JPH049732B2 - - Google Patents
Info
- Publication number
- JPH049732B2 JPH049732B2 JP8936984A JP8936984A JPH049732B2 JP H049732 B2 JPH049732 B2 JP H049732B2 JP 8936984 A JP8936984 A JP 8936984A JP 8936984 A JP8936984 A JP 8936984A JP H049732 B2 JPH049732 B2 JP H049732B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- tib
- added
- particle size
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 74
- 238000004519 manufacturing process Methods 0.000 claims description 18
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 8
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 229910033181 TiB2 Inorganic materials 0.000 claims description 8
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- 239000000395 magnesium oxide Substances 0.000 claims description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- 239000012153 distilled water Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 235000019270 ammonium chloride Nutrition 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052810 boron oxide Inorganic materials 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- 239000011812 mixed powder Substances 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 238000006722 reduction reaction Methods 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 238000000635 electron micrograph Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PZKRHHZKOQZHIO-UHFFFAOYSA-N [B].[B].[Mg] Chemical compound [B].[B].[Mg] PZKRHHZKOQZHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
本発明は酸化チタン粉末と酸化ほう素粉末にマ
グネシウム粉末を加えて加熱し、マグネシウムに
よる金属還元反応によつて超微細2ほう化チタン
粉末を得るための製造方法に関するものである。[Detailed Description of the Invention] [Technical Field] The present invention is a method for adding magnesium powder to titanium oxide powder and boron oxide powder and heating the mixture to obtain ultrafine titanium diboride powder through a metal reduction reaction with magnesium. This relates to a manufacturing method.
現在製造されている2ほう化チタン粉末(以
下、TiB2粉末という)は直接反応法と呼ばれて
いる方法、すなわちTi+2B→TiB2の化学反応式
で示される製造方法が用いられている。このため
製造に2000℃近くの高温が必要であり、しかもこ
れによつて得られたTiB2粉は粒子径が大きく
(6〜12)μmの範囲の中心粒径を有する粉末しか
得られない。
Currently produced titanium diboride powder (hereinafter referred to as TiB 2 powder) is produced using a method called a direct reaction method, that is, a method of production represented by the chemical reaction formula of Ti+2B→TiB 2 . For this reason, a high temperature of nearly 2000° C. is required for production, and the TiB 2 powder obtained by this method has a large particle size (6 to 12) μm (6 to 12) μm.
TiB2粉は硬度が非常に高いので、粉砕によつ
ても微細化することは難しく中心粒径2μm前後の
粉末しか得られないのが欠点であつた。1μm以下
の超微粉を得ることは高性能なTiB2基超硬合金
を製造したり、TiC基超硬合金の製造の際の焼結
助剤として使用が考えられているために是非共必
要であり、かつ望まれている。 Since TiB 2 powder has very high hardness, it is difficult to make it fine even by pulverization, and the disadvantage is that only powder with a center particle size of around 2 μm can be obtained. Obtaining ultrafine powder of 1 μm or less is absolutely necessary because it is considered to be used as a sintering aid in the production of high-performance TiB - based cemented carbide and in the production of TiC-based cemented carbide. Yes and desired.
従来から金属還元法によつてTiB2粉を得るこ
とは知られていたけれども、工業化という見地に
立つて製造法を検討した例は無い。 Although it has been known for some time that TiB 2 powder can be obtained by a metal reduction method, there has been no study of the production method from the standpoint of industrialization.
すなわち、金属還元法によるTiB2粉末の製造
は、理論的にはTiO2+B2O3+Mg→TiB2+MgO
で示される化学反応式によつて得られるけれど
も、実際上の問題として、この反応は爆発的に行
なわれるためにTiB2粉の粗大化が生ずる。又、
反応生成物の中にマグネシウムボライド
(MgBo)の生成や未反応物があるため、これら
からTiB2粉末のみを精製して純度の高いTiB2粉
を得ることが出来なかつた。 In other words, the production of TiB 2 powder by the metal reduction method is theoretically TiO 2 + B 2 O 3 + Mg → TiB 2 + MgO.
However, as a practical problem, this reaction occurs explosively, resulting in coarsening of the TiB 2 powder. or,
Since the reaction products include the production of magnesium boride (MgB o ) and unreacted substances, it has been impossible to obtain highly pure TiB 2 powder by refining only TiB 2 powder from these.
本発明の目的は、上述した従来の金属還元法の
欠点を解決するために研究がなされたもので、中
心粒径1μm以下の超微細なTiB2粉末を製造する
ことのできる製造方法を提供せんとするものであ
る。
The purpose of the present invention is to provide a manufacturing method capable of manufacturing ultrafine TiB 2 powder with a center particle size of 1 μm or less, which was carried out in order to solve the above-mentioned drawbacks of the conventional metal reduction method. That is.
本発明の超微細2ほう化チタン粉末の製造方法
は、酸化チタン粉末および酸化ほう素粉末にマグ
ネシウム粉末および酸化マグネシウム粉末を加
え、ボールミル中で30分から5時間混合し、前述
の混合粉をアルゴン気流中で(650℃〜1000℃)
に加熱し、反応させ、その反応生成物を塩化アン
モニウム水溶液中で加熱煮沸し、その後蒸溜水を
加え遠心分離により上澄液を廃棄し、次いで塩酸
水溶液を加え加熱煮沸し、その後蒸溜水を加え遠
心分離を行ない2ほう化チタン粉のみとし、その
後乾燥させることを特徴とする。
The method for producing ultrafine titanium diboride powder of the present invention involves adding magnesium powder and magnesium oxide powder to titanium oxide powder and boron oxide powder, and mixing the mixture in a ball mill for 30 minutes to 5 hours. Inside (650℃~1000℃)
The reaction product is heated and boiled in an ammonium chloride aqueous solution, then distilled water is added and the supernatant liquid is discarded by centrifugation, then a hydrochloric acid aqueous solution is added and heated to boiling, and then distilled water is added. It is characterized by centrifuging to obtain only titanium diboride powder, which is then dried.
このように本発明はMg金属還元反応法を基本
とするが、爆発的に生ずるこの還元反応を抑制す
るために、TiO2粉末、B2O3粉末、Mg粉末の他
にMgO粉末を添加することを特徴とする。MgO
粉末を加えることにより反応は爆発的に起らない
ので徐々に進行する。その結果反応温度は1000℃
以下に押えられるために、TiB2粉末は粗大化し
ない。 As described above, the present invention is based on the Mg metal reduction reaction method, but in order to suppress this reduction reaction that occurs explosively, MgO powder is added in addition to TiO 2 powder, B 2 O 3 powder, and Mg powder. It is characterized by MgO
By adding powder, the reaction does not occur explosively and proceeds gradually. As a result, the reaction temperature was 1000℃
TiB 2 powder does not coarsen because it is suppressed below.
又、TiB2粉末を得るための精製過程は化学的
に行ない、塩化アンモニウム水溶液と塩酸水溶液
が使用され、2段階の精製処理によつて純度の高
いTiB2粉末を得ることを特徴とする。 Further, the purification process for obtaining TiB 2 powder is carried out chemically, using an ammonium chloride aqueous solution and a hydrochloric acid aqueous solution, and is characterized in that a highly pure TiB 2 powder is obtained through a two-step purification process.
以下、本発明の実施例を説明する。 Examples of the present invention will be described below.
(1) TiB2粉末の製造方法
本発明における超微細TiB2粉末の製造プロ
セスを第1図に示す。(1) Manufacturing method of TiB 2 powder The manufacturing process of ultrafine TiB 2 powder in the present invention is shown in FIG.
B2O3粉末に対しTiO2粉末をモル重量比で
(1〜3)モル加え、ささらTiO2粉末に対し
Mg粉末を(3〜6)モル加える。さらにB2O3
粉末、TiO2粉末、Mg粉末の全重量に対し(5
〜50)重量%MgO粉末を加え、これらの粉末
をアルミナ製の容器に入れて混合する。混合粉
はカーボン製のボートに入れ、反応管の中でア
ルゴン気流中で(650℃〜800℃)に加熱する。
反応時間は反応温度が800℃に達したなら加熱
を中止する。その後反応生成物をボートから取
り出す。この時点での反応生成物のX線回折結
果によると、第2図に示すようにTiB2以外に
MgB4、MgB6およびMgO、未反応物である
Mgが検出されている。その後この反応生成物
を塩化アンモニウム水溶液中で加熱煮沸する。
その後、加熱を中止し蒸溜水を加え、遠心分離
機にかけて粉体を何度か洗浄する。次いで塩酸
水溶液を反応物に加え、加熱煮沸する。その後
加熱を中止し、前と同様、遠心分離機にかけて
粉体を洗浄する。その後粉体を乾燥し超微細
TiB2粉を得る。 Add (1 to 3) moles of TiO 2 powder to B 2 O 3 powder in molar weight ratio, and add TiO 2 powder to Sasara TiO 2 powder.
Add (3-6) moles of Mg powder. More B 2 O 3
For the total weight of powder, TiO 2 powder, Mg powder (5
~50) Add wt% MgO powder and mix these powders in an alumina container. The mixed powder is placed in a carbon boat and heated to (650°C to 800°C) in an argon stream in a reaction tube.
When the reaction temperature reaches 800°C, heating is stopped. The reaction products are then removed from the boat. According to the X-ray diffraction results of the reaction products at this point, as shown in Figure 2, other than TiB 2
MgB 4 , MgB 6 and MgO are unreacted products
Mg has been detected. This reaction product is then heated and boiled in an aqueous ammonium chloride solution.
After that, heating is stopped, distilled water is added, and the powder is washed several times using a centrifuge. Next, an aqueous hydrochloric acid solution is added to the reaction mixture, and the mixture is heated and boiled. After that, heating is stopped and the powder is washed by centrifugation as before. After that, the powder is dried and ultra-fine.
Obtain TiB 2 powder.
(2) 上記製造方法によつて得られたTiB2粉末の
特性
(a) 組成
第3図に示すX線回折結果によると回折線
はTiB2のみとなり、TiB2粉が得られたこと
を示している。(2) Characteristics of TiB 2 powder obtained by the above production method (a) Composition According to the X-ray diffraction results shown in Figure 3, the diffraction line was only TiB 2 , indicating that TiB 2 powder was obtained. ing.
(b) 粉体の形状と粒度分布
第4図に得られたTiB2粉末の電子顕微鏡
写真を示す。又、第5図に光走査型粒度分布
測定装置により測定したTiB2粉の粒度分布
を示す。 (b) Powder shape and particle size distribution Figure 4 shows an electron micrograph of the obtained TiB 2 powder. Furthermore, FIG. 5 shows the particle size distribution of TiB 2 powder measured by an optical scanning particle size distribution measuring device.
得られたTiB2粉末の中心粒径は0.5〜
0.75μmであり、最大粒径は2.5μmであつた。 The median particle size of the obtained TiB2 powder is 0.5~
The particle diameter was 0.75 μm, and the maximum particle size was 2.5 μm.
(3) 従来のTiB2粉末との比較
従来の直接反応法により製造したTiB2粉末
の粒度分布を第6図に、又電子顕微鏡写真を第
7図に示す。従来粉は中心粒径が10〜12μmで
あるのに対し、本発明のTiB2粉は0.5〜0.75μm
に中心粒径がある。しかも、従来粉の最大粒径
は23μmであるのに対し、本発明のTiB2粉は
2.5μm以下にある。従来粉を粉砕しても中心粒
径は2〜3μmのものしか得られないため、本発
明の製造方法によつて得たTiB2粉末は充分微
細である。(3) Comparison with conventional TiB 2 powder Figure 6 shows the particle size distribution of TiB 2 powder produced by the conventional direct reaction method, and Figure 7 shows an electron micrograph. While the conventional powder has a central particle size of 10 to 12 μm, the TiB 2 powder of the present invention has a central particle size of 0.5 to 0.75 μm.
has a central grain size. Moreover, while the maximum particle size of conventional powder is 23 μm, the TiB 2 powder of the present invention has a
It is below 2.5μm. Even if powder is conventionally pulverized, only particles with a center particle size of 2 to 3 μm can be obtained, so the TiB 2 powder obtained by the production method of the present invention is sufficiently fine.
以上述べた如く、本発明の製造方法を用いれば
従来粉より1桁小さな超微細粉が得られ、この超
微細粉は高性能なTiB2基超硬合金の構成物質、
Al2O3系セラミツク工具の結合物質、TiC基超硬
合金の添加剤および耐摩耗性コーテング物質など
に用いることができ、産業上の効果が極めて大で
ある。
As described above, by using the production method of the present invention, ultrafine powder that is one order of magnitude smaller than conventional powder can be obtained, and this ultrafine powder is a constituent material of high-performance TiB two- base cemented carbide.
It can be used as a binding material for Al 2 O 3 ceramic tools, as an additive for TiC-based cemented carbide, and as a wear-resistant coating material, and has extremely large industrial effects.
第1図は本発明のマグネシウム還元反応法によ
る超微細TiB2粉末の製造プロセスを表わす図、
第2図は還元反応直後(精製前)の反応生成物の
X線回折線を表わす図、第3図は前述の方法で得
られた(精製後)TiB2粉末のX線回折線を表わ
す図、第4図は前述の方法で得たTiB2粉末の電
子顕微鏡写真、第5図は前述の方法で得たTiB2
粉末の粒度分布を表わす図、第6図は従来粉の粒
度分布を示す図、第7図は従来粉の電子顕微鏡写
真を表わす図である。
Figure 1 is a diagram showing the manufacturing process of ultrafine TiB 2 powder by the magnesium reduction reaction method of the present invention;
Figure 2 shows the X-ray diffraction line of the reaction product immediately after the reduction reaction (before purification), and Figure 3 shows the X-ray diffraction line of the TiB 2 powder obtained by the method described above (after purification). , Figure 4 is an electron micrograph of TiB 2 powder obtained by the method described above, and Figure 5 is an electron micrograph of TiB 2 powder obtained by the method described above.
FIG. 6 is a diagram showing the particle size distribution of the powder, FIG. 6 is a diagram showing the particle size distribution of the conventional powder, and FIG. 7 is an electron micrograph of the conventional powder.
Claims (1)
ネシウム粉末および酸化マグネシウム粉末を加
え、ボールミル中で30分から5時間混合し、前述
の混合粉をアルゴン気流中で(650〜1000)℃に
加熱し、反応させ、その反応生成物を塩化アンモ
ニウム水溶液中で加熱煮沸し、その後蒸溜水を加
え遠心分離により上澄液を廃棄し、次いで塩酸水
溶液を加え加熱煮沸し、その後蒸溜水を加え遠心
分離を行ない2ほう化チタン粉のみとし、その後
乾燥させて超微細2ほう化チタン粉末を得ること
を特徴とする超微細2ほう化チタン粉末の製造方
法。1 Add magnesium powder and magnesium oxide powder to titanium oxide powder and boron oxide powder, mix in a ball mill for 30 minutes to 5 hours, and heat the above mixed powder to (650 to 1000) °C in an argon stream to react. The reaction product is heated and boiled in an ammonium chloride aqueous solution, then distilled water is added and the supernatant liquid is discarded by centrifugation. Next, a hydrochloric acid aqueous solution is added and heated and boiled. Then, distilled water is added and centrifuged. A method for producing ultrafine titanium diboride powder, which comprises using only titanium diboride powder and then drying it to obtain ultrafine titanium diboride powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8936984A JPS60235717A (en) | 1984-05-07 | 1984-05-07 | Production of ultrafine powder of titanium diboride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8936984A JPS60235717A (en) | 1984-05-07 | 1984-05-07 | Production of ultrafine powder of titanium diboride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60235717A JPS60235717A (en) | 1985-11-22 |
JPH049732B2 true JPH049732B2 (en) | 1992-02-21 |
Family
ID=13968776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8936984A Granted JPS60235717A (en) | 1984-05-07 | 1984-05-07 | Production of ultrafine powder of titanium diboride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60235717A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4888166A (en) * | 1986-09-03 | 1989-12-19 | Georgia Tech Research Corporation | Process for making highly reactive sub-micron amorphous titanium diboride powder |
JP2528529B2 (en) * | 1989-08-28 | 1996-08-28 | ローガン,キャスリン・ブイ | Process for producing highly reactive submicron amorphous titanium diboride powder and product made thereby |
JP3598580B2 (en) * | 1994-05-18 | 2004-12-08 | 住友化学工業株式会社 | Method for producing transition metal boride powder |
US5587140A (en) * | 1994-05-18 | 1996-12-24 | Sumitomo Chemical Company, Limited | Process for producing powders of transition metal boride |
AUPM933094A0 (en) * | 1994-11-08 | 1994-12-01 | Australian National University, The | Production of borides |
-
1984
- 1984-05-07 JP JP8936984A patent/JPS60235717A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60235717A (en) | 1985-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4921531A (en) | Process for forming fine ceramic powders | |
US4500643A (en) | Shaped refractory metal boride articles and method of making them | |
US4275026A (en) | Method for preparing titanium diboride shapes | |
JP2002544375A (en) | Metal powder produced by reduction of oxides using gaseous magnesium | |
JPS5850929B2 (en) | Method for manufacturing silicon carbide powder | |
CA1251224A (en) | Process for the preparation of carbide-boride products and their use | |
US2735155A (en) | With an excess of boron | |
WO2016024689A1 (en) | Method for producing titanium carbonitride powder | |
US3692479A (en) | Preparation of binary borides,carbides and silicides | |
JPH049732B2 (en) | ||
EP0376179B1 (en) | Alloyed powder and method of preparing same | |
JPH0280318A (en) | Synthesis of refractory metal boride having predetermined particle dimension | |
US4528119A (en) | Metal borides, carbides, nitrides, silicides, oxide materials and their method of preparation | |
US20200207628A1 (en) | Method for preparing powdered composite carbide of tungsten and titanium | |
WO1989005280A1 (en) | Process for forming fine ceramic powders and products thereof | |
JPS58213618A (en) | Production of powder of composite carbonitride solid solution | |
JPS61132509A (en) | Production of silicon carbide | |
JP2008069062A (en) | Titanium carbide or precursor of titanium carbide and mixture of carbon and its manufacturing method | |
JP2694893B2 (en) | Carbon-carbide ceramic spherical composite and method for producing the same | |
JP2818859B2 (en) | Method for producing carbon-boride ceramic spherical composite | |
JP2559422B2 (en) | Method for manufacturing high hardness copper-based composite alloy | |
JP2003112916A (en) | Method for producing high purity pulverized carbonized tungsten powder without necessitating grinding process | |
KR970001524B1 (en) | Process for the preparation of silicon carbide powder | |
CN115367756A (en) | Method for preparing titanium carbide powder by low-temperature molten salt ball milling | |
JP2683397B2 (en) | Method for manufacturing SiC whiskers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |