JPH0497925A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPH0497925A
JPH0497925A JP2215310A JP21531090A JPH0497925A JP H0497925 A JPH0497925 A JP H0497925A JP 2215310 A JP2215310 A JP 2215310A JP 21531090 A JP21531090 A JP 21531090A JP H0497925 A JPH0497925 A JP H0497925A
Authority
JP
Japan
Prior art keywords
optical fiber
raw material
hydrogen
gas
hydrocarbon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2215310A
Other languages
Japanese (ja)
Other versions
JP2683147B2 (en
Inventor
Takeshi Shimomichi
毅 下道
Keiji Ohashi
圭二 大橋
Shinji Araki
荒木 真治
Hideo Suzuki
秀雄 鈴木
Yutaka Katsuyama
豊 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujikura Ltd
Priority to JP2215310A priority Critical patent/JP2683147B2/en
Publication of JPH0497925A publication Critical patent/JPH0497925A/en
Application granted granted Critical
Publication of JP2683147B2 publication Critical patent/JP2683147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • C03C25/1061Inorganic coatings
    • C03C25/1062Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Chemical Vapour Deposition (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain an optical fiber excellent in mechanical strength, hydrogen resistance, and stress fatigue resistance by using a specified gaseous starting material in the process of forming a carbon film on the surface of an optical fiber wire by thermal decomposition of the gaseous starting material using excess heat produced during spinning the optical fiber. CONSTITUTION:A carbon film is formed on the surface of an optical fiber wire by thermal decomposition of the gaseous starting material using excess heat produced during spinning the optical fiber. The gaseous starting material used consists of a hydrocarbon compd. (e.g. benzene) with addition of chlorine gas.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、その表面に炭素被膜が形成された光ファイ
バの製造方法に関し、原料ガスを限定することにより、
耐水素特性と耐応力疲労特性とに優れた光ファイバか得
られるようにしたものである。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method for manufacturing an optical fiber having a carbon film formed on its surface, and by limiting the raw material gas.
This makes it possible to obtain an optical fiber with excellent hydrogen resistance and stress fatigue resistance.

「従来の技術」 石英系光ファイバは、水素と接触するとファイバ内に拡
散した水素分子の分子振動に起因する吸収損失が増大し
、さらにドーパントとして含有されているP、05、G
 e O!、B、○、などか水素と反応と反応しOH基
の吸収による伝送損失も増大してしまう問題があった。
"Prior Art" When a silica-based optical fiber comes into contact with hydrogen, absorption loss due to the molecular vibration of hydrogen molecules diffused within the fiber increases, and furthermore, when a silica-based optical fiber comes into contact with hydrogen, the absorption loss caused by the molecular vibration of hydrogen molecules diffused into the fiber increases.
eO! , B, ○, etc., react with hydrogen, resulting in an increase in transmission loss due to absorption of OH groups.

また石英系光ファイバには長時間応力が加わると、その
応力が光ファイバの破断強度より充分に小さくとも破断
するという応力疲労現象がある。
Furthermore, when stress is applied to a silica-based optical fiber for a long period of time, there is a stress fatigue phenomenon in which the fiber breaks even if the stress is sufficiently smaller than the breaking strength of the optical fiber.

この応力疲労現象は、高温多湿によっても促進される。This stress fatigue phenomenon is also accelerated by high temperature and humidity.

このため、石英系光ファイバの使用可能な環境が限定さ
れ、通常使用されている光フアイバケーブルにおいては
、光ファイバの破断を防止する目的で乾燥ガス保守、防
湿ゼリー充填等の手段によって光ファイバを保護してい
る。
For this reason, the environments in which silica-based optical fibers can be used are limited, and in commonly used optical fiber cables, optical fibers are maintained by dry gas maintenance, moisture-proof jelly filling, etc. in order to prevent optical fiber breakage. Protecting.

このような問題を解決するため、最近化学気相成長法(
以下、CVD法と略記する。)によって光フアイバ表面
に炭素被膜を形成し、これによって光ファイバの耐水素
特性および耐応力疲労特性を向上し得ることが発表され
ている。
In order to solve these problems, chemical vapor deposition method (
Hereinafter, this method will be abbreviated as CVD method. ) has been announced to form a carbon film on the surface of an optical fiber, thereby improving the hydrogen resistance and stress fatigue resistance of the optical fiber.

「発明が解決しようとする課題」 しかしながら上記方法では、光ファイバの耐水素特性は
向上するものの、炭素被膜形成時に光ファイバの引っ張
り強度が低下するという問題があった。たとえば通常の
紫外線硬化型樹脂被覆ファイバの引っ張り破断強度は約
6〜6.5kgであるのに対して、CVD法によって炭
素被膜が形成された光ファイバの引っ張り強度は4〜5
kgと低い。よって炭素被膜が形成された光ファイノソ
は、優れた特性を有するにもかかわらず、その機械的強
度の低さによって、用途が限定されてしまい、その改善
が望まれていた。
``Problems to be Solved by the Invention'' However, although the above method improves the hydrogen resistance properties of the optical fiber, there is a problem in that the tensile strength of the optical fiber decreases when the carbon coating is formed. For example, the tensile strength at break of an ordinary ultraviolet curable resin-coated fiber is approximately 6 to 6.5 kg, whereas the tensile strength of an optical fiber with a carbon coating formed by the CVD method is approximately 4 to 5 kg.
As low as kg. Therefore, although the optical fiber on which a carbon film is formed has excellent properties, its use is limited due to its low mechanical strength, and improvements have been desired.

この発明は上記課題を解決するためになされたものであ
って、耐水素特性と耐応力疲労特性のみならず、機械的
強度に優れた光ファイバを提供することを目的としてい
る。
The present invention was made to solve the above problems, and an object of the present invention is to provide an optical fiber that has excellent mechanical strength as well as hydrogen resistance and stress fatigue resistance.

「課題を解決するための手段」 この発明の請求項1記載の光ファイバの製造方法は、光
ファイバの紡糸余熱により原料ガスを熱分解させて光フ
ァイバ裸線表面に炭素被膜を形成する先ファイバの製造
方法であって、炭化水素化合物に塩素ガスを添加してな
る原料ガスを用いることを解決手段とし、またこの発明
の請求項2記載の光ファイバの製造方法は、請求項1記
載の光ファイバの製造方法において、炭化水素化合物中
の水素1モルに対して、0.3〜0.6モルの塩素を添
加してなる原料ガスを用いることを、それぞれの解決手
段とした。
``Means for Solving the Problems'' The method for manufacturing an optical fiber according to claim 1 of the present invention provides a method for producing an optical fiber, in which a carbon film is formed on the surface of a bare optical fiber by thermally decomposing a raw material gas using residual heat from spinning the optical fiber. A method for producing an optical fiber according to claim 2 of the present invention uses a raw material gas obtained by adding chlorine gas to a hydrocarbon compound as a solution, and a method for producing an optical fiber according to claim 1 In each fiber manufacturing method, the solution was to use a raw material gas in which 0.3 to 0.6 mol of chlorine was added to 1 mol of hydrogen in a hydrocarbon compound.

「作用」 炭化水素化合物への塩素ガスの添加量を限定することに
よって、光ファイバの機械的強度を低下させることなく
炭素被膜を形成し、耐水素特性と耐応力疲労特性とに優
れた光ファイバを得ることができる。
"Operation" By limiting the amount of chlorine gas added to the hydrocarbon compound, a carbon film is formed without reducing the mechanical strength of the optical fiber, creating an optical fiber with excellent hydrogen resistance and stress fatigue resistance. can be obtained.

以下、この発明の詳細な説明する。The present invention will be described in detail below.

第1図はこの発明の光ファイバの製造方法に好適に用い
られる光フアイバ製造装置の一例を示したものである。
FIG. 1 shows an example of an optical fiber manufacturing apparatus suitably used in the optical fiber manufacturing method of the present invention.

第1図中、符号1は光ファイバ裸線である。この光ファ
イバ裸線1は、光フアイバ母材2を光フアイバ紡糸炉3
内で加熱紡糸したものである。この光ファイバ裸線1は
紡糸されると共に、光フアイバ紡糸炉3の下段に設けら
れたCVD反応炉4内へ供給される。
In FIG. 1, reference numeral 1 indicates a bare optical fiber. This optical fiber bare wire 1 is produced by spinning an optical fiber base material 2 into an optical fiber spinning furnace 3.
It is heated and spun inside. The bare optical fiber 1 is spun and then supplied into a CVD reactor 4 provided at the lower stage of the optical fiber spinning furnace 3 .

CVD反応炉4は、上段の光フアイバ紡糸炉3内で紡糸
された光フアイバ裸線1表面に、その紡糸余熱を利用し
たCVD法によって炭素被膜を形成するためのものであ
る。このCVD反応炉4は、その内部にてCVD反応を
進行させる概略円筒状の反応管5からなり、その上部に
は原料ガスを供給するための原料ガス供給管6が、下部
には未反応ガス等を排気する排気管7が、それぞれ取り
付けられている。さらにこの反応管5の上部と下部には
、反応管4内をシールするためのガスシール機構8.8
が接続されている。
The CVD reactor 4 is for forming a carbon film on the surface of the bare optical fiber 1 spun in the upper optical fiber spinning furnace 3 by a CVD method using residual heat from spinning. This CVD reactor 4 consists of a roughly cylindrical reaction tube 5 in which the CVD reaction proceeds, with a raw material gas supply pipe 6 for supplying raw material gas in the upper part and unreacted gas in the lower part. Exhaust pipes 7 for exhausting the air and the like are respectively attached. Further, gas seal mechanisms 8.8 for sealing the inside of the reaction tube 4 are provided at the upper and lower portions of the reaction tube 5.
is connected.

上記製造装置を用い、この発明の製造方法に沿って光フ
ァイバを製造するには、以下の工程による。
In order to manufacture an optical fiber according to the manufacturing method of the present invention using the above-mentioned manufacturing apparatus, the following steps are performed.

まず光フアイバ母材2を光フアイバ紡糸炉3内で加熱紡
糸して光ファイバ裸線lとする。ついでこの光ファイバ
裸線Iを下段のCVD反応炉4へ挿通し、この中心軸上
を所定の線速て走行するように供給する。
First, an optical fiber base material 2 is heated and spun in an optical fiber spinning furnace 3 to form a bare optical fiber 1. Next, this bare optical fiber I is inserted into the lower CVD reactor 4 and fed so as to run on the central axis at a predetermined linear speed.

ついでガスシール機構8.8から反応管5内へヘリウム
ガス等の不活性ガスまたは窒素からなるシールガスを供
給して反応管5内のノールを行う。
Next, a sealing gas consisting of an inert gas such as helium gas or nitrogen is supplied into the reaction tube 5 from the gas sealing mechanism 8.8 to seal the inside of the reaction tube 5.

これと共に、原料ガス供給管6から原料ガスを反応管5
内に供給して、原料ガスを光ファイバ裸線lと接触せし
めて、光フアイバ裸線1表面に炭素被膜を形成する。反
応管S内に挿通された光ファイバ裸線lは、紡糸余熱に
より加熱状態となっているので、原料ガスと接触せしぬ
ると、原料ガス中の炭化水素化合物を熱分解して光フア
イバ裸線1表面に炭素被膜を析出させることができる。
At the same time, the raw material gas is supplied from the raw material gas supply pipe 6 to the reaction tube 5.
The raw material gas is brought into contact with the bare optical fiber 1 to form a carbon film on the surface of the bare optical fiber 1. The bare optical fiber l inserted into the reaction tube S is heated by residual heat from spinning, so when it comes into contact with the raw material gas, it thermally decomposes hydrocarbon compounds in the raw material gas and strips the optical fiber. A carbon film can be deposited on the surface of the wire 1.

原料ガスは炭化水素化合物に塩素ガスを添加してなるも
のであって、通常はヘリウム等の不活性ガスまたは窒素
等のキャリアガスによって希釈されてなるものである。
The raw material gas is made by adding chlorine gas to a hydrocarbon compound, and is usually diluted with an inert gas such as helium or a carrier gas such as nitrogen.

炭化水素化合物は、熱分解して炭素被膜を形成するもの
であれば特に限定されるものではなく、たとえばメタン
、エタン、プロパン、エチレン、アセチレン、ペンタン
、ヘキサン等の脂肪族炭化水素のほか、ベンゼン、ナフ
タレン等の芳番族炭化水素を用いることができる。
Hydrocarbon compounds are not particularly limited as long as they form a carbon film when thermally decomposed, and examples include aliphatic hydrocarbons such as methane, ethane, propane, ethylene, acetylene, pentane, and hexane, as well as benzene. , naphthalene, and other aromatic hydrocarbons can be used.

原料ガス中の炭化水素化合物の濃度は炭素原子濃度にし
て0.5〜2モル%が好適である。0.5モル%未満で
あると炭素被膜の析出速度が低く、また2モル%を越え
ると煤か発生しやすくなるためである。
The concentration of the hydrocarbon compound in the raw material gas is preferably 0.5 to 2 mol% in terms of carbon atom concentration. This is because if it is less than 0.5 mol %, the precipitation rate of the carbon film is low, and if it exceeds 2 mol %, soot tends to be generated.

また炭化水素化合物への塩素ガスの添加量は特に限定さ
れるものではないが、炭化水素化合物中の水素1モルに
対して塩素原子が0.3〜0.6モルとなる比率である
ことが好ましい。0.3モル未満であると得られる光フ
ァイバの機械的強度が低下し、0.6モルを越えると耐
水素特性が低下するためである。
Further, the amount of chlorine gas added to the hydrocarbon compound is not particularly limited, but it is preferable that the ratio is 0.3 to 0.6 moles of chlorine atoms per mole of hydrogen in the hydrocarbon compound. preferable. This is because if the amount is less than 0.3 mol, the mechanical strength of the optical fiber obtained will decrease, and if it exceeds 0.6 mol, the hydrogen resistance will decrease.

原料ガスの供給速度は炭化水素化合物の種類、塩素ガス
の添加量および光ファイバ裸線lの紡糸速度等によって
適宜選択されるが、通常はo2〜1.OQ1分程度が好
適である。
The feed rate of the raw material gas is appropriately selected depending on the type of hydrocarbon compound, the amount of chlorine gas added, the spinning speed of the bare optical fiber l, etc., but is usually o2 to o1. An OQ of about 1 minute is suitable.

また光ファイバ裸線lの紡糸速度は、原料ガス中の炭化
水素化合物と塩素ガス濃度等によって適宜選択されるが
、光ファイバ裸線1表面が炭化水素化合物を熱分解する
に充分な余熱を有する加熱状態で反応管5内に挿通され
るものである必要がある。すなわち500〜1400℃
で反応管5に挿通されるように、通常は1oon+/分
以上が好適である。なお、以下に述へる理由によって、
線速の上限は原理的にない。紡糸線速か大きくなるに従
って反応管5内における光ファイバ裸線lの温度が高く
なるので、このような場合には光ファイバ裸線1を適宜
冷却して用いることができるためである。
The spinning speed of the bare optical fiber 1 is appropriately selected depending on the concentration of hydrocarbon compounds and chlorine gas in the raw material gas, etc., but the surface of the bare optical fiber 1 has sufficient residual heat to thermally decompose the hydrocarbon compound. It must be inserted into the reaction tube 5 in a heated state. i.e. 500-1400℃
Usually, it is preferable to insert the reaction tube 5 into the reaction tube 5 at 1 oon+/min or more. Furthermore, for the reasons stated below,
In principle, there is no upper limit to linear velocity. This is because as the spinning speed increases, the temperature of the bare optical fiber 1 in the reaction tube 5 increases, so in such a case, the bare optical fiber 1 can be appropriately cooled before use.

かくして光ファイバ裸線Iの機械的強度を低下させるこ
となく、その表面に耐水素特性と耐応力疲労特性とに優
れた炭素被膜を形成することができる。
In this way, a carbon coating having excellent hydrogen resistance and stress fatigue resistance can be formed on the surface of the bare optical fiber I without reducing its mechanical strength.

「実施例」 光フアイバ母材から光ファイバ裸線を結糸する光フアイ
バ紡糸炉の下段に、石英管の反応管を接続してCVD反
応炉とし、第1図に示したと同様の光ファイバの製造装
置としに。
``Example'' A quartz tube reaction tube was connected to the lower stage of an optical fiber spinning furnace for tying bare optical fibers from an optical fiber base material to form a CVD reaction furnace, and an optical fiber similar to that shown in FIG. Manufacturing equipment.

この先ファイバ製造装置に、Ge O,がドーパントと
して添加されたコア部を有する外径30mmの単一モー
ド先ファイバ母材を設置した。この光フアイバ母材を1
800〜2000℃に加熱して200 m 、/分の紡
糸速度で外径125μmの単一モード光ファイバに紡糸
した。
A single-mode fiber preform having an outer diameter of 30 mm and having a core doped with Ge 2 O as a dopant was installed in the fiber manufacturing apparatus. This optical fiber base material is
It was heated to 800-2000 °C and spun at a spinning speed of 200 m,/min into a single mode optical fiber with an outer diameter of 125 μm.

炭化水素化合物としてベンゼンを用い、これに塩素ガス
濃度を適宜変化させて添加して、光ファイバ裸線表面に
炭素被膜を形成した。このようにして得られた光ファイ
バの引っ張り破断強度、it水素特性および耐応力疲労
特性をそれぞれ調べた。
Benzene was used as a hydrocarbon compound, and chlorine gas concentration was added to this while changing the concentration as appropriate to form a carbon film on the surface of a bare optical fiber. The tensile breaking strength, IT hydrogen properties, and stress fatigue resistance of the optical fiber thus obtained were examined.

第2図に引っ張り破断強度の試験結果を、第3図に耐水
素特性の評価結果を、第4図に耐応力疲労特性の評価結
果を、それぞれ示した。図中、実線は原料ガス中のベン
ゼン濃度が5vt%のものを、破線はベンゼン濃度が1
0v t%のものを、−点鎖線はベンゼン濃度が30w
t%のものを、それぞれ示す。また各図の横軸は、いず
れらベンゼン1モルに対して添加した塩素ガスのモル比
率を示したものである。
FIG. 2 shows the test results for tensile rupture strength, FIG. 3 shows the evaluation results for hydrogen resistance, and FIG. 4 shows the evaluation results for stress fatigue resistance. In the figure, the solid line indicates that the benzene concentration in the raw material gas is 5vt%, and the broken line indicates that the benzene concentration is 1%.
0v t%, - dotted line indicates benzene concentration 30w
t% are shown respectively. Moreover, the horizontal axis of each figure shows the molar ratio of chlorine gas added to 1 mole of benzene.

第2図より、ベンゼン1モルに対して塩素ガスを1モル
以上添加する、すなわち炭化水素化合物中の水素原子1
モルに対して塩素を03モル以上添加することにより、
炭素被膜形成時の光ファイバの機械的強度の低下を防止
できることが判明した。また原料ガス中の炭化水素化合
物中変が増加するにつれ、塩素ガス添加による強度低下
の抑制効果か薄れることが判明した。
From Figure 2, it is clear that more than 1 mole of chlorine gas is added to 1 mole of benzene, that is, 1 mole of hydrogen atom in the hydrocarbon compound.
By adding 03 moles or more of chlorine to the mole,
It has been found that it is possible to prevent a decrease in the mechanical strength of an optical fiber during the formation of a carbon film. It has also been found that as the amount of hydrocarbon compounds in the raw material gas increases, the effect of suppressing strength reduction due to the addition of chlorine gas diminishes.

また第3図より、塩素ガスの添加濃度がある一定値を越
えると、得られる光ファイバの耐水素特性が急激に低下
することが判明した。第3図中、縦軸は、得られた光フ
ァイバを水素分圧1a t 11゜80℃の水素雰囲気
中に24時間放置した前後での波長1.24μmにおけ
る該光ファイバの伝送損失増加量を示すものである。そ
して、例えばベンゼン濃度が5wt%の場合には、ベン
ゼン1モルに対して塩素ガスを0〜17モル添加した場
合には、伝送損失増加量かOdBであるのに対して、1
.7モル以上の添加すると伝送損失増か急激に増加する
ことが判明した。すなわち炭化水素化合物中の水素1モ
ルに対して、06モルを越えて塩素を添加すると、得ら
れる光ファイバの耐水素特性が低下することが判明した
。また塩素ガスの過剰添加によって伝送損失増が発生す
る領域は、原料ガス中の炭化水素化合物濃度が増加する
に従って、塩素の添加量か少ない領域に移行する。
Furthermore, from FIG. 3, it was found that when the concentration of chlorine gas added exceeds a certain value, the hydrogen resistance of the resulting optical fiber decreases rapidly. In Fig. 3, the vertical axis represents the increase in transmission loss of the optical fiber at a wavelength of 1.24 μm before and after leaving the obtained optical fiber in a hydrogen atmosphere with a hydrogen partial pressure of 1a t 11°80°C for 24 hours. It shows. For example, when the benzene concentration is 5 wt%, when 0 to 17 moles of chlorine gas is added to 1 mole of benzene, the increase in transmission loss is OdB, whereas the increase in transmission loss is 1 dB.
.. It has been found that when 7 mol or more is added, the transmission loss increases or increases rapidly. In other words, it has been found that when more than 0.6 moles of chlorine is added to 1 mole of hydrogen in a hydrocarbon compound, the hydrogen resistance of the resulting optical fiber deteriorates. Further, the region where an increase in transmission loss occurs due to excessive addition of chlorine gas shifts to a region where the amount of chlorine added is small as the concentration of hydrocarbon compounds in the raw material gas increases.

また塩素濃度が光ファイバの応力腐食係数n値に与える
影響を調べて第4図に示した。
Furthermore, the influence of chlorine concentration on the stress corrosion coefficient n value of optical fibers was investigated and is shown in FIG.

紫外線硬化型樹脂被覆の光ファイバのn値は、常温、常
湿環境下では通常20〜28であると報告されている。
It has been reported that the n value of an optical fiber coated with an ultraviolet curable resin is usually 20 to 28 in an environment of normal temperature and normal humidity.

一般にn値が大きい程、応力疲労に強く、そのファイバ
がおかれている環境から影響を受けないことが多くの文
献に示されており、光ファイバの耐応力疲労特性を示す
指標となっている。
In general, many literatures have shown that the larger the n value, the stronger the fiber is resistant to stress fatigue and is not affected by the environment in which the fiber is placed, and is an indicator of the stress fatigue resistance of optical fiber. .

塩素ガスの添加によってn値は低下するが、たとえばベ
ンゼン濃度が5vt%の場合、該ベンゼン1モルに対す
る塩素ガスの添加量が1〜1.7モルの範囲でn値が3
00〜100を示し、充分に炭素被覆光ファイバの特性
を示すことが確認できる。これによっても炭化水素化合
物に添加する塩素ガス濃度が、炭化水素化合物中の水素
1モルに対して0.6モル以下の塩素量となるようにす
る必要かあることが確認できた。
The n value decreases with the addition of chlorine gas, but for example, when the benzene concentration is 5vt%, the n value decreases to 3 when the amount of chlorine gas added to 1 mole of benzene ranges from 1 to 1.7 moles.
00 to 100, and it can be confirmed that the characteristics of the carbon-coated optical fiber are sufficiently exhibited. This also confirmed that the concentration of chlorine gas added to the hydrocarbon compound was required to be 0.6 mol or less of chlorine per 1 mol of hydrogen in the hydrocarbon compound.

上記第2図ないし第4図に示した結果は、ベンゼンのみ
ならすアセチレン等の脂肪族炭化水素化合物を用いた場
合にも、全く同様であった。
The results shown in FIGS. 2 to 4 above were exactly the same when not only benzene but also aliphatic hydrocarbon compounds such as acetylene were used.

したがって、上記第2図ないし第4図から原料ガス中の
炭素原子濃度が05〜2モル濃度の領域、すなわちベン
ゼンの場合には、3〜12v。
Therefore, from FIGS. 2 to 4 above, when the carbon atom concentration in the raw material gas is in the range of 0.5 to 2 molar concentration, that is, in the case of benzene, it is 3 to 12 V.

1%、アセチレンの場合には、9〜36vo1%におい
て、炭化水素化合物中の水素原子1モルに対して、塩素
原子を03モル以上0.6モル以下の割合で添加するこ
とにより、光ファイバの強度低下を招くことなく、耐水
素特性と耐応力疲労特性とに優れた炭素被覆光ファイバ
を得ることができることが確認できた。
1%, and in the case of acetylene, 9 to 36vol%, by adding chlorine atoms at a ratio of 0.3 mol to 0.6 mol to 1 mol of hydrogen atoms in the hydrocarbon compound. It was confirmed that a carbon-coated optical fiber with excellent hydrogen resistance and stress fatigue resistance could be obtained without causing a decrease in strength.

「発明の効果」 以上説明したように、この発明の光ファイバの製造方法
は、炭化水素化合物に塩素ガスを添加してなる原料ガス
を用いたものであるので、光ファイバの機械的強度を低
下させることなく耐水素特性と耐応力疲労特性とに優れ
た炭素被膜か形成された光ファイバを得ることができる
"Effects of the Invention" As explained above, the optical fiber manufacturing method of the present invention uses a raw material gas made by adding chlorine gas to a hydrocarbon compound, so it reduces the mechanical strength of the optical fiber. It is possible to obtain an optical fiber formed with a carbon coating having excellent hydrogen resistance and stress fatigue resistance without causing any damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の光ファイバの製造方法に好適に用
いられる光ファイバの製造装置の一例を示した概略構成
図、第2図は、炭化水素化合物に添加する塩素ガス濃度
と、得られた光ファイバの機械的強度との関係を示した
グラフ、第3図は炭化水素化合物に添加する塩素ガス濃
度と、得られた光ファイバの耐水素特性との関係を示し
たグラフ、第4図は炭化水素化合物に添加する塩素ガス
濃度と、得られた光ファイバの耐応力疲労特性を示した
グラフである。 2 光フアイバ母材、 CVD反応炉。
FIG. 1 is a schematic configuration diagram showing an example of an optical fiber manufacturing apparatus suitably used in the optical fiber manufacturing method of the present invention, and FIG. 2 shows the chlorine gas concentration added to the hydrocarbon compound and the obtained Figure 3 is a graph showing the relationship between the mechanical strength of the optical fiber obtained, and Figure 4 is a graph showing the relationship between the chlorine gas concentration added to the hydrocarbon compound and the hydrogen resistance properties of the obtained optical fiber. is a graph showing the concentration of chlorine gas added to a hydrocarbon compound and the stress fatigue resistance of the obtained optical fiber. 2 Optical fiber base material, CVD reactor.

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバの紡糸余熱により原料ガスを熱分解さ
せて光ファイバ裸線表面に炭素被膜を形成する光ファイ
バの製造方法であって、 炭化水素化合物に塩素ガスを添加してなる原料ガスを用
いることを特徴とする光ファイバの製造方法
(1) An optical fiber manufacturing method in which a raw material gas is thermally decomposed using residual heat from spinning the optical fiber to form a carbon film on the surface of the bare optical fiber, and the raw material gas is made by adding chlorine gas to a hydrocarbon compound. A method for manufacturing an optical fiber characterized by using
(2)炭化水素化合物中の水素1モルに対して、0.3
〜0.6モルの塩素を添加してなる原料ガスを用いるこ
と特徴とする請求項1記載の光ファイバの製造方法
(2) 0.3 per mole of hydrogen in the hydrocarbon compound
The method for manufacturing an optical fiber according to claim 1, characterized in that a raw material gas containing ~0.6 mole of chlorine is used.
JP2215310A 1990-08-15 1990-08-15 Optical fiber manufacturing method Expired - Fee Related JP2683147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215310A JP2683147B2 (en) 1990-08-15 1990-08-15 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215310A JP2683147B2 (en) 1990-08-15 1990-08-15 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPH0497925A true JPH0497925A (en) 1992-03-30
JP2683147B2 JP2683147B2 (en) 1997-11-26

Family

ID=16670204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215310A Expired - Fee Related JP2683147B2 (en) 1990-08-15 1990-08-15 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP2683147B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283240A (en) * 1987-09-18 1990-03-23 American Teleph & Telegr Co <Att> Airtight sealed treated optical fiber
JPH02302343A (en) * 1989-05-15 1990-12-14 Furukawa Electric Co Ltd:The Production of hermetic-covered optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283240A (en) * 1987-09-18 1990-03-23 American Teleph & Telegr Co <Att> Airtight sealed treated optical fiber
JPH02302343A (en) * 1989-05-15 1990-12-14 Furukawa Electric Co Ltd:The Production of hermetic-covered optical fiber

Also Published As

Publication number Publication date
JP2683147B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
CA1328757C (en) Optical fiber and apparatus for producing same
JP2975642B2 (en) Hermetic coated fiber and manufacturing method thereof
CA2004234C (en) Optical fiber production method
JPH0497925A (en) Production of optical fiber
US5235666A (en) Production of a hermetically coated optical fiber
JP2798790B2 (en) Optical fiber manufacturing method
JP3039948B2 (en) Optical fiber manufacturing method
JP2595364B2 (en) Optical fiber manufacturing method
JPH02208246A (en) Production of optical fiber
JPH02289450A (en) Optical fiber
JPH03271138A (en) Production of optical fiber
JPH0345536A (en) Production of optical fiber
JP2727702B2 (en) Manufacturing method of carbon coated optical fiber
JPH02160644A (en) Production of optical fiber
JPH0442841A (en) Production of optical fiber
JPH06345494A (en) Carbon-coated optical fiber
JPH0273315A (en) Optical fiber
JP2683070B2 (en) Optical fiber manufacturing method
JPH04119944A (en) Method and device for producing optical fiber
JPH02279541A (en) Production of hermetically coated optical fiber
JPH0248436A (en) Carbon coating process for optical fiber
JPH02263741A (en) Production of carbon-coated optical fiber
JPH04285041A (en) Production of hermetically coated optical fiber
JPH02160643A (en) Production of optical fiber
JPS6051631A (en) Preparation of optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees