat transfer surface and water is not inhibited by thick icing.

条件7、製氷部と蓄氷部が異なる場合には、移動や解氷
によるエネルギー損失が少ないこと。
Condition 7: If the ice making section and ice storage section are different, energy loss due to movement and ice melting should be small.

条件8、圧縮機の寿命を長くするため、夏期に逆サイク
ルを行なうような、大きな圧力変動の伴う運転は避けれ
るようになっていること。
Condition 8: In order to extend the life of the compressor, operations with large pressure fluctuations, such as reverse cycles during summer, must be avoided.

条件9、メンテナンス費用や工事費用削減のため、中小
形機では負荷側にはブラインではなく、冷水が循環する
ようになっていること。
Condition 9: In order to reduce maintenance and construction costs, small and medium-sized machines must circulate cold water instead of brine on the load side.

条件10、冬季温水加熱も行なうときは、冷房時と温水
加熱時とで必要冷媒量の違いなどにより不具合が生じな
いこと。そのとき蓄熱槽が大きくならないこと。
Condition 10: When heating hot water in winter, no problems occur due to differences in the amount of refrigerant required between cooling and heating hot water. At that time, the heat storage tank should not become large.

勿論、従来システムにおいても、これら10の条件のう
ちのいくつかの条件を満足するものはある。但し、これ
らの条件の中には1つの条件を満足させるとすると、他
の条件の満足が難しくなることが多く、これらの10の
条件を全て満足させることは非常に難しく、且つ、満足
させることが必要条件となる。
Of course, there are conventional systems that satisfy some of these ten conditions. However, if one of these conditions is satisfied, it is often difficult to satisfy the other conditions, and it is extremely difficult to satisfy all of these 10 conditions, and it is difficult to satisfy them. is a necessary condition.

これら上記10の条件と従来例とを対比移せて説明する
The above 10 conditions and the conventional example will be compared and explained.

条件1は通常の冷暖房負荷条件の場合には必須の条件で
ある。即ち、冷凍容量を小さくしないで、運転費削減だ
けで蓄熱槽コスト増を償却させることは稀である。従っ
て、現在運転されているものは殆ど、この条件を満足し
ているようである。条件2,3は難しい条件である。そ
の1つの解決方法が、氷片又はシャーベット状の氷を流
動させて、この氷を蓄熱槽に蓄えるダイナミック方式と
いわれる方法である。しかしながらこの方法は多くの場
合、後述の条件4,7,8.9等の条件を満足できない
場合が多い。
Condition 1 is an essential condition in the case of normal heating and cooling load conditions. That is, it is rare to amortize the increase in heat storage tank cost by simply reducing operating costs without reducing the refrigeration capacity. Therefore, most of the vehicles currently in operation seem to satisfy this condition. Conditions 2 and 3 are difficult conditions. One solution to this problem is a method called a dynamic method in which ice chips or sherbet-like ice are made to flow and the ice is stored in a heat storage tank. However, in many cases, this method cannot satisfy conditions 4, 7, 8.9, etc., which will be described later.

条件4は運転費、設備費用削減のため重要な条件である
が、従来のものは殆どブラインを介したものである。そ
の理由は直膨式では後述の条件7.10を満足させるこ
とが難しいからである。
Condition 4 is an important condition for reducing operating costs and equipment costs, but most conventional methods use brine. The reason for this is that it is difficult to satisfy condition 7.10, which will be described later, in the direct expansion type.

条件5は特願昭58−148760号に開示されたシス
テム等で提案されているものであり、現在実施されてい
るシステムの多くはこの条件を満足するシステムが採用
されている。
Condition 5 has been proposed in the system disclosed in Japanese Patent Application No. 58-148760, and many of the systems currently in use employ systems that satisfy this condition.

しかしながら、上記特願昭58−148760号のシス
テムでは、次の条件6等の解決についても言及したもの
ではないので、この条件を解決する必要がある。
However, the system of Japanese Patent Application No. 58-148760 does not mention the solution of the following condition 6, etc., so it is necessary to solve this condition.

条件6は難しい条件であり、種々の提案がなきれている
。ブライン中水分の一部を氷結させ、ダイナミック方式
とする方法や、逆サイクルを行ない、解氷と製氷を繰り
返す方法などがある。しかしながら、従来のダイナミッ
ク方式は条件9,10、従来の解氷方式は条件8等の条
件が満足できなくなる。
Condition 6 is a difficult condition, and various proposals have been exhausted. There are methods such as a dynamic method in which a portion of the water in the brine is frozen, and a method in which a reverse cycle is performed to repeat ice thawing and ice making. However, conditions such as Conditions 9 and 10 cannot be satisfied with the conventional dynamic method, and Condition 8 with the conventional ice-melting method.

条件7は特に難しい条件であり、例えば性能が劣化する
方法で解氷しているとき、解氷に時間がかがると、エネ
ルギー損失が増大する。
Condition 7 is a particularly difficult condition; for example, when ice is being thawed using a method that degrades performance, energy loss increases if thawing takes time.

条件8は解氷のための条件であるが、考えつき易い逆サ
イクル方法は、採用が難しいものである。何故なら夏季
、逆サイクルとすると蒸発温度が30°C以上にもなり
、不具合なく運転できるようにするためには、種々の研
究開発が必要である。条件9も氷蓄熱システムを普及さ
せるためには必須の条件と思われる。
Condition 8 is a condition for thawing ice, but the reverse cycle method, which is easy to come up with, is difficult to adopt. This is because in the summer, when the cycle is reversed, the evaporation temperature reaches over 30°C, and various research and development efforts are required to ensure trouble-free operation. Condition 9 is also considered to be an essential condition for popularizing ice heat storage systems.

以上、条件1〜9を満足させる方法も難しいが、更に条
件10の暖房の条件を満足させることは難しい、しかし
ながらこの暖房の条件を満足できなければ急速な普及は
難しいと思われる。
As mentioned above, it is difficult to satisfy conditions 1 to 9, and it is even more difficult to satisfy condition 10, the heating condition.However, if this heating condition cannot be satisfied, it will be difficult for the device to spread rapidly.

本発明は上述の点に鑑みてなされたもので、特に上記条
件7を解決し、しかもその他の条件も満足する夏季氷蓄
熱冷房、必要な場合は冬期温水供給(や給湯)も行なえ
る冷却又は冷却・加熱装置を提供することを目的とする
The present invention has been made in view of the above-mentioned points, and in particular solves the above condition 7 and satisfies the other conditions as well.The present invention provides ice storage cooling in summer, which also provides hot water supply (and hot water supply) in winter if necessary. The purpose is to provide cooling and heating equipment.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明では、冷却又は冷却・加
熱装置を下記の如く構成した。
In order to solve the above problems, in the present invention, a cooling or cooling/heating device is configured as follows.

圧縮機、凝縮器、水流下式熱交換器システム、水熱交換
器、減圧装置及びこれらを連絡する冷媒通路により構成
される蒸気圧縮式ヒートポンプ経路と、 水流下式熱交換器システムに送水するための1台以上の
散水用ポンプ及び散水流体経路、該水流下式熱交換器シ
ステムの水流下通路部、該水流下通路部の下部に配備さ
れるタンク、及びこれらを連絡する流体、及び該タンク
から負荷側に冷流体を輸送するための輸送用ポンプと同
送水管、及び負荷から戻り管よりなる冷流体経路により
構成され、且つタンク部は負荷からの戻り管が接続きれ
ている戻り水貯水部と、負荷に冷流体を供給する貯冷流
体部を有し、 製氷モードの時は、貯冷流体部の水を水流下式熱交換器
システムの熱交換器部の伝熱面に落下させて結氷させ、 冷水冷却モードのときは、戻り水貯水部の水を水熱交換
器に送って冷却し、同時に水流下式熱交換器部の伝熱面
に結氷した氷を加熱してタンク内に落下させるようにし
たことを特徴とする。
A vapor compression heat pump path consisting of a compressor, a condenser, a water flow heat exchanger system, a water heat exchanger, a pressure reduction device, and a refrigerant passage connecting these, and a water flow to the water flow heat exchanger system. one or more watering pumps and watering fluid paths, a lower water passage section of the lower water flow heat exchanger system, a tank disposed below the lower water passage section, a fluid communicating these, and the tank. It is composed of a cold fluid path consisting of a transport pump for transporting cold fluid from the load to the load side, the same water pipe, and a return pipe from the load, and the tank section is a return water storage where the return pipe from the load is fully connected. and a cold storage fluid part that supplies cold fluid to the load, and when in ice making mode, the water in the cold storage fluid part is dropped onto the heat transfer surface of the heat exchanger part of the downstream heat exchanger system. When in cold water cooling mode, the water in the return water storage section is sent to the water heat exchanger for cooling, and at the same time, the ice that has frozen on the heat transfer surface of the water flow heat exchanger section is heated and cooled inside the tank. It is characterized by being made to fall.

また、水流下式熱交換器システムが直膨式蒸発器である
ことを特徴とする。
Further, the water flow type heat exchanger system is characterized in that it is a direct expansion type evaporator.

また、水流下式熱交換器システムがブラインを冷却する
蒸発器、散水により加熱される熱交換器、及びブライン
を循環させるポンプ、これらを連絡する配管等により構
成されるシステムで、且つ水熱交換器側にもブラインを
送って水冷却モードの時に水を冷却できるようになって
いることを特徴とする。
In addition, a water flow heat exchanger system is a system consisting of an evaporator that cools the brine, a heat exchanger that is heated by water spray, a pump that circulates the brine, and piping that connects these. The feature is that brine can also be sent to the vessel side to cool the water when in water cooling mode.

また、圧縮機、周囲温度側熱交換器、水流下式熱交換器
システム、水熱交換器、減圧装置及びこれらを連絡する
冷媒通路により構成される蒸気圧縮式ヒートポンプ経路
と、 水流下式熱交換器システムに送水するための1台以上の
散水用ポンプ及び散水流体経路、水流下式熱交換器シス
テムの水流下通路部、該水流下通路部の下部に配備され
るタンク、これらを連絡する流体通路、該タンクから負
荷側に流体を輸送するための輸送用ポンプと送水管、及
び負荷からの戻りより構成きれ、且つタンク部は負荷か
らの戻り管が接続されている戻り水貯水部と、負荷に流
体を供給する貯送流体部を具備し、 水流下式熱交換システムの熱交換器部の伝熱面結氷させ
、 冷水冷却モードの時は、戻り水貯水部の水を水熱交換器
に送って冷却し、同時に水流下式熱交換器の伝熱面に結
氷した氷を加熱して、タンク内に落下させ、 暖房モードの時は周囲温度側熱交換器を蒸発器として作
動させ吸熱し、水流下式熱交換器システムにより放熱し
、散水を加熱するように動作させることを特徴とする。
In addition, there is a vapor compression heat pump path consisting of a compressor, an ambient temperature side heat exchanger, a water flow heat exchanger system, a water heat exchanger, a pressure reduction device, and a refrigerant passage connecting these; one or more sprinkler pumps and sprinkler fluid paths for supplying water to the heat exchanger system, a lower water passage section of the lower water flow heat exchanger system, a tank provided at the bottom of the lower water flow passage section, and a fluid that connects these. a return water storage section comprising a passage, a transport pump and water pipe for transporting fluid from the tank to the load side, and a return from the load, and to which the tank section is connected to the return pipe from the load; It is equipped with a storage fluid section that supplies fluid to the load, freezes the heat transfer surface of the heat exchanger section of the water flow down heat exchange system, and when in cold water cooling mode, the water in the return water storage section is transferred to the water heat exchanger. At the same time, the ice that has frozen on the heat transfer surface of the water flow heat exchanger is heated and falls into the tank. When in heating mode, the ambient temperature side heat exchanger operates as an evaporator to absorb heat. The system is characterized in that it operates to radiate heat and heat the water spray using a water flow heat exchanger system.

また、暖房モードのとき通常の暖房モード以外に前記タ
ンク内温度関連物理量が所定の温度まで上昇したとき、
又は外気温度関連物理量が所定の温度まで低下したとき
前記水流下式熱交換器システムの熱交換器を蒸発器部と
して作用させ、水熱交換器を凝縮器として作動させるタ
ンク水熱源暖房モードを有していることを特徴とする。
Furthermore, when the temperature-related physical quantity in the tank rises to a predetermined temperature in addition to the normal heating mode in the heating mode,
Or, it has a tank water heat source heating mode in which the heat exchanger of the water flow heat exchanger system acts as an evaporator section and the water heat exchanger acts as a condenser when the outside air temperature related physical quantity falls to a predetermined temperature. It is characterized by the fact that

〔作用〕[Effect]

冷却又は冷却・加熱装置を上記の如く構成することによ
り、後に詳述するように氷蓄熱システムが普及するため
の条件1乃至10の全てを満足するシステムとなる。
By configuring the cooling or cooling/heating device as described above, it becomes a system that satisfies all conditions 1 to 10 for popularization of the ice heat storage system, as will be described in detail later.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図乃至第12図に基づいて
詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 12.

第1図は本発明に係る冷却・加熱装置の冷房製氷時のフ
ローシートである。同図において、冷媒、水の流れを矢
印で示す。冷却及び冷却・加熱装置は、通常、蓄熱ユニ
ット1の上にヒートポンプユニット2を配備した氷冷水
ユニット3としてまとめられている。勿論、蓄熱ユニッ
ト1を別体としてもよい。
FIG. 1 is a flow sheet for ice making in an air conditioner using a cooling/heating device according to the present invention. In the figure, the flow of refrigerant and water is indicated by arrows. The cooling and cooling/heating devices are usually combined as an ice-cold water unit 3 with a heat pump unit 2 disposed on top of a heat storage unit 1 . Of course, the heat storage unit 1 may be a separate body.

製氷時には、冷水ポンプ4を停止し、圧縮機5、冷流体
ポンプ6を運転する。従って、このときは水流下熱交換
器7が蒸発器として作用する。
When making ice, the cold water pump 4 is stopped and the compressor 5 and cold fluid pump 6 are operated. Therefore, at this time, the water flow heat exchanger 7 acts as an evaporator.

図では直膨式の蒸発器であり、冷媒体としては冷媒が流
れるが、ブライン等を介したものでもその作用は同しで
ある(以下、冷媒とブラインを総称して冷媒体と略称す
る)。即ち、冷媒体は連絡管8を通して水流下熱交換器
7に流入し、ポンプ6により散水装置9から散水される
水により冷却される。図の水流下熱交換器7の場合はプ
レートフィン形蒸発器となっている。即ち、冷媒が通る
冷媒通路面は第2図乃至第4図に示すように伝熱面を兼
ねる2枚のプレートを有する数ケの矩形状の冷媒体通路
(第3図参照)となっていて、その内部には蛇行状に通
路を形成するフィンにより強度が保たれている。そして
、各矩形状の冷媒体通路10は多数のフィン11により
一体構造となっている。なお、第2図は水流下熱交換器
7の平面図、第3図はそのA−A断面矢視図、第4図は
そのB−B断面矢視図である。
In the figure, it is a direct expansion type evaporator, and refrigerant flows as the refrigerant, but the effect is the same even if it is through brine etc. (Hereinafter, refrigerant and brine are collectively referred to as refrigerant) . That is, the refrigerant flows into the water flow heat exchanger 7 through the communication pipe 8 and is cooled by water sprayed from the water sprinkler 9 by the pump 6. In the case of the water flow heat exchanger 7 shown in the figure, it is a plate-fin type evaporator. That is, the refrigerant passage surface through which the refrigerant passes is several rectangular refrigerant passages (see Fig. 3) that have two plates that also serve as heat transfer surfaces, as shown in Figs. 2 to 4. Its strength is maintained by fins that form meandering passages inside. Each rectangular coolant passage 10 has an integral structure with a large number of fins 11. 2 is a plan view of the water flow heat exchanger 7, FIG. 3 is a cross-sectional view taken along line A-A, and FIG. 4 is a cross-sectional view taken along line B-B.

第2図の散水装置9から散水きれる水は第3図の矩形状
の冷媒体通路10の外面部とフィン11と、冷媒体通路
10を形成するプレート部により冷却され、これらの伝
熱面に氷結し始める。そし徐々に厚みが増し、例えば1
0分後、第5図に示す次の冷房・水冷却モードに切替わ
る。即ち、三方弁12−1.12−2.13−1.13
−2が切替えられ、冷水ポンプ4が運転され、同時にポ
ンプ6が停止する。この冷水ポンプ4が吸い込む水は負
荷からの戻り口14が取り付けられたタンク中間温部1
5の水温が中間温度の水である。冷水ポンプ4により吸
い込まれた水は水熱交換器16.17で冷却され、配管
18.19を通って再びタンク中間温部15に戻きれる
。以下、第5図に基づいて冷媒体が冷媒の場合について
説明する。第5図の膨張弁46で減圧きれた冷媒は上流
側の水熱交換器16で水により加熱きれ蒸発し、水流下
熱交換器7内で伝熱面外部に結氷している氷により冷却
され、一部は凝縮する。そして、再び配管19を通って
下流側の水熱交換器17に流入し蒸発する。
The water sprayed from the water sprinkler 9 in FIG. 2 is cooled by the outer surface and fins 11 of the rectangular coolant passage 10 in FIG. It starts to freeze. Then the thickness gradually increases, for example 1
After 0 minutes, the mode switches to the next cooling/water cooling mode shown in FIG. That is, three-way valve 12-1.12-2.13-1.13
-2 is switched, the cold water pump 4 is operated, and the pump 6 is stopped at the same time. The water sucked by this cold water pump 4 is supplied to a tank intermediate temperature section 1 equipped with a return port 14 from the load.
Water temperature No. 5 is intermediate temperature water. The water sucked in by the cold water pump 4 is cooled by the water heat exchanger 16, 17, and is returned to the tank intermediate temperature section 15 again through the piping 18, 19. Hereinafter, the case where the refrigerant is a refrigerant will be explained based on FIG. The refrigerant whose pressure has been reduced by the expansion valve 46 in FIG. , some condense. Then, the water passes through the pipe 19 again, flows into the water heat exchanger 17 on the downstream side, and evaporates.

一方、水流下熱交換器7の伝熱面に結氷している氷は加
熱されるので、水流下熱交換器7の伝熱面から剥がれ、
冷流体タンク部20に落下する。
On the other hand, since the ice that has formed on the heat transfer surface of the water flow heat exchanger 7 is heated, it peels off from the heat transfer surface of the water flow heat exchanger 7.
It falls into the cold fluid tank section 20.

第2図乃至第4図でこの水流下熱交換器7の一例を説明
すると、冷媒はノズル8から入口へラダ21に流入し、
連絡管22より第1パス冷媒通路23に流入する。そし
て第4図において、第1バス23→第2パス24→第3
バス25→第4バス26を通り、連絡’Tf27から出
口ヘッダ28に吐土される。なお、冷媒通路は10.1
0′、10” 、・・・・と多数あるが、いずれも2枚
のプレート29.30が両側に配備きれている。また、
これらの冷媒通路出口バス部は連絡管27.27’、2
7″ 、・・・があり、出口ヘッダ28に連絡されてい
てノズル31より流出する。散水はフィン11、プレー
ト29.30で冷却され、この表面に結氷し、またこの
表面で加熱されて解氷される。なお、フィン11の一部
が熱不良導体32になっていて、結氷し難くなっていて
、解氷後の氷が小きくなり易くなっている。また矩形状
の冷媒体通路10.10“、10” 、・・・の上部に
は断熱材33.33 ’ 、33” 、・・ が取りつ
けられていてこの部分には結氷しないようになっている
。なお、水熱交換器17で蒸発した冷媒蒸気は配管34
,35,36.37から圧縮機5に流入し、圧縮され、
配管38,39.40を通って凝縮器41で冷却され、
液化し、配管42、チエツキ弁43、三方弁12−1、
配管44を通って、再び膨張弁46で減圧きれる。なお
、この冷水冷却モードは例えば2分間程度運転され、再
び製氷モードとなる。
An example of this water flow heat exchanger 7 will be explained with reference to FIGS. 2 to 4. The refrigerant flows into the ladder 21 from the nozzle 8 to the inlet,
The refrigerant flows into the first path refrigerant passage 23 from the communication pipe 22 . In FIG. 4, the first bus 23 → second path 24 → third bus
The soil passes through bus 25 → fourth bus 26 and is dumped to exit header 28 from connection 'Tf 27. In addition, the refrigerant passage is 10.1
There are many such as 0', 10", etc., but all of them have two plates 29.30 on both sides. Also,
These refrigerant passage outlet bus sections are connected to connecting pipes 27, 27', 2
7", . . . are connected to the outlet header 28 and flow out from the nozzle 31. The sprayed water is cooled by the fins 11 and plates 29, 30, and freezes on this surface, and is heated and melted on this surface. In addition, a part of the fin 11 becomes a thermally poor conductor 32, making it difficult to freeze, and the ice becomes smaller after the ice melts.Furthermore, the rectangular coolant passage 10 Insulating material 33.33', 33'', etc. is attached to the top of .10'', 10'',... to prevent ice from forming in these parts. Note that the refrigerant vapor evaporated in the water heat exchanger 17 is transferred to the pipe 34.
, 35, 36, and 37 into the compressor 5 and is compressed.
It passes through pipes 38, 39, and 40 and is cooled by a condenser 41,
Liquefied, piping 42, check valve 43, three-way valve 12-1,
It passes through the pipe 44 and is again depressurized by the expansion valve 46. Note that this cold water cooling mode is operated for, for example, about 2 minutes, and then the ice making mode is changed again.

従って、特に逆サイクル等を行なわなくとも冷水冷却モ
ードで解氷が行なわれる。
Therefore, ice can be thawed in the cold water cooling mode without any special reverse cycle or the like.

また、第6図は夏貯湯モードの場合のフローシートであ
る。このモードのときは、第1図のモードから四方弁4
5.三方弁13−1.12−1 、12−2が切替えら
れ、冷水ポンプ4が運転きれる。冷媒は圧縮機5−三方
弁46−四方弁45→三方弁13−1→配管35,34
→水熱交換器17−三方弁12−2−水熱交換器16→
チエツキ弁47→三方弁12−1→膨張弁48→周囲温
度側熱交換器41(凝縮器41)−配管40−四方弁4
5−圧縮j115と循環する。そしてタンク中間温gt
sの水が、水熱交換器16.17で加熱諮れ、配管18
、三方弁49を通って、タンク高温部に蓄えられる。
Further, FIG. 6 is a flow sheet for the summer hot water storage mode. In this mode, the four-way valve 4 is
5. The three-way valves 13-1, 12-1 and 12-2 are switched, and the cold water pump 4 can be fully operated. The refrigerant is compressor 5 - three-way valve 46 - four-way valve 45 → three-way valve 13-1 → piping 35, 34
→Water heat exchanger 17-three-way valve 12-2-water heat exchanger 16→
Check valve 47 → Three-way valve 12-1 → Expansion valve 48 → Ambient temperature side heat exchanger 41 (condenser 41) - Piping 40 - Four-way valve 4
5-compress j115 and cycle. and tank intermediate temperature gt
s water is heated in water heat exchanger 16, 17, and pipe 18
, and is stored in the high temperature section of the tank through the three-way valve 49.

第7図は冷房・負荷運転の場合のフローシートである。Figure 7 is a flow sheet for cooling/load operation.

冷水は冷流体タンク部20内吸入管50−三方弁51→
温度調節弁52を通ってポンプ53に吸込まれ、負荷5
4−1.54−2.54−3側に送られる。このとき負
荷側に送る冷水温度は温度検出器55の信号により、例
えば7℃になるよう戻り水をバイパス管56でバイパス
させるようになっている。また、ポンプ動力を減らすた
め最遠の負荷54−3の冷水入口部に温度検出器57を
設け、この信号により、この部分の温度が上昇しない範
囲でポンプ53を駆動する電動機(図示せず)の回転数
を制御するようになっている。また、給湯用の給水はノ
ズル58から流入する。当然圧力水が補給され伝熱コイ
ル59で加熱され、湯となって給湯用負荷60−1.6
0−2.60−3に送られる。
The cold water is supplied through the suction pipe 50 in the cold fluid tank section 20 - the three-way valve 51 →
It is sucked into the pump 53 through the temperature control valve 52, and the load 5
4-1.54-2. Sent to the 54-3 side. At this time, the return water is bypassed through a bypass pipe 56 so that the temperature of the cold water sent to the load side is, for example, 7° C. according to a signal from a temperature detector 55. In addition, in order to reduce the pump power, a temperature detector 57 is provided at the cold water inlet of the farthest load 54-3, and based on this signal, an electric motor (not shown) is used to drive the pump 53 within a range where the temperature of this part does not rise. The rotation speed is controlled. Further, water for hot water supply flows in from the nozzle 58. Naturally, pressurized water is replenished and heated by the heat transfer coil 59, turning into hot water for hot water supply load 60-1.6.
Sent to 0-2.60-3.

第8rXJは暖房昼間モードの場合のフローシートであ
る。暖房昼間モード、即ち、外気温が高いときは外気よ
り熱を汲み上げ、給湯加熱も可爺な高温水を製造するモ
ードである。三方弁及び四向弁は冷媒が次のように流れ
るように切替えられる。
No. 8 rXJ is a flow sheet for the heating daytime mode. Heating daytime mode, that is, when the outside temperature is high, heat is pumped up from the outside air to produce high-temperature water that can be heated. The three-way and four-way valves are switched so that the refrigerant flows as follows.

圧縮機5で圧縮された冷媒は配管38−三方弁46−配
管34−水熱交換器17−三方弁12−2→水熱交換器
16→チエツキ弁47→三方弁12−1−膨張弁48−
外界側熱交換器41(冷房運転時の凝縮器41)−配管
40−四方弁45−圧縮機5を循環し、水熱交換器17
.16で水を加熱する。即ち、タンク中間温部ISの水
が冷水ポンプ4で汲み揚げられ、水熱交換器16.17
で加熱され、配管18.61よりタンク高温部50に戻
る。なお、タンク高温部50の温度が上昇すると、三方
弁49を切り替え、配管19からタンク中間温部15の
上部に戻すようになっている。
The refrigerant compressed by the compressor 5 is transferred to the pipe 38 - three-way valve 46 - pipe 34 - water heat exchanger 17 - three-way valve 12-2 -> water heat exchanger 16 -> check valve 47 -> three-way valve 12-1 - expansion valve 48 −
It circulates through the external heat exchanger 41 (condenser 41 during cooling operation) - piping 40 - four-way valve 45 - compressor 5, and the water heat exchanger 17
.. Heat water at 16. That is, the water in the tank intermediate temperature section IS is pumped up by the cold water pump 4, and the water is pumped up by the water heat exchanger 16.17.
and returns to the tank high temperature section 50 via piping 18.61. Note that when the temperature of the tank high temperature section 50 rises, the three-way valve 49 is switched to return the temperature from the pipe 19 to the upper part of the tank intermediate temperature section 15.

なお、外界側熱交換器41は外気と直接熱交換する外界
側熱交換器でも、海水等の熱交換器でもよい。
Note that the outside heat exchanger 41 may be an outside heat exchanger that directly exchanges heat with the outside air, or may be a seawater heat exchanger.

また、第9図は暖房・夜間モードの場合のフローシート
である。三方弁及び4方弁は、冷媒が次のように流れる
ように切替えられる。圧縮機5で圧縮された冷媒は、配
管38−三方弁46−四方弁45→三方弁13−1→三
方弁13−2→水流下熱交換器7→チエツキ弁62−三
方弁12−1−膨張弁48−外界側熱交換器41−配管
40−四方弁45−圧縮機5と流れる。一方タンク低温
部63の水は散水装置9から水流下熱交換器7に流下し
加熱される。
Moreover, FIG. 9 is a flow sheet for heating/night mode. The three-way and four-way valves are switched so that the refrigerant flows as follows. The refrigerant compressed by the compressor 5 is transferred to the pipe 38 - three-way valve 46 - four-way valve 45 -> three-way valve 13-1 -> three-way valve 13-2 -> water flow heat exchanger 7 -> check valve 62 - three-way valve 12-1 - It flows from the expansion valve 48 to the outside heat exchanger 41 to the piping 40 to the four-way valve 45 to the compressor 5. On the other hand, water in the tank low temperature section 63 flows from the water sprinkler 9 to the downstream heat exchanger 7 and is heated.

第10図は暖房・タンク水熱源モードの場合のフローシ
ートである。三方弁、四方弁は冷媒が次のように流れる
ように切替えられる。圧縮機5で圧縮きれた冷媒は配管
38→三方弁46→配管34→水熱交換器17→三方弁
12−2→水熱交換器16→チエツキ弁47→チエツキ
弁65→配管66−膨張弁64=水流下熱交換器7→三
方弁13−2→三方弁13−1→配管36啼四方弁45
呻圧縮機5と流れる。タンク低温部63の水はポンプ6
により水流下熱交換器7に散水され冷却きれる。逆にタ
ンク中間温部15の水は冷水ポンプ4により、水熱交換
器16.17により加熱きれ、配管18−三方弁49→
配管61と流れ、タンク高温部50に蓄えられる。
FIG. 10 is a flow sheet for the heating/tank water heat source mode. The three-way valve and four-way valve are switched so that the refrigerant flows as follows. The refrigerant compressed by the compressor 5 is transferred to the pipe 38 → three-way valve 46 → pipe 34 → water heat exchanger 17 → three-way valve 12-2 → water heat exchanger 16 → check valve 47 → check valve 65 → pipe 66 - expansion valve 64 = Water flow heat exchanger 7 → Three-way valve 13-2 → Three-way valve 13-1 → Piping 36 Four-way valve 45
Flows with groan compressor 5. The water in the tank low temperature section 63 is pumped to the pump 6.
Water is sprayed onto the heat exchanger 7 under water flow, and the heat exchanger 7 is completely cooled. Conversely, the water in the tank intermediate temperature section 15 is completely heated by the cold water pump 4 and the water heat exchanger 16.
It flows through the pipe 61 and is stored in the tank high temperature section 50.

第11i!lは暖房・厳寒時モードの場合のフローシー
トである。即ち、外気温が異常に低下した場合は、冷房
製氷時と同しく、水流下熱交換器7で製氷を行なう。こ
のときの冷媒の流れは暖房タンク水源モード(第10図
参照)と同しである。但し、氷が厚くなったときは、他
のモードに切替え℃運転されるようになっている。
11th i! 1 is a flow sheet for heating/severe cold weather mode. That is, when the outside temperature drops abnormally, ice is made using the water flow heat exchanger 7, as in the case of cooling ice making. The flow of the refrigerant at this time is the same as in the heating tank water source mode (see FIG. 10). However, when the ice becomes thick, the system switches to another mode and operates at ℃.

第12図は暖房負荷運転の説明図でおる。第7図の冷房
・負荷運転と殆ど同しであるが、冷流体タンク部20の
温水温度が低いときは切替弁51が切替られ、タンク5
0の温水が負荷側に送られる。第7図ではファンコイル
ユニット等の負荷54−1.54−2.54−3には冷
水が送られたが、この場合は温水が送られ、暖房に供さ
れる。
FIG. 12 is an explanatory diagram of heating load operation. This is almost the same as the cooling/load operation shown in FIG. 7, but when the hot water temperature in the cold fluid tank section 20 is low, the switching valve 51 is switched and
0 hot water is sent to the load side. In FIG. 7, cold water is sent to the loads 54-1, 54-2, 54-3 such as fan coil units, but in this case, hot water is sent to the loads 54-1, 54-2, 54-3 for heating.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、氷蓄熱システムが
普及するための前記条件1乃至条件10の全ての条件を
満足するから下記のような優れた効果が得られる。
As explained above, according to the present invention, all of the conditions 1 to 10 for the popularization of ice heat storage systems are satisfied, so the following excellent effects can be obtained.

(1〉当然、昼夜間運転することができる。(1) Of course, you can drive day and night.

(2)氷蓄熱槽の中に伝熱面がないので、IFFを大き
くすることができる。但し、IFFが小きくともよい水
輸送方式の場合には、本方式では氷(3)氷蓄熱槽内に
均等に製氷用コイルを配する構造ではないので、製氷用
熱交換器を小さくすることができる。
(2) Since there is no heat transfer surface in the ice heat storage tank, IFF can be increased. However, in the case of a water transport method that does not require a small IFF, the ice-making heat exchanger must be made smaller because this method does not have a structure in which the ice-making coils are evenly distributed within the ice (3) ice heat storage tank. I can do it.

(4)ブラインを介きない方式も可能であり、この場合
蒸発温度を高くすることができる。
(4) A method that does not involve brine is also possible, and in this case, the evaporation temperature can be increased.

(5)温度の高い冷水を冷却するときは、蒸発器は負荷
通水で加熱されるので、蒸発温度を高くすることができ
る。
(5) When cooling high-temperature cold water, the evaporator is heated by the loaded water flow, so the evaporation temperature can be increased.

(6)着氷が厚くならないので伝熱性能が良好である。(6) Heat transfer performance is good because icing does not become thick.

(7)解氷時、冷水冷却を行なっているので、時間がか
かっても殆どエネルギー喪失がない。また、直膨式の場
合、ヒートポンプの蒸発温度はOoCより多少高い程度
の運転条件で解氷するので圧縮機の吸込部の圧力変動が
少ない。
(7) Since cold water is used to cool the ice during thawing, there is almost no loss of energy even if it takes a long time. Furthermore, in the case of the direct expansion type, the evaporation temperature of the heat pump is thawed under operating conditions that are slightly higher than OoC, so there is little pressure fluctuation in the suction section of the compressor.

(8〉負荷側にブラインを使用しないので、メンテナン
ス費や工事費が小きくて済む。
(8> Since no brine is used on the load side, maintenance and construction costs are low.

(9)散水用熱交換器が2セツトあるので第2の発明に
おいて、暖房時蓄熱槽を2段階で使用することも可能で
あり、この場合蓄熱槽を大きくする必要がない。また、
外気温が異常に低下しても運転が可能である。
(9) Since there are two sets of water sprinkler heat exchangers, in the second invention, it is also possible to use the heat storage tank in two stages during heating, and in this case there is no need to increase the size of the heat storage tank. Also,
Operation is possible even when the outside temperature drops abnormally.

(10)同じ第2発明において、製氷用蒸発器も小さく
、冷房時と暖房時で必要冷媒量が殆ど同じであり、安定
した運転が可能である。
(10) In the same second invention, the ice-making evaporator is also small, and the amount of refrigerant required during cooling and heating is almost the same, allowing stable operation.

(11)小形機の場合、コンデンシングユニット部分は
、配管を一部変更するだけで量産機の主要部をそのまま
使用でき低価格となる。
(11) In the case of a small machine, the main part of the condensing unit part of the mass-produced machine can be used as is by just changing some piping, resulting in a low price.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る冷却又は冷却・加熱装置の冷房製
氷時のフローシートを示す図、第2図は水流下熱交換器
の平面図、第3図はそのA−A断面矢視図、第4図はそ
のB−B断面矢視図、第5図は本発明に係る冷却又は冷
却・加熱装置の冷房・水冷却モードの場合のフローシー
トを示す図、第6図は本発明に係る冷却又は冷却・加熱
装置の夏・貯湯モードの場合のフローシートを示す図、
第7図は本発明に係る冷却又は冷却・加熱装置の冷房・
負荷運転の場合のフローシートを示す図、第8図は本発
明に係る冷却又は冷却・加熱装置の暖房・昼間モードの
場合のブローシートを示す図、第9図は本発明に係る冷
却又は冷却・加熱装置の暖房・夜間モードの場合のフロ
ーシートを示す図、第10図は本発明に係る冷却又は冷
却・加熱装置の暖房・タンク水熱源モードの場合のフロ
ーシートを示す図、第11図は本発明に冷却又は係る冷
却・加熱装置の暖房・厳寒時モードの場合のフローシー
トを示す図、第12図は本発明に係る冷却又は冷却・加
熱装置の暖房・負荷運転の場合のフローシートを示す図
である。 図中、1 ・・蓄熱ユニット、2・・・・ヒートポンプ
ユニット、3・・・・氷冷水ユニット、4・・・・冷水
ポンプ、5 ・・・圧縮機、6・・・・ポンプ、7・・
・・水流下熱交換器。 特許出願人 株式会社荏原製作所 代理人 弁理士 熊 谷  隆(アト1名)手続補正書
(吐) 平成2年10月 プ日
Fig. 1 is a diagram showing a flow sheet during cooling ice making of the cooling or cooling/heating device according to the present invention, Fig. 2 is a plan view of the water flow heat exchanger, and Fig. 3 is a cross-sectional view taken along line A-A of the same. , FIG. 4 is a sectional view taken along the line B-B, FIG. 5 is a flow sheet of the cooling or cooling/heating device according to the present invention in the cooling/water cooling mode, and FIG. 6 is a flow sheet according to the present invention. A diagram showing a flow sheet for the summer/hot water storage mode of the cooling or cooling/heating device,
FIG. 7 shows the cooling/cooling/heating device according to the present invention.
FIG. 8 is a diagram showing a flow sheet in the case of load operation, FIG. 8 is a diagram showing a blow sheet in the heating/daytime mode of the cooling or cooling/heating device according to the present invention, and FIG. 9 is a diagram showing the blow sheet in the case of cooling or cooling according to the present invention・A diagram showing a flow sheet in the case of heating/night mode of the heating device, FIG. 10 is a diagram showing a flow sheet in the case of heating/tank water heat source mode of the cooling or cooling/heating device according to the present invention, FIG. 11 12 is a flow sheet for heating/load operation of the cooling or cooling/heating device according to the present invention in the case of heating/severe cold weather mode of the cooling/cooling/heating device according to the present invention. FIG. In the figure, 1... Heat storage unit, 2... Heat pump unit, 3... Ice cold water unit, 4... Cold water pump, 5... Compressor, 6... Pump, 7...・
... Water flow heat exchanger. Patent applicant: Ebara Corporation Representative: Patent attorney: Takashi Kumagai (1 person) Procedural amendment (submission) October 1990 Published date

Claims (5)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器、水流下式熱交換器システム、水
熱交換器、減圧装置及びこれらを連絡する冷媒通路によ
り構成される蒸気圧縮式ヒートポンプ経路と、 前記水流下式熱交換器システムに送水するための1台以
上の散水用ポンプ及び散水流体経路、該水流下式熱交換
器システムの水流下通路部、該水流下通路部の下部に配
備されるタンク、及びこれらを連絡する流体、及び該タ
ンクから負荷側に冷流体を輸送するための輸送用ポンプ
と同送水管、及び負荷から戻り管よりなる冷流体経路に
より構成され、且つタンク部は負荷からの戻り管が接続
されている戻り水貯水部と、負荷に冷流体を供給する貯
冷流体部を有し、 製氷モードの時は、前記貯冷流体部の水を前記水流下式
熱交換器システムの熱交換器部の伝熱面に落下させて結
氷させ、 冷水冷却モードのときは、前記戻り水貯水部の水を水熱
交換器に送って冷却し、同時に前記水流下式熱交換器部
の伝熱面に結氷した氷を加熱して前記タンク内に落下さ
せるようにしたことを特徴とする冷却又は冷却・加熱装
置。
(1) A vapor compression heat pump path composed of a compressor, a condenser, a water flow heat exchanger system, a water heat exchanger, a pressure reduction device, and a refrigerant passage connecting these; and the water flow heat exchanger system. one or more sprinkler pumps and a sprinkler fluid path for supplying water to a water supply system, a water flow passage section of the water flow heat exchanger system, a tank disposed below the water flow passage section, and a fluid that communicates these. , a transport pump for transporting cold fluid from the tank to the load side, a water supply pipe, and a cold fluid path consisting of a return pipe from the load, and the tank part is connected to the return pipe from the load. and a cold storage fluid part that supplies cold fluid to the load, and when in ice making mode, the water in the cold storage fluid part is transferred to the heat exchanger part of the downstream heat exchanger system. When in the cold water cooling mode, the water in the return water storage section is sent to the water heat exchanger for cooling, and at the same time ice is formed on the heat transfer surface of the downstream heat exchanger section. A cooling or cooling/heating device characterized in that the ice is heated and dropped into the tank.
(2)前記水流下式熱交換器システムが直膨式蒸発器で
あることを特徴とする請求項(1)記載の冷却又は冷却
・加熱装置。
(2) The cooling or cooling/heating device according to claim (1), wherein the water flow heat exchanger system is a direct expansion evaporator.
(3)前記水流下式熱交換器システムがブラインを冷却
する蒸発器、散水により加熱される熱交換器、及びブラ
インを循環させるポンプ、これらを連絡する配管等によ
り構成されるシステムで、且つ前記水熱交換器側にもブ
ラインを送って水冷却モードの時に水を冷却できるよう
になっていることを特徴とする請求項(1)記載の冷却
又は冷却・加熱装置。
(3) The water flow heat exchanger system is a system composed of an evaporator that cools the brine, a heat exchanger that is heated by water spraying, a pump that circulates the brine, piping that connects these, and the like, and 2. The cooling or cooling/heating device according to claim 1, wherein brine is also sent to the water heat exchanger side to cool the water during the water cooling mode.
(4)圧縮機、周囲温度側熱交換器、水流下式熱交換器
システム、水熱交換器、減圧装置及びこれらを連絡する
冷媒通路により構成される蒸気圧縮式ヒートポンプ経路
と、 前記水流下式熱交換器システムに送水するための1台以
上の散水用ポンプ及び散水流体経路、水流下式熱交換器
システムの水流下通路部、該水流下通路部の下部に配備
されるタンク、これらを連絡する流体通路、該タンクか
ら負荷側に流体を輸送するために輸送用ポンプと送水管
、及び負荷からの戻りより構成され、且つタンク部は負
荷からの戻り管が接続されている戻り水貯水部と、負荷
に流体を供給する貯送流体部を具備し、 水流下式熱交換システムの熱交換器部の伝熱面を結氷さ
せ、 冷水冷却モードの時は、前記戻り水貯水部の水を前記水
熱交換器に送って冷却し、同時に前記水流下式熱交換器
システムの伝熱面に結氷した氷を加熱して、前記タンク
内に落下させ、 暖房モードの時は前記周囲温度側熱交換器を蒸発器とし
て作動させ吸熱し、水流下式熱交換器システムにより放
熱し、散水を加熱するように動作させることを特徴とす
る冷却・加熱装置。
(4) A vapor compression heat pump path composed of a compressor, an ambient temperature side heat exchanger, a water flow heat exchanger system, a water heat exchanger, a pressure reduction device, and a refrigerant passage connecting these; and the water flow heat pump path. One or more sprinkler pumps and sprinkler fluid paths for supplying water to the heat exchanger system, the lower water passage of the lower water flow heat exchanger system, the tank provided at the bottom of the lower water flow passage, and communication between these. A return water storage section, which is composed of a fluid passage for transporting fluid from the tank to the load side, a transport pump and water pipe for transporting fluid from the tank to the load side, and a return from the load, and the tank section is connected to the return pipe from the load. and a storage fluid section for supplying fluid to the load, which freezes the heat transfer surface of the heat exchanger section of the downstream heat exchange system, and when in the cold water cooling mode, drains the water from the return water storage section. The water is sent to the water heat exchanger for cooling, and at the same time, the ice that has frozen on the heat transfer surface of the water flow down heat exchanger system is heated and falls into the tank, and when in heating mode, the ambient temperature side heat is heated. A cooling/heating device characterized in that an exchanger is operated as an evaporator to absorb heat, and a water flow type heat exchanger system is operated to radiate heat to heat sprinkled water.
(5)暖房モードのとき通常の暖房モード以外に前記タ
ンク内温度関連物理量が所定の温度まで上昇したとき、
又は外気温度関連物理量が所定の温度まで低下したとき
前記水流下式熱交換器システムの熱交換器部を蒸発器と
して作用させ、水熱交換器を凝縮器として作動させるタ
ンク水熱源暖房モードを有していることを特徴とする請
求項(4)記載の冷却・加熱装置。
(5) When the temperature-related physical quantity in the tank rises to a predetermined temperature in addition to the normal heating mode when in heating mode,
Or, it has a tank water heat source heating mode in which the heat exchanger part of the water flow heat exchanger system acts as an evaporator and the water heat exchanger acts as a condenser when the outside air temperature related physical quantity falls to a predetermined temperature. The cooling/heating device according to claim (4), characterized in that:
JP2214054A 1990-08-13 1990-08-13 Cooling or cooling / heating device and ice making device Expired - Fee Related JPH0781729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214054A JPH0781729B2 (en) 1990-08-13 1990-08-13 Cooling or cooling / heating device and ice making device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214054A JPH0781729B2 (en) 1990-08-13 1990-08-13 Cooling or cooling / heating device and ice making device

Publications (2)

Publication Number Publication Date
JPH0498028A true JPH0498028A (en) 1992-03-30
JPH0781729B2 JPH0781729B2 (en) 1995-09-06

Family

ID=16649500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214054A Expired - Fee Related JPH0781729B2 (en) 1990-08-13 1990-08-13 Cooling or cooling / heating device and ice making device

Country Status (1)

Country Link
JP (1) JPH0781729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026127A (en) * 2017-09-04 2019-03-13 신라이앤티 (주) Vacuum freeze drying device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213945A (en) * 1985-07-12 1987-01-22 Mitsui Eng & Shipbuild Co Ltd Cooling and heating device
JPS6438129A (en) * 1987-08-04 1989-02-08 Hokkaido Gas Kk Dehumidifying apparatus with ice heat accumulating function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213945A (en) * 1985-07-12 1987-01-22 Mitsui Eng & Shipbuild Co Ltd Cooling and heating device
JPS6438129A (en) * 1987-08-04 1989-02-08 Hokkaido Gas Kk Dehumidifying apparatus with ice heat accumulating function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026127A (en) * 2017-09-04 2019-03-13 신라이앤티 (주) Vacuum freeze drying device and method

Also Published As

Publication number Publication date
JPH0781729B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
CN100419349C (en) Refrigeration system
US20140130532A1 (en) Refrigeration system utilizing natural circulation of heat to carry out defrosting thereof
JPH0320570A (en) Cooling system and air-cooling method
CN210345955U (en) Frostless air source energy storage type heat pump system
JPS58217133A (en) Heat pump system
KR100791424B1 (en) System for producing chilled water
JP2560104B2 (en) In-pipe ice making unit and in-pipe ice making method
JP2000205774A (en) Capsulated heat storage apparatus
JPH0498028A (en) Cooling or cooling/heating device
JPH0522837B2 (en)
CA2055553A1 (en) Production and heat storage system for low temperature chilled water
JPH0689918B2 (en) Cooling or cooling / heating device
JPH10205834A (en) Cold heat apparatus and refrigerating equipment
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP3695584B2 (en) Ice thermal storage air conditioning system
JP2980624B2 (en) Cooling method using heat storage type liquid receiver and liquid pump, and cooling and heating methods
KR100534003B1 (en) Heating and cooling system using brine circulation
Gladis et al. Ice crystal slurry TES system using the orbital rod evaporator
JP3276013B2 (en) Thermal storage system
JP2551817B2 (en) Refrigeration system using ice heat storage
KR200350499Y1 (en) Heating and cooling system using brine circulation
CN115717786A (en) Refrigerating system, air conditioner and freezer
JPH10332178A (en) Heat storage type low-temperature air supply system
CN115839524A (en) Air conditioning system with dynamic ice storage function and control method thereof
JP2853439B2 (en) Absorption type ice machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees