JPH0497505A - Neodymium-iron-boron plastic magnet - Google Patents

Neodymium-iron-boron plastic magnet

Info

Publication number
JPH0497505A
JPH0497505A JP2215366A JP21536690A JPH0497505A JP H0497505 A JPH0497505 A JP H0497505A JP 2215366 A JP2215366 A JP 2215366A JP 21536690 A JP21536690 A JP 21536690A JP H0497505 A JPH0497505 A JP H0497505A
Authority
JP
Japan
Prior art keywords
compound
epoxy resin
pot life
10min
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2215366A
Other languages
Japanese (ja)
Other versions
JP2990759B2 (en
Inventor
Shizuo Furuyama
古山 静夫
Seiji Kojima
小嶋 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2215366A priority Critical patent/JP2990759B2/en
Priority to DE1991604858 priority patent/DE69104858T2/en
Priority to EP19910300981 priority patent/EP0441616B1/en
Publication of JPH0497505A publication Critical patent/JPH0497505A/en
Priority to US07/890,294 priority patent/US5213703A/en
Application granted granted Critical
Publication of JP2990759B2 publication Critical patent/JP2990759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To make a compound magnet with long pot life and to improve the maximum energy product ((BH) max) by using latent curing agent made of epoxy resin amineadduct as epoxy resin curing agent. CONSTITUTION:The anisotropic Nd-Fe-B-Co magnetic powder (average grain diameter: 1mm) of 100 weight percent that is prepared through super cooling method and upsetting treatment and oleic acid of 0.9 weight percent are kneaded together in the nitrogen atmosphere by a high speed mixer for 10min. Further, epoxy resin (Epikote 828, made by Yuka Shell Epoxy) of 1.6 weight percents is added to the mixture, followed by mixing them for 10min. Next, latent hardener (Amicure PN-23 made by Ajino-Moto) of 0.4 weight percent is added and the compound is mixed for 10min to complete the distribution. The plastic magnetic compound thus prepared is then put in a die and treated for compression molding in a magnetic field of 15kOe under a compression strength of 6ton/cm<2>, followed by curing the compound at 100 deg.C for 1 hour. With this process, the magnetic characteristic of the molded product can be improved and pot life of the compound can be extended.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はステッピングモータ、スピンドルモータ、トル
クモータ、自動車用モータ、各種アクチュエータ、スピ
ーカ、磁場発生装置などに用いることができるネオジウ
ム−鉄−ボロン系プラスチック磁石に関するものである
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a neodymium-iron-boron plastic magnet that can be used in stepping motors, spindle motors, torque motors, automobile motors, various actuators, speakers, magnetic field generators, etc. It is related to.

従来の技術 近年、樹脂結合型希土類磁石の分野において最大エネル
ギー積(以下(BH)■aXと略す)を向上させるため
の努力がなされている。そのなかでネオジウム−鉄−ボ
ロン系磁石粉に関するバインダの知見は少ない。
BACKGROUND OF THE INVENTION In recent years, efforts have been made to improve the maximum energy product (hereinafter abbreviated as (BH)■aX) in the field of resin-bonded rare earth magnets. Among them, there is little knowledge regarding binders related to neodymium-iron-boron magnet powder.

発明が解決しようとする課題 (BH)waxを向上させるためには、(1)磁石粉の
磁化量4π■、保磁力iHcを大きくする、C2)成形
体の密度を上げる、(3)磁石粉の磁界による配向性の
改善をするなどの対策が考えられる。上記(2)に関し
ては磁石粉の表面処理による分散性向上を目的として、
シランカップリング剤、チタンカップリング剤、脂肪酸
、脂肪酸金属塩などの添加が特開昭61−154113
号公報や特開昭61−208808号公報に提案されて
いる。
Problems to be Solved by the Invention (BH) In order to improve wax, (1) increase the magnetization amount 4π■ and coercive force iHc of the magnet powder, C2) increase the density of the compact, (3) magnet powder Possible countermeasures include improving the orientation using a magnetic field. Regarding (2) above, for the purpose of improving dispersibility by surface treatment of magnet powder,
Addition of silane coupling agent, titanium coupling agent, fatty acid, fatty acid metal salt, etc. is disclosed in JP-A-61-154113.
This method has been proposed in Japanese Patent Application Laid-Open No. 61-208808.

しかし、成形体の密度が上がり、かつポットライフの長
いバインダシステムについての提案は殆どないのが現状
である。
However, at present, there are almost no proposals for binder systems that increase the density of molded bodies and have a long pot life.

本発明者らは、バインダシステムを詳細に吟味すること
により本発明に到達したものである。
The present inventors arrived at the present invention by examining binder systems in detail.

本発明はポットライフの長いコンパウンドで、かつ(B
H)■axの向上したネオジウム−鉄−ボロン系プラス
チック磁石を提供することを目的とするものである。
The present invention is a compound with a long pot life and (B
H) ■An object of the present invention is to provide a neodymium-iron-boron plastic magnet with improved ax.

課題を解決するための手段 この課題を解決するために本発明のネオジウム−鉄−ボ
ロン系プラスチック磁石は、少なくとも磁石粉とバイン
ダとしてのエポキシ樹脂とからなり、エポキシ樹脂の硬
化剤として、エポキシ樹脂のアミンアダクト体である潜
在性硬化剤を使用する構成になっている。
Means for Solving the Problem In order to solve this problem, the neodymium-iron-boron plastic magnet of the present invention comprises at least magnet powder and an epoxy resin as a binder. The structure uses a latent curing agent that is an amine adduct.

作用 この構成により得られた成形用コンパウンドはポットラ
イフが長(、かつ成形体の密度が向上し、(B H)w
axを改善することができる。
Effect The molding compound obtained with this configuration has a long pot life (and the density of the molded product is improved, (B H) w
ax can be improved.

実施例 以下、本発明の一実施例のネオジウム−鉄−ボロン系プ
ラスチック磁石について説明する。
EXAMPLE A neodymium-iron-boron plastic magnet according to an example of the present invention will be described below.

本実施例に用いられるネオジウム−鉄−ボロン系磁石粉
としては、超急冷薄帯を据込み加工してつくられたネオ
ジウム−鉄−ボロン系磁石粉があげられる。さらに、温
度特性、耐食性、磁気特性を改善するために、ガリウム
、コバルト、プラセオジウム、錫等の種々の元素を添加
、もしくは置換した磁石粉を使用することも可能である
The neodymium-iron-boron magnet powder used in this example includes neodymium-iron-boron magnet powder produced by upsetting an ultra-quenched ribbon. Furthermore, in order to improve temperature characteristics, corrosion resistance, and magnetic characteristics, it is also possible to use magnet powder to which various elements such as gallium, cobalt, praseodymium, and tin are added or substituted.

分散剤としては、脂肪酸、シランカップリング剤、各種
界面活性剤などが使用される。
As the dispersant, fatty acids, silane coupling agents, various surfactants, etc. are used.

樹脂バインダとしては、接着強度の点からエポキシ樹脂
を使用する。樹脂バインダの総量は、磁気特性と成形体
の強度で決定される。磁石粉に対して1.4重量%以下
では成形体が脆(実用にならず、3.0重量%以上では
磁気特性が低下する。
As the resin binder, epoxy resin is used from the viewpoint of adhesive strength. The total amount of resin binder is determined by the magnetic properties and the strength of the molded body. If the amount is less than 1.4% by weight based on the magnet powder, the molded product will be brittle (not practical), and if it is more than 3.0% by weight, the magnetic properties will deteriorate.

混線分散については、各種の混線機が使用される。例え
ば、ボールミル、プラネタリ−ミキサ。
For crosstalk distribution, various crosstalk machines are used. For example, ball mill, planetary mixer.

アッパーミル、ヘンシェルミキサ、高速ミキサー、マイ
クロミルグラインダーなどが用いられる。
Upper mills, Henschel mixers, high-speed mixers, micro mill grinders, etc. are used.

(実施例1) 超急冷法、据込加工を経て作製された異方性Nd−Fe
−B−Co磁石粉(平均粒径1m)100重量部とオレ
イン酸0.9重量部を窒素雰囲気下にて高速ミキサーで
10分間混練する。さらに、エポキシ樹脂(エピコート
828 油化シェルエポキシ社11りを1.6重量部添
加後10分間混合する。次に、潜在性硬化剤(アミキュ
アPN−23味の素■製)を0.4重量部添加し10分
間混合し、分散を終える。
(Example 1) Anisotropic Nd-Fe produced through ultra-quenching method and upsetting process
-100 parts by weight of -B-Co magnet powder (average particle size 1 m) and 0.9 parts by weight of oleic acid are kneaded for 10 minutes in a high-speed mixer under a nitrogen atmosphere. Furthermore, 1.6 parts by weight of an epoxy resin (Epicoat 828 Yuka Shell Epoxy Co., Ltd. 11) is added and mixed for 10 minutes.Next, 0.4 parts by weight of a latent curing agent (Amicure PN-23 manufactured by Ajinomoto ■) is added. Mix for 10 minutes to complete dispersion.

製造したプラスチック磁石コンパウンドを金型に入れて
、15KOeの磁場中で圧縮成形を6ton/−の条件
で行った。100℃1時間の硬化を行ってプラスチック
磁石を得た。
The produced plastic magnet compound was placed in a mold and compression molded in a magnetic field of 15 KOe under conditions of 6 tons/-. A plastic magnet was obtained by curing at 100° C. for 1 hour.

プラスチック磁石コンパウンドのポットライフは次のよ
うにして評価した。得られたフンパウンドを常温に放置
し、1時間毎に成形用として抜き取り、上記成形条件で
プラスチック磁石を作製する。成形体の磁気特性が初期
磁気特性より5%低下するまでの時間をコンパウンドの
ポットライフと定義する。
The pot life of the plastic magnet compound was evaluated as follows. The obtained dung powder is left at room temperature and extracted every hour for molding to produce a plastic magnet under the above molding conditions. The pot life of the compound is defined as the time until the magnetic properties of the compact decrease by 5% from the initial magnetic properties.

(比較例1) 実施例においてバインダシステムを以下の通りに変更す
る以外は、同様にしてプラスチック磁石を得た。
(Comparative Example 1) A plastic magnet was obtained in the same manner as in Example except that the binder system was changed as follows.

異方性Nd−Fe−B−Co磁石粉・・・・・・  1
00重量部オレイン酸・・・・・・  0.9重量部エ
ポキシ樹脂(エピコート828)・・・・・・1,5重
量部脂肪族アミン(LX−IN油化シェルエポキシ社製
)・・・・・・O4,5重量部 (比較例2) 実施例においてバインダシステムを以下の通りに変更す
る以外は、同様にしてプラスチック磁石を得た。
Anisotropic Nd-Fe-B-Co magnet powder...1
00 parts by weight Oleic acid...0.9 parts by weight Epoxy resin (Epicote 828)...1.5 parts by weight Aliphatic amine (manufactured by LX-IN Yuka Shell Epoxy Co., Ltd.)... ...04.5 parts by weight (Comparative Example 2) A plastic magnet was obtained in the same manner as in the example except that the binder system was changed as follows.

異方性Nd−Fe−B−Co磁石粉・・・・・・  1
00重量部オレイン酸・・・・・・  0.9 重量・
部エポキシ樹脂(エピコート828)・・・・・・1.
25重量部芳香族アミン(アクメックスH−90日本合
成化工社製)    ・・・・・・0.75重量部以上
で得られたプラスチック磁石成形体の初期磁気特性とプ
ラスチック磁石コンパウンドのポットライフを第1表に
示す。
Anisotropic Nd-Fe-B-Co magnet powder...1
00 parts by weight Oleic acid 0.9 parts by weight
Part Epoxy resin (Epicote 828)...1.
25 parts by weight of aromatic amine (Akmex H-90 manufactured by Nippon Gosei Kako Co., Ltd.) ...... Initial magnetic properties of plastic magnet moldings obtained with 0.75 parts by weight or more and pot life of plastic magnet compounds Shown in Table 1.

(以  下  余  白) 第1表 潜在性硬化剤を使用した実施例は、プラスチック磁石コ
ンパウンドのポットライフが20hであり、(B H)
iax = 15MGOeと実用レベルに達していると
いえる。
(Blank below) In the example using the latent hardener in Table 1, the pot life of the plastic magnet compound was 20 hours, and (BH)
iax = 15 MGOe, which can be said to have reached a practical level.

一方、比較例1の脂肪族アミン硬化剤では、(BH)m
ax=12MGOe、ポットライフが3hLかなく、実
用レベルには程遠いといえる。
On the other hand, in the aliphatic amine curing agent of Comparative Example 1, (BH)m
ax=12MGOe, the pot life is only 3hL, and it can be said that it is far from a practical level.

さらに、比較例2の芳香族アミン硬化剤では(B H)
max= 15MGOeで実用レベルであるが、ポット
ライフが6hと短く生産上の問題が大きい。
Furthermore, in the aromatic amine curing agent of Comparative Example 2 (B H)
The max = 15 MGOe is at a practical level, but the pot life is short at 6 hours, which poses a major problem in production.

このように、硬化剤の種類により成形体の磁気特性、コ
ンパウンドのポットライフに大きな差異が見られる。成
形体の磁気特性の差は、バインダシステムの磁石粉に対
する吸着力の差、その結果としての分散性の差に基づく
と考えられる。
As described above, there are large differences in the magnetic properties of the molded body and the pot life of the compound depending on the type of curing agent. The difference in the magnetic properties of the molded bodies is considered to be based on the difference in the adsorption force of the binder system to the magnetic powder and the resulting difference in dispersibility.

コンパウンドのポットライフの差は、混線時の局部的な
発熱に対するバインダシステムの保存安定性の差による
ものであると考えられる。
The difference in the pot life of the compounds is thought to be due to the difference in storage stability of the binder system against local heat generation during crosstalk.

本発明の潜在性硬化剤とは、エポキシ主剤と混合後一定
温度以上になるまで硬化反応を開始しない硬化剤を意味
し、熱安定性が良好であるためポットライフ延長効果を
有していると考えられる。
The latent curing agent of the present invention refers to a curing agent that does not initiate a curing reaction until the temperature reaches a certain temperature or higher after mixing with the epoxy base agent, and is said to have a pot life extension effect due to its good thermal stability. Conceivable.

発明の効果 以上述べたように、本発明によれば、エポキシ樹脂の硬
化剤として潜在性硬化剤を採用することにより、成形体
の磁気特性の向上及びコンパウンドのポットライフの延
長が初めて共に可能となった優れたネオジウム−鉄−ボ
ロン系プラスチック磁石を提供するものである。
Effects of the Invention As described above, according to the present invention, by employing a latent curing agent as a curing agent for an epoxy resin, it is possible for the first time to both improve the magnetic properties of a molded product and extend the pot life of the compound. The present invention provides an excellent neodymium-iron-boron plastic magnet.

Claims (1)

【特許請求の範囲】[Claims]  少なくとも磁石粉とバインダとしてのエポキシ樹脂と
からなり、エポキシ樹脂の硬化剤として、エポキシ樹脂
のアミンアダクト体である潜在性硬化剤を使用したこと
を特徴とするネオジウム−鉄−ボロン系プラスチック磁
石。
1. A neodymium-iron-boron plastic magnet comprising at least magnet powder and an epoxy resin as a binder, and characterized in that a latent hardening agent which is an amine adduct of the epoxy resin is used as a hardening agent for the epoxy resin.
JP2215366A 1990-02-09 1990-08-14 Method for producing neodymium-iron-boron plastic magnet Expired - Fee Related JP2990759B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2215366A JP2990759B2 (en) 1990-08-14 1990-08-14 Method for producing neodymium-iron-boron plastic magnet
DE1991604858 DE69104858T2 (en) 1990-02-09 1991-02-06 Anisotropic bonded magnet based on Nd-Fe-B and manufacturing process.
EP19910300981 EP0441616B1 (en) 1990-02-09 1991-02-06 Anisotropic plastic bonded magnet of the Nd-Fe-B-type and method for making same
US07/890,294 US5213703A (en) 1990-02-09 1992-05-27 Anisotropic neodymium-iron-boron system plastic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215366A JP2990759B2 (en) 1990-08-14 1990-08-14 Method for producing neodymium-iron-boron plastic magnet

Publications (2)

Publication Number Publication Date
JPH0497505A true JPH0497505A (en) 1992-03-30
JP2990759B2 JP2990759B2 (en) 1999-12-13

Family

ID=16671105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215366A Expired - Fee Related JP2990759B2 (en) 1990-02-09 1990-08-14 Method for producing neodymium-iron-boron plastic magnet

Country Status (1)

Country Link
JP (1) JP2990759B2 (en)

Also Published As

Publication number Publication date
JP2990759B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JP4525678B2 (en) Manufacturing method of self-assembled rare earth-iron bond magnet and motor using the same
JPS63232301A (en) Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
CN104347219B (en) Composite magnetic material, method for manufacturing same and raw material components of composite magnetic material
KR100420541B1 (en) Resin-bonded magnet
JPH1041116A (en) R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet
JP6520168B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
JP4033112B2 (en) Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor
US5213703A (en) Anisotropic neodymium-iron-boron system plastic bonded magnet
JP4203646B2 (en) Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor
JPH0497505A (en) Neodymium-iron-boron plastic magnet
JP2002015906A (en) Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JP4529598B2 (en) Fiber-reinforced layer integrated flexible rare earth bonded magnet
EP0441616B1 (en) Anisotropic plastic bonded magnet of the Nd-Fe-B-type and method for making same
JPH04254305A (en) Manufacture of compound soft magnetic material
JPH05234727A (en) Rare earth magnetic substance resin composite material
JPH0467603A (en) Manufacture of neodymium-iron-boron system plastic magnet
JP2005272925A (en) R-t-n based magnetic powder and its manufacturing method
JPH06236806A (en) Anisotropic resin-bonded rare-earth magnet
JPH03234002A (en) Neodymium-iron-boron plastic magnet and its manufacture
JPS60254707A (en) Manufacture of permanent magnet
JP3185457B2 (en) Composition for resin-bonded magnet, resin-bonded magnet and methods for producing them
JP3629992B2 (en) Resin-bonded magnet composition and magnet using the same
JPH09320876A (en) Manufacture of anisotropic bond magnet
JP2000348920A (en) Composition for rare-earth bonded magnet, rare-earth bonded magnet and manufacture thereof
JPH09115711A (en) Anisotropic bond magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees