JPH0498005A - Contact combustion method - Google Patents

Contact combustion method

Info

Publication number
JPH0498005A
JPH0498005A JP2216118A JP21611890A JPH0498005A JP H0498005 A JPH0498005 A JP H0498005A JP 2216118 A JP2216118 A JP 2216118A JP 21611890 A JP21611890 A JP 21611890A JP H0498005 A JPH0498005 A JP H0498005A
Authority
JP
Japan
Prior art keywords
combustion
molded elements
temperature
molded body
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2216118A
Other languages
Japanese (ja)
Other versions
JP2631762B2 (en
Inventor
Osamu Tokari
戸河里 脩
Eiji Masuno
増野 英二
Satsuki Morie
森江 五月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Original Assignee
YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI filed Critical YOUYUU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority to JP2216118A priority Critical patent/JP2631762B2/en
Publication of JPH0498005A publication Critical patent/JPH0498005A/en
Application granted granted Critical
Publication of JP2631762B2 publication Critical patent/JP2631762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obviate the need to provide an independent combustion chamber where high temperature combustion gas is produced for heating ceramic molded elements, and make a combustion equipment small in size by a method wherein power supply electrodes are provided on the silicone carbide molded elements so that the ceramic molded elements are energized through the electrodes and generate heat at the start-up of combustion, and a mixed gas is brought in contact with the ceramic molded elements and ignited. CONSTITUTION:Silicone carbide molded elements are energized and generate a high-temperature heat. The generated temperature on the surface of the molded elements is about 1000 deg.C for a fuel whose main component is methane, and about 800 deg.C for a fuel other than methane, such as H2, CO, propane, butane, kerosene, etc. The surface temperature of the molded elements is regulated by the voltage to be applied. Then, when the surface temperature of the molded elements reaches a sufficient temperature for igniting fuel gas, a fuel-oxygen mixed gas is fed into a combustion zone where the molded elements are packed, and the mixed gas is ignited. When the mixed gas is ignited, power supply is stopped. This operation is automatically performed by detecting the surface temperature by a Pt-Rh thermocouple which is in contact with the surface of the molded element. As the molded elements are always heated up to a temperature higher than the ignition point by the heat generated due to fuel combustion after the mixed gas is once ignited and burnt, a stable combustion is maintained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、各種加熱装置の熱源として用いるための燃料
ガス又は未燃分を含む排ガスの燃焼処理にあたり、NO
x発生量を出来るだけ抑えて、これらのガスを燃焼させ
るための接触燃焼方法に関するものである。
Detailed Description of the Invention [Technical Field] The present invention relates to the combustion treatment of fuel gas or exhaust gas containing unburned gas for use as a heat source for various heating devices.
This invention relates to a catalytic combustion method for combusting these gases while suppressing the amount of x generated as much as possible.

〔従来技術及びその問題点〕[Prior art and its problems]

ガスタービン、スチームリフォマー、ボイラー加熱炉等
の燃料ガスを熱源とする装置は数多い。
There are many devices that use fuel gas as a heat source, such as gas turbines, steam reformers, and boiler heating furnaces.

こうした装置に従来用いられている燃焼用バーナーは局
部的な高温を発生するため、最終的に得られる燃焼ガス
温度が1400℃以下でも高温部で発生したNOx濃度
が著しく高くなることを避けられない。従来より理論燃
焼温度1400℃以下の均一な燃料/空気混合ガスを燃
焼させればNOxの生成は数ppm以下に抑え得ること
が分かっている。
The combustion burners conventionally used in such devices generate localized high temperatures, so even if the final combustion gas temperature is below 1400°C, it is unavoidable that the NOx concentration generated in the high temperature areas will be significantly high. . It has been known from the past that the generation of NOx can be suppressed to several ppm or less by burning a uniform fuel/air mixture gas with a theoretical combustion temperature of 1400° C. or less.

しかしながら、理論燃焼温度が1400℃以下の場合に
は燃料濃度が希薄となり、爆発限界下限値に近くなるた
め均−予混合ガスをバーナーで着火することが難しくな
り、触媒燃焼を用いねばならなくなる。この場合、燃焼
触媒は耐熱性が低く 1000℃以上には使えないため
、1.000℃を超える均−予混合燃焼を実際に行うに
あたっては、前段で触媒燃焼させ、後段で気相燃焼させ
る2段燃焼方式が提案されている。しかし、この方式は
、前段触媒層を1000℃以下に抑えねばならないこと
、後段を気相燃焼させるために不均一混合によるNOx
が生成しやすく、このN販の生成を防ぐ装置上の工夫が
いること等数々の難しい点があり、操作も面倒である。
However, when the theoretical combustion temperature is 1400°C or less, the fuel concentration becomes dilute and approaches the lower limit of explosion, making it difficult to ignite homogeneously premixed gas with a burner, and catalytic combustion must be used. In this case, the combustion catalyst has low heat resistance and cannot be used at temperatures above 1,000°C, so when actually performing homogeneous-premix combustion at temperatures exceeding 1,000°C, it is necessary to carry out catalytic combustion in the first stage and gas-phase combustion in the second stage. A staged combustion method has been proposed. However, with this method, the temperature of the first stage catalyst layer must be kept below 1000℃, and NOx due to non-uniform mixing is required to perform gas phase combustion in the second stage.
There are many difficult points, such as the fact that it is easy to generate N-sales, and there are devices that need to be devised to prevent the generation of N-sales, and the operation is also troublesome.

一方、燃焼ゾーンにセラミックス成形体を着火源として
充填し、これを燃料ガスの発火温度をゆうにこえる高温
に加熱した後、これに燃料と空気との均一混合ガスを接
触させて燃焼させる方法も知られている。この場合、セ
ラミックス成形体は、燃焼開始時において、着火源とし
て発火温度迄何らかの方法で加熱することを必要とする
。このための加熱方法としては、あらかじめ燃料ガスの
燃焼により形成した高温燃焼ガスでセラミックス成形体
を加熱する方法が採用されている。しかし、この場合に
は、そのセラミックス成形体加熱用の高温燃焼ガスを製
造するために別に独立した燃焼室を設置することが必要
になる。このことは、燃焼装置を大型化し、かつ複雑化
するとともに、操作も複雑になるという問題がある。
On the other hand, a method involves filling a combustion zone with a ceramic molded body as an ignition source, heating it to a high temperature well above the ignition temperature of fuel gas, and then bringing it into contact with a homogeneous mixed gas of fuel and air to combust it. is also known. In this case, the ceramic molded body needs to be heated by some method to the ignition temperature as an ignition source at the start of combustion. As a heating method for this purpose, a method is adopted in which the ceramic molded body is heated with high-temperature combustion gas formed in advance by combustion of fuel gas. However, in this case, it is necessary to install a separate combustion chamber to produce high-temperature combustion gas for heating the ceramic molded body. This has the problem of making the combustion device larger and more complex, as well as making its operation more complicated.

〔発明の課題〕[Problem of invention]

本発明は、着火源としてセラミックス成形体を用い希薄
燃料/酸素含有混合ガスを該セラミックス成形体に接触
させながら燃焼させる方法において、前記燃焼開始時に
おけるセラミックス成形体の加熱に見られる前記問題を
解決する方法を提供することをその課題とする。
The present invention solves the problem described above in heating the ceramic molded body at the start of combustion in a method of burning a dilute fuel/oxygen-containing mixed gas while contacting the ceramic molded body as an ignition source. The task is to provide a solution.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記課題を解決すべく鋭意研究を重ねた
結果、本発明を完成するに至った。
The present inventors have completed the present invention as a result of intensive research to solve the above problems.

即ち、本発明によれば、完全燃焼した時の到達ガス温度
があらかじめ1400℃以下に調節された燃料と酸素を
含有する混合ガスをセラミックス成形体と接触させなが
ら燃焼する方法において、該セラミックス成形体の少な
くとも一部に炭化珪素成形体を用いるとともに、該炭化
珪素成形体に通電用の電極を付設し、燃焼開始時に該電
極を通して通電することにより該成形体を発熱させると
ともに、この発熱した成形体に該混合ガスを接触させて
着火させることを特徴とする接触燃焼方法が提供される
That is, according to the present invention, in the method of burning a mixed gas containing fuel and oxygen whose gas temperature reached at the time of complete combustion is adjusted in advance to 1400° C. or lower while contacting with the ceramic molded body, the ceramic molded body A silicon carbide molded body is used for at least a part of the molded body, and an electrode for supplying electricity is attached to the silicon carbide molded body, and the molded body is heated by passing electricity through the electrode at the start of combustion, and the molded body that generates heat is heated. Provided is a catalytic combustion method characterized in that the mixed gas is brought into contact with and ignited.

本発明において着火源として用いるセラミックス成形体
は、その少なくとも一部が炭化珪素(SiC)からなる
形成体で、通電用の電極を付設したものである。この炭
化珪素成形体は、その電極に通電することにより高温に
発熱させることができ、この発熱を利用して燃料ガスの
着火を行うことができる。
The ceramic molded body used as an ignition source in the present invention is a molded body at least partially made of silicon carbide (SiC), and is provided with an electrode for conducting electricity. This silicon carbide molded body can be made to generate heat to a high temperature by applying electricity to its electrodes, and this heat generation can be used to ignite fuel gas.

本発明で用いる炭化珪素成形体は、耐熱衝撃性が高く1
着火と消火を度々行う燃焼装置における着火源用セラミ
ックス成形体としては好適のものである。しかし、この
ものは、高温下における耐酸化性が低いという欠点を有
し、燃焼ガス中に生成されるスチーム及び燃料ガスに含
有されるスチームはその酸化を助長する。本発明者等は
、数多くの炭化珪素からなるハニカムを取り寄せて試験
したところ、いずれも高温下では酸化が進みシリカの生
成による白変膨張により最終的には成形体の崩壊が起こ
った。そして、この炭化珪素の酸化は分析の結果、単結
晶の表面から徐々に起ることがわかった。また、成形体
の表面及び内部を含みあらゆる部分の酸化が進んでいる
ことも分かった。
The silicon carbide molded body used in the present invention has high thermal shock resistance.
It is suitable as a ceramic molded body for an ignition source in a combustion device where ignition and extinguishment are frequently performed. However, this material has the disadvantage of low oxidation resistance at high temperatures, and steam generated in the combustion gas and steam contained in the fuel gas promotes its oxidation. When the present inventors ordered and tested a large number of honeycombs made of silicon carbide, all of them were oxidized at high temperatures and eventually collapsed due to whitening and expansion due to the formation of silica. Analysis revealed that this oxidation of silicon carbide occurs gradually from the surface of the single crystal. It was also found that oxidation progressed in all parts of the molded body, including the surface and inside.

これは、炭化珪素が細孔を有しており、その細孔中を酸
素が自由に拡散し又発生したCO□等がそこを通路とし
て自由に成形体外に排出されるためである。炭化珪素に
見られるこうした耐酸化性の欠点は、炭化珪素成形体に
気孔率を1%以下に保持することにより改良し得ること
が判明した。この炭化珪素成形体の気孔率を1%以下に
保持する方法の1つとしては、炭化珪素の単結晶サイズ
(粒子サイズ)に幅広い分布を持たせて充填密度を上げ
、これを成形し、焼結する方法である。この場合、炭化
珪素の粒子サイズの分布の一例をあげれば、平均粒径0
.5〜10.の粒子が30〜60重量%、平均粒径lO
〜30趨の粒子が30〜60重量%、平均粒径30〜1
50声の粒子が5〜20重量でである。また、炭化珪素
成形体の気孔率を1%以下にする他の方法としては、炭
化珪素成形体の細孔内に金属酸化物を含有させる方法が
ある。この方法によれば、炭化珪素成形体の気孔率を実
質的に零%(細孔容積0.001cc/g以下)にする
ことができる、この場合、金属酸化物としては、燃焼時
温度で溶融しないように、少なくとも1400℃の融点
を有するものであり、好ましくは1430〜1550℃
の融点を有するものである。金属酸酸化物の融点がこれ
以上高くなると金属酸化物を溶融して炭化珪素成形体の
細孔内に含浸させる設備及び操作が難かしくなるので好
ましくない。炭化珪素成形体の細孔内に含浸させる金属
酸化物としては、例えば、コージライト、各種金属酸化
物の複合シリケート(ウィレマイト、CaO・MgO・
2SiO□、CaO・An203・2SiO2等)が挙
げられる。
This is because silicon carbide has pores, and oxygen freely diffuses in the pores, and generated CO□ and the like are freely discharged out of the molded body through the pores. It has been found that such defects in oxidation resistance found in silicon carbide can be improved by maintaining the porosity of the silicon carbide molded body at 1% or less. One way to maintain the porosity of this silicon carbide molded body at 1% or less is to increase the packing density by giving a wide distribution of silicon carbide single crystal size (particle size), molding it, and sintering it. This is a method of tying the knot. In this case, to give an example of the particle size distribution of silicon carbide, the average particle size is 0.
.. 5-10. 30-60% by weight of particles, average particle size lO
30-60% by weight of ~30 particles, average particle size 30-1
The particles of 50 tones are 5 to 20 by weight. Further, as another method for reducing the porosity of the silicon carbide molded body to 1% or less, there is a method of containing a metal oxide in the pores of the silicon carbide molded body. According to this method, the porosity of the silicon carbide molded body can be reduced to substantially 0% (pore volume 0.001 cc/g or less). It has a melting point of at least 1,400°C, preferably 1,430 to 1,550°C to prevent
It has a melting point of . If the melting point of the metal acid oxide is higher than this, it is not preferable because the equipment and operation for melting the metal oxide and impregnating it into the pores of the silicon carbide molded body become difficult. Examples of the metal oxide to be impregnated into the pores of the silicon carbide molded body include cordierite, composite silicates of various metal oxides (willemite, CaO, MgO,
2SiO□, CaO.An203.2SiO2, etc.).

本発明で用いるセラミックス成形体において、その形状
は出来るだけ表面積が大きい事が望ましい。接触面積が
大になればそれだけ装置を小型化できるからである。し
かしながら成形体の表面積を大きくするために、成形体
を微小な粒子状或は極端には微粒子状にすることでは別
の不都合が生じる。それは、ガスの流路抵抗が大きくな
って、ガス供給側の負荷が増大すること、あるいはセラ
ミックス成形体層が閉塞し易いことなどである。
In the ceramic molded body used in the present invention, it is desirable that its shape has as large a surface area as possible. This is because the larger the contact area, the more compact the device can be. However, in order to increase the surface area of the molded body, forming the molded body into minute particles or extremely fine particles causes other disadvantages. This is because the gas flow path resistance increases, increasing the load on the gas supply side, or because the ceramic molded body layer is likely to become clogged.

従って、セラミックス成形体は燃焼ガスの流路抵抗を出
来るだけ小さくするために、柱状、管状。
Therefore, in order to minimize the flow resistance of combustion gas, the ceramic molded body is shaped like a column or a tube.

発泡体状あるいはハニカム状、さらにはこれらの組合せ
の形状で用いるのが望ましい、このセラミックス成形体
(以下接触体とも言う)の必要表面積は使用する燃料種
及び燃焼温度によって異なるが、燃料がメタンで、燃焼
温度1400℃を想定すると、燃料流量1モル/秒当た
り5M以上にするのがよい。
The required surface area of this ceramic molded body (hereinafter also referred to as a contact body), which is preferably used in the shape of a foam, a honeycomb, or a combination thereof, varies depending on the type of fuel used and the combustion temperature, but if the fuel is methane, , assuming a combustion temperature of 1400° C., the fuel flow rate is preferably 5 M or more per mol/sec.

接触体の外部面積がこれ以下になると、メタンガスは着
火しにくくなり、水素、ブタン、灯油では未燃分かのこ
り易くなる。また、この表面積が大きい時は燃焼ゾーン
の滞留時間を小さくすることができるが、この表面積が
それほど大きくない時には滞留時間を大きくせねばなら
ない。
If the external area of the contact body is less than this, methane gas will be difficult to ignite, and unburned hydrogen, butane, and kerosene will easily become stale. Also, when this surface area is large, the residence time in the combustion zone can be reduced, but when this surface area is not so large, the residence time must be increased.

本発明の接触燃焼を実施するためには、炭化珪素成形体
に通電し、高温に発熱させる。発熱温度は、成形体表面
温度で、メタンを主成分とする燃料では1000℃程度
、それ以外の、燃料1例えば、Hよ、CO、プロパン、
ブタン、灯油等では800℃程度である。成形体の温度
は印加する電圧で調節することかできる。
In order to carry out the catalytic combustion of the present invention, electricity is applied to the silicon carbide molded body to generate heat to a high temperature. The exothermic temperature is the surface temperature of the compact, and is approximately 1000°C for fuels whose main component is methane, and for other fuels such as H, CO, propane,
For butane, kerosene, etc., the temperature is about 800°C. The temperature of the molded body can be adjusted by applying the voltage.

次に、成形体の表面温度が燃料ガスが充分着火する温度
になった時点で、燃料/酸素含有混合ガスを成形体の充
填された燃焼ゾーンへ導入し、着火燃焼させる。混合ガ
スが着火したところで通電を停止する。この操作は成形
体表面に接触させた白金−Rh熱電対による温度検出に
よって自動的に行うことができる。混合ガスの着火燃焼
後は、混合ガスの燃焼による発熱のために成形体は常時
着火温度以上に加熱されているため、燃焼は安定に維持
される。成形体の全てが通電発熱体である必要はないが
、燃焼開始時に燃焼が安定に持続し得る程度の表面積は
必要である。その表面積は、燃料流量1モル/秒当り少
なくとも5mを必要とし、好ましくはl0m1あればよ
い。
Next, when the surface temperature of the compact reaches a temperature at which the fuel gas is sufficiently ignited, the fuel/oxygen-containing mixed gas is introduced into the combustion zone filled with the compact and ignites and burns. When the mixed gas ignites, the power supply is stopped. This operation can be performed automatically by temperature detection using a platinum-Rh thermocouple in contact with the surface of the molded body. After the mixed gas is ignited and burned, the molded body is always heated above the ignition temperature due to the heat generated by the combustion of the mixed gas, so that the combustion is maintained stably. Although it is not necessary that all of the molded bodies be electrical heating elements, it is necessary that the molded body has a sufficient surface area to ensure stable combustion at the start of combustion. Its surface area should be at least 5 m per mole/sec of fuel flow rate, preferably 10 m1.

本発明で用いる燃料と酸素を含有する混合ガスは、燃料
濃度の希薄のもので、一般には、完全燃焼した時の到達
ガス温度が1200〜1400℃に調節されたものであ
る。混合ガス中の燃料の具体的濃度は、その燃料の種類
及びあらかじめ設定された完全燃焼した時の到達ガス温
度によって適宜法められる。燃料としては、水素、−酸
化炭素、メタン、エタン、プロパン、ブタン、天然ガス
、灯油、軽油、メタノール、LPG、都市ガス等が挙げ
られる。
The mixed gas containing fuel and oxygen used in the present invention has a dilute fuel concentration, and generally the gas temperature reached at the time of complete combustion is adjusted to 1200 to 1400°C. The specific concentration of the fuel in the mixed gas is determined as appropriate depending on the type of fuel and the preset gas temperature reached at the time of complete combustion. Examples of the fuel include hydrogen, carbon oxide, methane, ethane, propane, butane, natural gas, kerosene, light oil, methanol, LPG, and city gas.

酸素含有ガスとしては、酸素、空気、酸素富化空気が挙
げられる。
Oxygen-containing gases include oxygen, air, and oxygen-enriched air.

〔発明の効果〕〔Effect of the invention〕

本発明の接触燃焼法においては、着火源として用いるセ
ラミックス成形体が電気抵抗体である炭化珪素で形成さ
れ、燃焼開始におけるセラミックス成形体の加熱をその
セラミックス成形体に対する通電による発熱を利用する
ため、セラミックス成形体加熱用の燃焼ガスを形成する
ための特別の燃焼室の使用が不要となり、燃焼装置の構
造が簡単になり、かつ装置全体が小型化されるとともに
、操作も簡単になる。
In the catalytic combustion method of the present invention, the ceramic molded body used as the ignition source is formed of silicon carbide, which is an electrical resistor, and the heating of the ceramic molded body at the start of combustion utilizes the heat generated by passing electricity through the ceramic molded body. The use of a special combustion chamber for forming combustion gas for heating the ceramic molded body is no longer necessary, the structure of the combustion device is simplified, the entire device is downsized, and the operation is also simple.

特許呂願人 溶融炭酸塩型燃料電池発電システム技術研
究組合 代理人弁理士池浦敏明(ほか1名)
Toshiaki Ikeura (and one other person), Patent Attorney, Patent Attorney, Molten Carbonate Fuel Cell Power Generation System Technology Research Association

Claims (1)

【特許請求の範囲】[Claims] (1)完全燃焼した時の到達ガス温度があらかじめ14
00℃以下に調節された燃料と酸素を含有する混合ガス
をセラミックス成形体と接触させながら燃焼する方法に
おいて、該セラミックス成形体の少なくとも一部に炭化
珪素成形体を用いるとともに、該炭化珪素成形体に通電
用の電極を付設し、燃焼開始時に該電極を通して通電す
ることにより該成形体を発熱させるとともに、この発熱
した成形体に該混合ガスを接触させて着火させることを
特徴とする接触燃焼方法。
(1) The gas temperature reached at the time of complete combustion is 14
A method of burning a mixed gas containing fuel and oxygen adjusted to 00° C. or lower while contacting it with a ceramic molded body, in which a silicon carbide molded body is used as at least a part of the ceramic molded body, and the silicon carbide molded body is A catalytic combustion method characterized in that a current-carrying electrode is attached to the molded body, and the molded body generates heat by applying current through the electrode at the start of combustion, and the mixed gas is brought into contact with the heated molded body to ignite it. .
JP2216118A 1990-08-15 1990-08-15 Contact combustion method Expired - Fee Related JP2631762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2216118A JP2631762B2 (en) 1990-08-15 1990-08-15 Contact combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2216118A JP2631762B2 (en) 1990-08-15 1990-08-15 Contact combustion method

Publications (2)

Publication Number Publication Date
JPH0498005A true JPH0498005A (en) 1992-03-30
JP2631762B2 JP2631762B2 (en) 1997-07-16

Family

ID=16683532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2216118A Expired - Fee Related JP2631762B2 (en) 1990-08-15 1990-08-15 Contact combustion method

Country Status (1)

Country Link
JP (1) JP2631762B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862427A (en) * 1981-10-07 1983-04-13 Toyota Motor Corp Glow plug
JPS6252722U (en) * 1985-09-13 1987-04-02
JPS63167065U (en) * 1987-04-15 1988-10-31
JPH01310720A (en) * 1988-06-07 1989-12-14 Isao Shiraishi Air cleaning apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862427A (en) * 1981-10-07 1983-04-13 Toyota Motor Corp Glow plug
JPS6252722U (en) * 1985-09-13 1987-04-02
JPS63167065U (en) * 1987-04-15 1988-10-31
JPH01310720A (en) * 1988-06-07 1989-12-14 Isao Shiraishi Air cleaning apparatus

Also Published As

Publication number Publication date
JP2631762B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
KR950011463B1 (en) Catalytic combustion apparatus
JPH0153579B2 (en)
JPS61180818A (en) Hot air generation by catalytic burning
JPS6257887B2 (en)
JPS61252408A (en) Method of igniting methane fuel
JPH0498005A (en) Contact combustion method
JPS61237905A (en) Combustion method of methane fuel by contact combustion catalyst system
JPS5849804A (en) Burner
US20060147859A1 (en) Post-combustion device
JPS60122807A (en) Low nitrogene oxide combustion
JP2501669B2 (en) Multi-stage catalytic combustor for fuel cell power generation system with built-in start-up means
JP2501666B2 (en) Fuel cell anode exhaust gas combustion device
JP4226143B2 (en) Catalytic combustion apparatus and combustion control method thereof
JPH0217306A (en) Porous burner
JPH08327015A (en) Method for catalytic burning and catalyst therefor
JPH08323201A (en) Combustion catalyst and catalytic combustion method
KR100254832B1 (en) Low nox premixed type honeycomb catalytic combustion burner
JPH08312912A (en) Combustion method
JPS61184319A (en) Method of generating hot blast by catalytic combustion
JPS62116808A (en) Combustion unit
JPH0463964B2 (en)
KR100387945B1 (en) Low NOx combustion method and combustor using catalytic combustion and catalyst bed with swirl
JPH06509158A (en) Combustion device and method in porous matrix element
JPH0367905A (en) Catalytic combustion apparatus
JPH0612339Y2 (en) Catalytic combustion stove

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees