JP3598580B2 - Method for producing transition metal boride powder - Google Patents

Method for producing transition metal boride powder Download PDF

Info

Publication number
JP3598580B2
JP3598580B2 JP11673095A JP11673095A JP3598580B2 JP 3598580 B2 JP3598580 B2 JP 3598580B2 JP 11673095 A JP11673095 A JP 11673095A JP 11673095 A JP11673095 A JP 11673095A JP 3598580 B2 JP3598580 B2 JP 3598580B2
Authority
JP
Japan
Prior art keywords
transition metal
molten
metal
boron
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11673095A
Other languages
Japanese (ja)
Other versions
JPH0834609A (en
Inventor
進治 藤原
宏 田渕
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP11673095A priority Critical patent/JP3598580B2/en
Publication of JPH0834609A publication Critical patent/JPH0834609A/en
Application granted granted Critical
Publication of JP3598580B2 publication Critical patent/JP3598580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高硬度、高融点、高耐食性および良導電性といった優れた特性を有する遷移金属ホウ化物粉末の製造方法に関する。
【0002】
【従来の技術】
二ホウ化チタンや二ホウ化タンタル等の遷移金属ホウ化物は、耐摩耗材料や耐食性材料または電気接点材料等に利用されている。二ホウ化チタンや二ホウ化タンタルの粉末の工業的な製造方法としては、金属チタンとホウ素の混合粉末、または金属タンタルとホウ素の混合粉末を加熱して反応させる方法、酸化チタンと酸化ホウ素と炭素との混合物、または五酸化タンタルと酸化ホウ素と炭素との混合物を1000℃程度で還元して反応させる方法、金属チタンと炭化ホウ素と炭素との混合物、または金属タンタルと炭化ホウ素と炭素との混合物を2000℃程度の高温で反応させる方法等が知られている。
【0003】
しかし、これらの方法で製造された二ホウ化チタン等の遷移金属ホウ化物粉末には、一次粒子が強固に固着することにより生成する粗大な二次凝集粒子が含まれるため、所望の粒子径、例えば、10μm以下の粒子径を有する粉末を得るためには粉砕工程が必要であった。しかし、遷移金属ホウ素化合物は硬度が非常に高いことから、粉砕は容易ではなかった。
【0004】
よって、上記のような問題点を解決するために、二ホウ化チタン等の遷移金属ホウ化物粉末の製造方法について以下のような解決法が提案されてきた。
【0005】
その一つに、金属融剤中で二ホウ化チタン等の遷移金属ホウ化物の単結晶を製造する方法が知られている。この方法は、金属チタン、結晶性ホウ素粉末および金属融剤としてのアルミニウムチップとの乾式混合物をアルゴンガス雰囲気下、1000〜1600℃で反応させることによって二ホウ化チタンの単結晶を製造するもので、神奈川大学工学部研究報告(第23号、1985年3月)に開示されている。この方法によって得られる二ホウ化チタンの単結晶は、1000〜1300℃で5μm程度の薄板状のもので、1400〜1500℃では15〜20μm程度の六角多面体状の粗大な単結晶粒子である。
【0006】
また、同様に金属タンタル、結晶性ホウ素粉末および金属融剤としてのアルミニウムチップとの乾式混合物をアルゴンガス雰囲気下、1150〜1500℃で反応させることによって二ホウ化タンタルの単結晶を製造する方法が、日本化学会誌(第8巻、1535頁(1985年))に開示されている。この方法により製造される二ホウ化タンタルの単結晶は、1150〜1400℃で数μm程度、1400〜1500℃で10〜15μm程度の六方多面体状の粗大な単結晶粒子である。
【0007】
これらの方法は、金属融剤中に溶解した金属チタンや金属タンタルが徐々にホウ素と反応して遷移金属ホウ化物の単結晶粒子が生成するもので、得られる単結晶粒子同士の結合は極めて弱く、凝集は少ない。しかしながら、金属融剤中へのホウ素の溶解量は極めて低いことから、反応温度が1000℃未満の低温では、未反応のホウ素が残留し易く、反応には1000℃以上の高温が必要であった。
【0008】
また、金属融剤中に添加して使用される原料のひとつであるホウ素粉末は非常に高価であるため、工業的には効率的な方法とは言えなかった。
【0009】
そこで、チタンやホウ素化合物を溶解する融剤として溶融塩を使用して二ホウ化チタン粉末を製造する方法が開発された。
【0010】
この方法は、LiF−KFやKF−KCl等の溶融塩中にKTiFとKBFを添加、溶解して、電解を行うことによって二ホウ化チタン粉末を製造する方法であり、メタル(METALL)Vol.42、1196(1988)に開示されている。この方法では、800℃程度の温度で0.2〜7μmの粒度範囲を有する二ホウ化チタン粉末を得ることができるが、溶融塩中にチタンおよびホウ素化合物を添加、溶解しただけでは二ホウ化チタンは得られず、電解を行うことが必須条件であることから、工業的には効率的な方法とは言えない。
【0011】
このように従来の方法は、高価な原料を必要としたり、また1000℃以上の高温での反応を必要とする等の問題があった。
したがって、比較的安価なホウ素化合物を原料として使用することが可能で、かつ1000℃未満の低温で微細な遷移金属ホウ化物粉末を製造し得る方法の開発が望まれている。
【0012】
【発明が解決しようとする課題】
本発明の目的は、比較的に安価なホウ素化合物、例えばホウ素酸化物等を原料に用いて、1000℃未満の低温で、微細な遷移金属ホウ化物粉末、例えば二ホウ化チタン等を得る製造方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明者らは上記したような問題がない遷移金属ホウ化物粉末の製造方法について鋭意検討を重ねた結果、金属溶湯と、溶融塩とを用いて金属溶湯中に遷移金属ホウ化物の粒子を生成させた後、遷移金属ホウ化物を回収する方法によれば、比較的に安価なホウ素の酸化物等を原料として使用することが可能で、かつ1000℃未満の低温で遷移金属ホウ化物粉末を製造し得ることを見いだし、本発明を完成させるに至った。
【0014】
すなわち、本発明は下記の発明からなる。
(1)ホウ素化合物が添加された溶融塩と4族または5族から選ばれる1種の遷移金属元素を含む金属溶湯とを、該溶融塩中のホウ素元素と該金属溶湯中の遷移金属元素との原子比が0.5〜4.0になるような割合で、該金属溶湯の金属の融点以上1000℃未満で保温しながら接触させることにより、該金属溶湯中に遷移金属ホウ化物の粒子を生成させ、次いで、該金属溶湯から該粒子を採取することを特徴とする遷移金属ホウ化物粉末の製造方法。
【0015】
(2)遷移金属元素がチタンまたはタンタル、金属溶湯がアルミニウム溶湯、ホウ素化合物が酸化ホウ素、ホウ酸、ホウ砂、三塩化ホウ素から選ばれる1種以上の化合物、溶融塩がAlF、NaF、KF、MgF、CaF、BaFから選ばれる2種以上の混合フッ化物である前記項(1)記載の遷移金属ホウ化物粉末の製造方法。
【0016】
(3)遷移金属元素がチタンまたはタンタル、金属溶湯がアルミニウム溶湯、ホウ素化合物が酸化ホウ素、ホウ酸、ホウ砂、三塩化ホウ素から選ばれる1種以上の化合物、溶融塩がAlF、NaF、KF、MgF、CaF、BaFから選ばれる1種以上のフッ化物に、KCl、MgCl、CaCl、BaClから選ばれる1種以上の塩化物を添加したフッ化物と塩化物との混合物である前記項(1)記載の遷移金属ホウ化物粉末の製造方法。
【0017】
(4)金属溶湯がアルミニウム溶湯で、溶融塩と金属溶湯を接触させる温度が660℃以上1000℃未満である前記項(1)記載の遷移金属ホウ化物粉末の製造方法。
【0018】
(5)4族または5族から選ばれる1種の遷移金属元素の化合物およびホウ素化合物が、ホウ素元素と遷移金属元素の原子比が0.5〜4.0になるように添加された溶融塩と、金属溶湯とを、該金属溶湯の金属の融点以上1000℃未満で保温しながら接触させることにより、該金属溶湯中に遷移金属ホウ化物の粒子を生成させ、次いで、該金属溶湯から該粒子を採取することを特徴とする遷移金属ホウ化物粉末の製造方法。
【0019】
(6)金属溶湯がアルミニウム溶湯、遷移金属元素の化合物が酸化チタン、メタチタン酸、四塩化チタンから選ばれる1種以上の化合物、または五酸化タンタル、五塩化タンタルから選ばれる1種以上の化合物、ホウ素化合物が酸化ホウ素、ホウ酸、ホウ砂、三塩化ホウ素から選ばれる1種以上の化合物、溶融塩がAlF、NaF、KF、MgF、CaF、BaFから選ばれる2種以上の混合フッ化物である前記項(5)記載の遷移金属ホウ化物粉末の製造方法。
【0020】
(7)金属溶湯がアルミニウム溶湯、遷移金属元素の化合物が酸化チタン、メタチタン酸、四塩化チタンから選ばれる1種以上の化合物、または五酸化タンタル、五塩化タンタルから選ばれる1種以上の化合物、ホウ素化合物が酸化ホウ素、ホウ酸、ホウ砂、三塩化ホウ素から選ばれる1種以上の化合物、溶融塩がAlF、NaF、KF、MgF、CaF、BaFから選ばれる1種以上のフッ化物に、KCl、MgCl、CaCl、BaClから選ばれる1種以上の塩化物を添加したフッ化物と塩化物との混合物である前記項(5)記載の遷移金属ホウ化物粉末の製造方法。
【0021】
(8)金属溶湯がアルミニウム溶湯で、溶融塩と金属溶湯を接触させる温度が660℃以上1000℃未満である前記項(5)記載の遷移金属ホウ化物粉末の製造方法。
【0022】
以下、本発明を詳細に説明する。
本発明において、金属溶湯として使用される金属としては、例えば、アルミニウム、マグネシウム等が挙げられ、取扱いが容易であることからアルミニウム(融点660℃)が好ましい。
【0023】
金属溶湯には、遷移金属ホウ化物の構成成分とは異なる他の遷移金属元素が含まれていないことが好ましく、その純度は、特に限定されるものではないが、好ましくは純度99.9重量%以上、より好ましくは純度99.98重量%以上である。
【0024】
本発明において溶融塩として使用される無機塩類としては、ホウ素化合物や遷移金属元素の化合物を溶解せしめることが可能で、金属溶湯と実質的に反応せず、金属溶湯中に殆ど溶解しない化合物であればよく、例えば、AlF、NaF、KF、MgF、CaF、BaFから選ばれる2種以上のフッ化物の混合物、またはAlF、NaF、KF、MgF、CaF、BaFから選ばれる1種以上のフッ化物に、KCl、MgCl、CaCl、BaClから選ばれる1種以上の塩化物を添加したフッ化物と塩化物との混合物等が挙げられる。
【0025】
溶融塩として使用されるフッ化物や塩化物の原料の純度は、特に限定されるものではなく、若干の不純物を含有した市販品を使用しても遷移金属ホウ化物を得ることは可能である。
【0026】
溶融塩の組成比は、特に限定されるものではないが、遷移金属の化合物やホウ素化合物を溶解させる観点から、NaFとAlFの比が3対1のもの(NaAlF)が含まれていることが好ましい。
【0027】
溶融塩に添加されるホウ素化合物としては、例えば、酸化ホウ素(B)、ホウ酸(HBO)、ホウ砂(Na)、三塩化ホウ素(BCl)等の酸化物や塩化物から選ばれる1種以上の化合物である。
【0028】
これらのホウ素化合物は、1000℃未満の低温で溶融塩中に容易に溶解し、これが金属溶湯中に移動して金属溶湯中に含まれる遷移金属と反応することから、従来法と比べると1000℃未満という低温で遷移金属ホウ化物粒子を得ることが可能である。
【0029】
本発明においては、遷移金属元素を含む金属溶湯とホウ素化合物が添加された溶融塩とを該金属溶湯の金属の融点以上1000℃未満に保持しながら接触させるか、または、遷移金属元素の化合物とホウ素化合物が添加された溶融塩と金属溶湯とを該金属溶湯の金属の融点以上1000℃未満に保持しながら接触させることにより、該金属溶湯中に二ホウ化チタン、二ホウ化ジルコニウム、二ホウ化タンタルや二ホウ化ニオブ等の遷移金属ホウ化物粒子を生成せしめることができる。
【0030】
まず、遷移金属元素を含む金属溶湯とホウ素化合物が添加された溶融塩とを接触させて、金属溶湯中に遷移金属ホウ化物粒子を生成させる場合について説明する。
【0031】
金属溶湯に含まれる遷移金属元素は、4族または5族に属する1種の遷移金属元素であり、例えば、チタン、ジルコニウム、タンタル、ニオブ等を挙げることができる。
【0032】
次に、遷移金属元素の化合物とホウ素化合物が添加された溶融塩と金属溶湯とを接触させて、金属溶湯中に遷移金属ホウ化物粒子を生成させる場合について説明する。
【0033】
使用される遷移金属元素の化合物としては、例えば、酸化チタン(TiO)、メタチタン酸(HTiO)、酸化ジルコニウム(ZrO)、五酸化タンタル(Ta)、五酸化ニオブ(Nb)、四塩化チタン(TiCl)、四塩化ジルコニウム(ZrCl)、五塩化タンタル(TaCl)、五塩化ニオブ(NbCl)等の酸化物や塩化物等が挙げられる。
【0034】
ここで使用されるホウ素化合物や遷移金属元素の化合物としての酸化物や塩化物は、一般に市販の粉末状または塊状のどちらを使用してもよい。例えば、酸化チタンは、市販のルチルおよびアナターゼ型のいずれの結晶型も使用することが可能である。また、例えば、四塩化チタンや三塩化ホウ素等の塩化物は市販の高圧ガス等を使用することが可能である。
【0035】
これらの酸化物や塩化物の純度は、特に限定されるものではなく、これらに若干の不純物元素が含まれていても金属溶湯中での遷移金属ホウ化物の生成に大きな影響を与えない。
【0036】
4族または5族に属する1種の遷移金属元素を含む金属溶湯とホウ素化合物が添加された溶融塩とを反応容器中で接触させる方法としては、例えば、
(1)遷移金属元素を含む塊状の金属と、ホウ素化合物が添加された溶融塩を冷却後に固化させたものとを、反応容器に室温で充填し、昇温して両者を溶融状態にして接触させる、
【0037】
(2)遷移金属元素を含む金属溶湯に、ホウ素化合物が添加された溶融塩を冷却後に固化させたものまたはホウ素化合物が添加された溶融塩を、該金属溶湯に添加することにより両者を溶融状態にして接触させる、
【0038】
(3)ホウ素化合物が添加された溶融塩に、遷移金属元素を含む金属または金属溶湯を、該溶融塩に添加することにより両者を溶融状態にして接触させる、
【0039】
(4)遷移金属元素を含む塊状の金属と、溶融塩を冷却後に固化させたものとを、室温で反応容器に充填し、昇温して両者を溶融状態にして接触させた後、ホウ素化合物を溶融塩に添加する。例えば、溶融塩を金属溶湯の上に存在させた状態で溶融塩にホウ素化合物を添加する。
等の方法が採用できる。
【0040】
4族または5族に属する1種の遷移金属元素の化合物およびホウ素化合物の両者が添加された溶融塩と金属溶湯とを反応容器中で接触させる方法としては、例えば、
(1)塊状の金属と、遷移金属元素の化合物およびホウ素化合物の両者が添加された溶融塩を冷却後に固化させたものとを、室温で反応容器に充填し、昇温して両者を溶融状態にして接触させる、
【0041】
(2)塊状の金属と、溶融塩のみを冷却後に固化させたものとを、室温で反応容器に充填し、昇温して両者を溶融状態にして接触させた後、溶融塩に遷移金属元素の化合物およびホウ素化合物の両者を添加する、
等の方法が採用できる。
【0042】
溶融状態の遷移金属元素を含む金属溶湯と、ホウ素化合物が添加された溶融塩とを反応容器中で攪拌する、または金属溶湯と、遷移金属元素の化合物およびホウ素化合物の両者が添加された溶融塩とを反応容器中で攪拌することにより、液相同士を懸濁状態に維持することができ、反応界面の面積の増加と、遷移金属元素やホウ素元素の金属溶湯中への移動を促進させる結果となるので、金属ホウ化物粒子の効率的な生成には攪拌することが好ましい。
【0043】
遷移金属ホウ化物の粒子を金属溶湯中に生成させるときの反応温度は、該金属溶湯の金属の融点以上1000℃未満の温度範囲である。1000℃を超える場合は、溶融塩の揮発が多くなり、定期的な溶融塩の補給が必要となるため好ましくない。
【0044】
本発明において、金属溶湯中の遷移金属元素の含有量と溶融塩中のホウ素元素の含有量、或いは溶融塩中の遷移金属元素の含有量とホウ素元素の含有量は、系全体のホウ素元素/遷移金属元素の原子比で0.5〜4.0であることが必要であり、好ましくは1.0〜4.0、さらに好ましくは1.5〜3.0である。系全体のホウ素元素/遷移金属元素の原子比が4.0を越える場合は、過剰のホウ素がホウ化金属となって金属溶湯中に生成し、原子比が0.5より小さい場合には、過剰の遷移金属元素が金属と反応して金属間化合物として多量に生成するので、目的とする遷移金属ホウ化物を得るためには、その他の粒子を分離することが必要となる場合がある。
【0045】
また、溶融塩の比重を金属溶湯の比重より小さくすれば、反応の際の二液相が分離した状態で、金属溶湯の上に溶融塩が浮かんで接触した状態とすることができる。この場合、金属溶湯中に生成した遷移金属ホウ化物粒子は、比重が大きいため金属溶湯の底部に沈降する。
【0046】
金属溶湯の底部に沈降した遷移金属ホウ化物粒子は、1000℃未満では金属溶湯に殆ど溶解しないため、長時間保持しても溶解−析出による粒子の成長や粒子間の結合は殆ど起こらない。
【0047】
このようにして得られた遷移金属ホウ化物粒子の採取方法としては、金属溶湯の底部から遷移金属ホウ化物粒子を多く含んだ金属溶湯を分離、採取した後、重力沈降または遠心分離によって、金属溶湯中で濃縮し、この濃縮した部分から遷移金属ホウ化物粒子を採取する方法、金属溶湯の濃縮部を冷却、凝固させてから、例えば、酸やアルカリの水溶液によって処理して、金属のみを溶解して除去する方法等が挙げられる。
金属を溶解、除去した後の不溶残分は、濾取、水洗、乾燥等の工程を経て遷移金属ホウ化物粉末として採取される。
【0048】
ここで用いられる酸やアルカリの水溶液は、金属のみを溶解し、遷移金属ホウ化物粒子を溶解しないものであれば、特に限定されるものではなく、例えば、塩酸や水酸化ナトリウムの水溶液等を用いることができる。
【0049】
本発明の方法によれば、比較的安価なホウ素の酸化物等の原料を用いて、1000℃未満の低温で、粉砕工程も必要とせず、凝集粒子を殆ど含まない遷移金属ホウ化物粉末を容易に得ることが可能となる。
このようにして得られる遷移金属ホウ化物粉末は、緻密焼結体製造用セラミックス原料の他に、分散強化用添加剤や研磨剤等に使用することが可能であり、工業的意義は大きい。
【0050】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれら実施例により限定されるものではない。
【0051】
実施例において使用した溶融塩の組成は以下に示すとおりである。
1.溶融塩A(ホウ素化合物が添加されたもの)
NaAlF:40.0重量%、
AlF :44.0重量%、
CaF :15.0重量%、
: 1.0重量%、
【0052】
2.溶融塩B
NaAlF:60.0重量%、
AlF :30.0重量%、
CaF :10.0重量%、
【0053】
3.溶融塩C(ホウ素化合物およびチタン化合物が添加されたもの)
NaAlF:40.0重量%、
AlF :44.0重量%、
CaF :14.0重量%、
: 1.0重量%、
TiO : 1.0重量%、
【0054】
これらの溶融塩の調製方法は次の通りである。
試薬のNaAlF(米山薬品工業株式会社製)、AlF(和光純薬工業株式会社製)、CaF(関東化学株式会社製)を所定量に混合後、アルミナタンマン管中で、800℃で3時間溶融、あるいは、更にその温度で、必要に応じ、試薬のB(和光純薬工業株式会社製)、TiO(和光純薬工業株式会社製、アナタ−ゼ型)を添加して、さらに3時間溶融して得た。
【0055】
実施例1
0.5重量%のチタンを含むアルミニウム合金(50.60g)と、1.0重量%の酸化ホウ素を含んだ溶融塩Aを冷却して固化したもの(44.18g)をアルミナタンマン管に入れ、アルゴンガス流通下、900℃まで昇温し、この温度で5時間保持して反応させた。この場合、反応系全体のB/Tiの原子比は2.4であった。
反応の際、アルミニウム合金溶湯の上に溶融フッ化物が浮かんだ状態が観察された。
【0056】
冷却後、上部に浮かんだフッ化物の塊を機械的に除去し、下部のアルミニウム合金のみを取り出し、該合金を切断、断面を研磨後、走査型電子顕微鏡(日本電子株式会社製:JSM−T220型)で観察したところ、該合金の底部に2〜10μmの多面体粒子の生成が観察された。
次いで、該合金を6規定塩酸で処理し、アルミニウムのみを溶解、除去して粉末を得た。この粉末をX線回折装置(理学電機株式会社製:RAD−2C)を用いて測定した結果、粉末は二ホウ化チタンのみであった。
【0057】
実施例2
1.8重量%のタンタルを含むアルミニウム合金(53.26g)と、1.0重量%の酸化ホウ素を含んだ溶融塩Aを冷却して固化したもの(45.20g)をアルミナタンマン管に入れ、アルゴンガス流通下、900℃まで昇温し、この温度で5時間保持して反応させた。この場合、反応系全体のB/Taの原子比は2.4であった。
反応の際、アルミニウム合金溶湯の上に溶融フッ化物が浮かんだ状態が観察された。
【0058】
冷却後、上部に浮かんだフッ化物の塊を機械的に除去し、下部のアルミニウム合金のみを取り出し、該合金を切断、断面を研磨後、走査型電子顕微鏡(日本電子株式会社製:JSM−T220型)で観察したところ、該合金の底部に2〜10μmの多面体粒子の生成が観察された。この粒子をEPMA(日本電子株式会社製:JXA8600M)で元素分析した結果、二ホウ化タンタルであった。
以下、実施例1と同様に、6規定塩酸で処理して二ホウ化タンタル粉末を得ることができる。
【0059】
実施例3
1.0重量%の酸化ホウ素と1.0重量%の酸化チタンを含んだ溶融塩Cを冷却して固化したもの(67.48g)と純度99.99重量%の高純度アルミニウム(52.36g)とをアルミナタンマン管に入れ、アルゴンガス流通下、900℃まで昇温し、この温度で5時間保持して反応させた。
反応の際、アルミニウム合金溶湯の上に溶融フッ化物が浮かんだ状態が観察された。
【0060】
冷却後、上部に浮かんだフッ化物の塊を機械的に除去し、下部のアルミニウムのみを取り出し、該合金を切断、断面を研磨後、走査型電子顕微鏡(日本電子株式会社製:JSM−T220型)で観察したところ、該合金の底部に2〜10μmの多面体粒子の生成が観察された。この粒子をEPMA(日本電子株式会社製:JXW8600M)で元素分析した結果、二ホウ化チタンであった。
【0061】
比較例1
1.0重量%の金属チタンを含むアルミニウム合金(28.05g)をアルミナタンマン管に入れ、アルゴンガス流通下、800℃まで昇温し、この温度で1.06gの酸化ホウ素粉末のみを添加した後、900℃に昇温し、この温度で5時間保持して反応させた。この場合、反応系全体のB/Tiの原子比は5.2であった。
反応の際、アルミニウム合金溶湯の上に溶融した酸化ホウ素が浮かんだ状態が観察された。
【0062】
冷却後、下に沈降したアルミニウム合金のみを取り出し、該合金を切断、断面を研磨後、走査型電子顕微鏡(日本電子株式会社製:JSM−T220型)で観察したところ、該合金には二ホウ化チタンの粒子の生成は観察されなかった。
【0063】
比較例2
溶融塩Bを冷却して固化したもの(66.97g)をアルミナタンマン管に入れ、アルゴンガス流通下、800℃まで昇温し、この温度で酸化ホウ素(2.00g)を添加して、2.9重量%の酸化ホウ素を含む溶融フッ化物を調整した。更に、1.0重量%金属チタンを含むアルミニウム合金(44.34g)を添加して、900℃まで昇温し、この温度で5時間保持して反応させた。この場合、反応系全体のB/Tiの原子比は6.2であった。
反応の際、アルミニウム合金溶湯の上に溶融フッ化物が浮かんだ状態が観察された。
【0064】
冷却後、上部に浮かんだフッ化物の塊を機械的に除去し、下部のアルミニウム合金のみを取り出し、該合金を切断、断面を研磨後、走査型電子顕微鏡(日本電子株式会社製:JSM−T220型)で観察したところ、該合金の底部に1〜5μmと5〜10μmの多面体粒子の生成が確認された。この粒子をEPMA(日本電子株式会社製:JXW8600M)で元素分析した結果、それぞれ二ホウ化チタンとホウ化アルミニウムであった。
【0065】
比較例3
1.0重量%の酸化ホウ素と1.0重量%の酸化チタンを含んだ溶融塩Cを冷却して固化したもの(80.24g)のみを、アルミナタンマン管に入れ、アルゴンガス流通下、900℃まで昇温し、この温度で3時間保持した。
冷却後、酸化ホウ素と酸化チタンを含んだフッ化物を切断、断面を走査型電子顕微鏡(日本電子株式会社製:JSM−T220型)で観察したところ、該フッ化物中には二ホウ化チタンの粒子の生成は観察されなかった。
【0066】
【発明の効果】
本発明の方法によれば、安価な酸化物等を原料として使用して、1000℃以下の低温において、粉砕工程を経ることなく、凝集粒子を含まない微細な二ホウ化チタン等の遷移金属ホウ化物粉末を容易に得ることができる。
これら二ホウ化チタン等の遷移金属ホウ化物粉末は、緻密焼結体製造用セラミックス原料、分散強化用添加剤や研磨剤等に利用されることが期待でき、工業的価値の大きなものである。
[0001]
[Industrial applications]
The present invention relates to a method for producing a transition metal boride powder having excellent properties such as high hardness, high melting point, high corrosion resistance and good conductivity.
[0002]
[Prior art]
Transition metal borides such as titanium diboride and tantalum diboride are used as wear-resistant materials, corrosion-resistant materials, electrical contact materials, and the like. As an industrial production method of titanium diboride or tantalum diboride powder, a method of heating and reacting a mixed powder of titanium metal and boron, or a mixed powder of tantalum metal and boron, titanium oxide and boron oxide A method of reducing and reacting a mixture of carbon or a mixture of tantalum pentoxide, boron oxide and carbon at about 1000 ° C., a mixture of titanium metal, boron carbide and carbon, or a mixture of metal tantalum, boron carbide and carbon. A method of reacting a mixture at a high temperature of about 2000 ° C. is known.
[0003]
However, the transition metal boride powder such as titanium diboride produced by these methods contains coarse secondary aggregated particles generated by the primary particles being firmly fixed, so that the desired particle diameter, For example, a pulverizing step was required to obtain a powder having a particle diameter of 10 μm or less. However, since the transition metal boron compound has a very high hardness, pulverization was not easy.
[0004]
Therefore, in order to solve the above problems, the following solutions have been proposed for a method for producing a transition metal boride powder such as titanium diboride.
[0005]
One known method is to produce a single crystal of a transition metal boride such as titanium diboride in a metal flux. This method produces a single crystal of titanium diboride by reacting a dry mixture of titanium metal, crystalline boron powder and an aluminum chip as a metal flux at 1000 to 1600 ° C. under an argon gas atmosphere. , Kanagawa University Research Report (No. 23, March 1985). The titanium diboride single crystal obtained by this method is a thin plate having a thickness of about 5 μm at 1000 to 1300 ° C. and a large single crystal particle having a hexagonal polyhedron shape of about 15 to 20 μm at 1400 to 1500 ° C.
[0006]
Similarly, a method for producing a single crystal of tantalum diboride by reacting a dry mixture of tantalum metal, crystalline boron powder and an aluminum chip as a metal flux in an argon gas atmosphere at 1150 to 1500 ° C. The journal of the Chemical Society of Japan (Vol. 8, p. 1535 (1985)). The tantalum diboride single crystal produced by this method is a hexagonal polyhedral coarse single crystal particle of about several μm at 1150 to 1400 ° C. and about 10 to 15 μm at 1400 to 1500 ° C.
[0007]
In these methods, metal titanium or metal tantalum dissolved in a metal flux gradually reacts with boron to generate single crystal particles of a transition metal boride, and the bond between the obtained single crystal particles is extremely weak. , Little aggregation. However, since the amount of boron dissolved in the metal flux is extremely low, unreacted boron tends to remain at a low reaction temperature of less than 1000 ° C., and the reaction required a high temperature of 1000 ° C. or more. .
[0008]
Further, boron powder, which is one of the raw materials used by being added to the metal flux, is extremely expensive, and thus cannot be said to be an industrially efficient method.
[0009]
Therefore, a method for producing titanium diboride powder using a molten salt as a flux for dissolving titanium and boron compounds has been developed.
[0010]
In this method, K 2 TiF 6 and KBF 4 are added and dissolved in a molten salt such as LiF-KF or KF-KCl, and electrolysis is performed to produce titanium diboride powder. METALL) Vol. 42, 1196 (1988). According to this method, a titanium diboride powder having a particle size range of 0.2 to 7 μm can be obtained at a temperature of about 800 ° C., but only by adding and dissolving titanium and a boron compound in a molten salt, diboride can be obtained. Since titanium cannot be obtained and electrolysis is an essential condition, it cannot be said to be an industrially efficient method.
[0011]
As described above, the conventional method has problems that an expensive raw material is required and a reaction at a high temperature of 1000 ° C. or more is required.
Therefore, it is desired to develop a method that can use a relatively inexpensive boron compound as a raw material and that can produce a fine transition metal boride powder at a low temperature of less than 1000 ° C.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a fine transition metal boride powder, such as titanium diboride, using a relatively inexpensive boron compound, such as boron oxide, as a raw material at a low temperature of less than 1000 ° C. Is to provide.
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method for producing a transition metal boride powder having no problems as described above, and as a result, produced transition metal boride particles in a molten metal using a molten metal and a molten salt. After that, according to the method of recovering transition metal boride, a relatively inexpensive boron oxide or the like can be used as a raw material, and a transition metal boride powder is produced at a low temperature of less than 1000 ° C. The inventors have found that the present invention can be performed, and have completed the present invention.
[0014]
That is, the present invention includes the following inventions.
(1) A molten salt to which a boron compound is added and a molten metal containing one transition metal element selected from Group 4 or Group 5 are mixed with a boron element in the molten salt and a transition metal element in the molten metal. At a rate such that the atomic ratio of the metal becomes 0.5 to 4.0 while keeping the temperature of the metal of the molten metal equal to or higher than the melting point of the metal and less than 1000 ° C., so that particles of the transition metal boride can be introduced into the molten metal. Producing the transition metal boride powder, and then collecting the particles from the molten metal.
[0015]
(2) The transition metal element is titanium or tantalum, the metal melt is aluminum melt, the boron compound is one or more compounds selected from boron oxide, boric acid, borax, and boron trichloride, and the molten salt is AlF 3 , NaF, KF. (1) The method for producing a transition metal boride powder according to the above item (1), which is a mixed fluoride of two or more kinds selected from MgF 2 , CaF 2 , and BaF 2 .
[0016]
(3) The transition metal element is titanium or tantalum, the metal melt is aluminum melt, the boron compound is at least one compound selected from boron oxide, boric acid, borax and boron trichloride, and the molten salt is AlF 3 , NaF, KF A mixture of fluoride and chloride obtained by adding one or more chlorides selected from KCl, MgCl 2 , CaCl 2 , and BaCl 2 to one or more fluorides selected from MgF 2 , MgF 2 , CaF 2 and BaF 2 The method for producing a transition metal boride powder according to the above item (1), wherein
[0017]
(4) The method for producing a transition metal boride powder according to the above item (1), wherein the molten metal is aluminum and the temperature at which the molten salt is brought into contact with the molten metal is 660 ° C or more and less than 1000 ° C.
[0018]
(5) A molten salt in which a compound of one kind of transition metal element selected from Group 4 or Group 5 and a boron compound are added so that the atomic ratio of the boron element to the transition metal element becomes 0.5 to 4.0. And contacting the molten metal with the molten metal while keeping the temperature at a temperature equal to or higher than the melting point of the metal and less than 1000 ° C. to form transition metal boride particles in the molten metal. And producing a transition metal boride powder.
[0019]
(6) the molten metal is a molten aluminum, and the compound of the transition metal element is one or more compounds selected from titanium oxide, metatitanic acid, and titanium tetrachloride, or one or more compounds selected from tantalum pentoxide and tantalum pentachloride; A mixture of at least one compound selected from boron oxide, boric acid, borax, and boron trichloride, and a mixture of two or more compounds selected from a molten salt of AlF 3 , NaF, KF, MgF 2 , CaF 2 , and BaF 2. The method for producing a transition metal boride powder according to the above item (5), which is a fluoride.
[0020]
(7) the metal melt is an aluminum melt, and the compound of the transition metal element is at least one compound selected from titanium oxide, metatitanic acid, and titanium tetrachloride, or at least one compound selected from tantalum pentoxide and tantalum pentachloride; The boron compound is at least one compound selected from boron oxide, boric acid, borax and boron trichloride, and the molten salt is at least one compound selected from AlF 3 , NaF, KF, MgF 2 , CaF 2 , and BaF 2. (5) The method for producing a transition metal boride powder according to the above item (5), which is a mixture of a fluoride and a chloride obtained by adding at least one chloride selected from KCl, MgCl 2 , CaCl 2 , and BaCl 2 to a chloride. .
[0021]
(8) The method for producing a transition metal boride powder according to the above item (5), wherein the molten metal is a molten aluminum and a temperature at which the molten salt is brought into contact with the molten metal is 660 ° C or more and less than 1000 ° C.
[0022]
Hereinafter, the present invention will be described in detail.
In the present invention, examples of the metal used as the molten metal include aluminum and magnesium, and aluminum (melting point: 660 ° C.) is preferable because of easy handling.
[0023]
It is preferable that the molten metal does not contain another transition metal element different from the constituent components of the transition metal boride, and the purity is not particularly limited, but the purity is preferably 99.9% by weight. As described above, the purity is more preferably 99.98% by weight or more.
[0024]
Inorganic salts used as a molten salt in the present invention include compounds that can dissolve a boron compound or a compound of a transition metal element, do not substantially react with the molten metal, and hardly dissolve in the molten metal. selected Bayoku, for example, AlF 3, NaF, KF, MgF 2, CaF 2, a mixture of two or more of fluoride selected from the BaF 2, or AlF 3, NaF, KF, from MgF 2, CaF 2, BaF 2 A mixture of a fluoride and a chloride obtained by adding one or more chlorides selected from KCl, MgCl 2 , CaCl 2 , and BaCl 2 to the one or more fluorides to be obtained.
[0025]
The purity of the raw material of the fluoride or chloride used as the molten salt is not particularly limited, and it is possible to obtain a transition metal boride even by using a commercial product containing some impurities.
[0026]
The composition ratio of the molten salt is not particularly limited, but includes those having a NaF to AlF 3 ratio of 3 to 1 (Na 3 AlF 6 ) from the viewpoint of dissolving the transition metal compound and the boron compound. Is preferred.
[0027]
Examples of the boron compound added to the molten salt include boron oxide (B 2 O 3 ), boric acid (H 3 BO 3 ), borax (Na 2 B 4 O 7 ), and boron trichloride (BCl 3 ). At least one compound selected from oxides and chlorides of
[0028]
These boron compounds are easily dissolved in the molten salt at a low temperature of less than 1000 ° C., and migrate into the molten metal and react with the transition metal contained in the molten metal. It is possible to obtain transition metal boride particles at temperatures as low as less than.
[0029]
In the present invention, a molten metal containing a transition metal element and a molten salt to which a boron compound has been added are brought into contact with the molten metal while maintaining the melting point of the metal of the molten metal at not less than the melting point of the metal and less than 1000 ° C. By contacting the molten salt to which the boron compound has been added with the molten metal while maintaining the molten metal at a temperature equal to or higher than the melting point of the metal of the molten metal and less than 1000 ° C., titanium diboride, zirconium diboride, diboron Transition metal boride particles such as tantalum halide and niobium diboride can be produced.
[0030]
First, a case where a molten metal containing a transition metal element is brought into contact with a molten salt to which a boron compound is added to generate transition metal boride particles in the molten metal will be described.
[0031]
The transition metal element contained in the molten metal is one kind of transition metal element belonging to Group 4 or Group 5, and examples thereof include titanium, zirconium, tantalum, and niobium.
[0032]
Next, a case where a molten salt to which a compound of a transition metal element and a boron compound are added is brought into contact with a molten metal to generate transition metal boride particles in the molten metal will be described.
[0033]
As the compound of the transition metal element used, for example, titanium oxide (TiO 2 ), metatitanic acid (H 2 TiO 3 ), zirconium oxide (ZrO 2 ), tantalum pentoxide (Ta 2 O 5 ), niobium pentoxide ( Oxides and chlorides such as Nb 2 O 5 ), titanium tetrachloride (TiCl 4 ), zirconium tetrachloride (ZrCl 4 ), tantalum pentachloride (TaCl 5 ), and niobium pentachloride (NbCl 5 ).
[0034]
As the boron compound or oxide or chloride as a compound of the transition metal element used here, generally, either a commercially available powder or bulk may be used. For example, as the titanium oxide, any of commercially available rutile and anatase crystal forms can be used. For example, a commercially available high-pressure gas or the like can be used for chlorides such as titanium tetrachloride and boron trichloride.
[0035]
The purity of these oxides and chlorides is not particularly limited, and even if they contain some impurity elements, they do not significantly affect the generation of transition metal borides in the molten metal.
[0036]
As a method of contacting a molten metal containing one transition metal element belonging to Group 4 or 5 with a molten salt to which a boron compound is added in a reaction vessel, for example,
(1) A bulk metal containing a transition metal element and a solid obtained by cooling and solidifying a molten salt to which a boron compound has been added are filled into a reaction vessel at room temperature, and the temperature is raised to bring both into a molten state and contact them. Let
[0037]
(2) A molten metal containing a transition metal element, a molten salt obtained by adding a boron compound to a molten salt, which is solidified after cooling, or a molten salt added with a boron compound is added to the molten metal to form a molten state. Contact
[0038]
(3) a metal containing a transition metal element or a molten metal is added to the molten salt to which the boron compound has been added to bring the molten salt into contact with the molten salt,
[0039]
(4) A bulk metal containing a transition metal element and a solid obtained by cooling and solidifying a molten salt are charged into a reaction vessel at room temperature, and heated to bring them into a molten state and brought into contact with each other. Is added to the molten salt. For example, a boron compound is added to a molten salt in a state where the molten salt is present on the molten metal.
Etc. can be adopted.
[0040]
As a method of bringing a molten salt into which a compound of one type of transition metal element belonging to Group 4 or Group 5 and a boron compound are added and a molten metal into a reaction vessel in a reaction vessel, for example,
(1) A lump metal and a molten salt to which both a compound of a transition metal element and a boron compound are added and cooled and solidified are filled into a reaction vessel at room temperature, and the temperature is raised to bring the two into a molten state. Contact
[0041]
(2) A lump metal and a solid obtained by cooling and solidifying only a molten salt are filled in a reaction vessel at room temperature, and the molten metal is brought into a molten state and brought into contact with the molten salt. Adding both the compound and the boron compound of
Etc. can be adopted.
[0042]
A molten metal containing a transition metal element in a molten state and a molten salt to which a boron compound is added are stirred in a reaction vessel, or a molten metal and a molten salt to which both a compound of a transition metal element and a boron compound are added The liquid phase can be maintained in a suspended state by stirring the liquid phase in the reaction vessel, thereby increasing the area of the reaction interface and promoting the transfer of the transition metal element and the boron element into the molten metal. Therefore, stirring is preferable for efficient generation of metal boride particles.
[0043]
The reaction temperature when the transition metal boride particles are formed in the molten metal is in a temperature range from the melting point of the metal of the molten metal to less than 1000 ° C. When the temperature is higher than 1000 ° C., the volatilization of the molten salt increases, and it is necessary to periodically supply the molten salt, which is not preferable.
[0044]
In the present invention, the content of the transition metal element in the molten metal and the content of the boron element in the molten salt, or the content of the transition metal element and the content of the boron element in the molten salt are defined as the boron element / It is necessary that the transition metal element has an atomic ratio of 0.5 to 4.0, preferably 1.0 to 4.0, and more preferably 1.5 to 3.0. When the atomic ratio of boron element / transition metal element in the entire system exceeds 4.0, excess boron is formed as a metal boride in the molten metal, and when the atomic ratio is smaller than 0.5, Since excess transition metal element reacts with the metal to form a large amount as an intermetallic compound, it may be necessary to separate other particles in order to obtain a desired transition metal boride.
[0045]
If the specific gravity of the molten salt is made smaller than the specific gravity of the molten metal, the molten salt can be brought into contact with the molten metal floating above the molten metal while the two liquid phases are separated during the reaction. In this case, the transition metal boride particles generated in the molten metal settle at the bottom of the molten metal because of its large specific gravity.
[0046]
The transition metal boride particles settled at the bottom of the molten metal hardly dissolve in the molten metal at a temperature lower than 1000 ° C., so that even if the transition metal boride particles are held for a long time, growth of the particles due to dissolution-precipitation and bonding between the particles hardly occur.
[0047]
As a method for collecting the transition metal boride particles thus obtained, a metal melt containing a large amount of transition metal boride particles is separated and collected from the bottom of the metal melt, and then gravity sedimentation or centrifugation is performed. In the method of collecting transition metal boride particles from the concentrated portion, cooling and solidifying the concentrated portion of the molten metal, for example, by treating with an aqueous solution of an acid or alkali to dissolve only the metal And the like.
The insoluble residue after dissolving and removing the metal is collected as a transition metal boride powder through processes such as filtration, washing, and drying.
[0048]
The aqueous solution of an acid or alkali used here is not particularly limited as long as it dissolves only the metal and does not dissolve the transition metal boride particles.For example, an aqueous solution of hydrochloric acid or sodium hydroxide is used. be able to.
[0049]
According to the method of the present invention, using a relatively inexpensive raw material such as boron oxide, a transition metal boride powder containing almost no agglomerated particles can be easily produced at a low temperature of less than 1000 ° C. and without a pulverizing step. Can be obtained.
The transition metal boride powder thus obtained can be used as an additive for dispersion strengthening, an abrasive, etc. in addition to the ceramic raw material for producing a dense sintered body, and has great industrial significance.
[0050]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0051]
The composition of the molten salt used in the examples is as shown below.
1. Molten salt A (with boron compound added)
Na 3 AlF 6 : 40.0% by weight,
AlF 3 : 44.0% by weight,
CaF 2 : 15.0% by weight,
B 2 O 3 : 1.0% by weight,
[0052]
2. Molten salt B
Na 3 AlF 6 : 60.0% by weight,
AlF 3 : 30.0% by weight,
CaF 2 : 10.0% by weight,
[0053]
3. Molten salt C (to which boron compound and titanium compound are added)
Na 3 AlF 6 : 40.0% by weight,
AlF 3 : 44.0% by weight,
CaF 2 : 14.0% by weight,
B 2 O 3 : 1.0% by weight,
TiO 2 : 1.0% by weight,
[0054]
The method for preparing these molten salts is as follows.
After mixing reagents Na 3 AlF 6 (manufactured by Yoneyama Pharmaceutical Co., Ltd.), AlF 3 (manufactured by Wako Pure Chemical Industries, Ltd.), and CaF 2 (manufactured by Kanto Chemical Co., Ltd.) to a predetermined amount, the mixture was mixed in an alumina tanman tube at 800 C. for 3 hours, or at that temperature, if necessary, dissolve the reagents B 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd.) and TiO 2 (manufactured by Wako Pure Chemical Industries, anatase type) It was added and melted for another 3 hours.
[0055]
Example 1
An aluminum alloy containing 0.5% by weight of titanium (50.60 g) and a molten salt A containing 1.0% by weight of boron oxide cooled and solidified (44.18 g) were placed in an alumina tanman tube. The temperature was raised to 900 ° C. under a flow of argon gas, and the temperature was maintained for 5 hours to cause a reaction. In this case, the B / Ti atomic ratio of the whole reaction system was 2.4.
During the reaction, a state in which the molten fluoride floated on the aluminum alloy melt was observed.
[0056]
After cooling, the lump of fluoride floating on the upper portion was mechanically removed, only the lower aluminum alloy was taken out, the alloy was cut, the cross section was polished, and then, a scanning electron microscope (manufactured by JEOL Ltd .: JSM-T220) As a result, formation of polyhedral particles of 2 to 10 μm was observed at the bottom of the alloy.
Next, the alloy was treated with 6N hydrochloric acid, and only aluminum was dissolved and removed to obtain a powder. The powder was measured using an X-ray diffractometer (RAD-2C, manufactured by Rigaku Corporation). As a result, the powder was only titanium diboride.
[0057]
Example 2
An aluminum alloy (53.26 g) containing 1.8% by weight of tantalum and a molten salt A containing 1.0% by weight of boron oxide cooled and solidified (45.20 g) were put into an alumina tanman tube. The temperature was raised to 900 ° C. under a flow of argon gas, and the temperature was maintained for 5 hours to cause a reaction. In this case, the B / Ta atomic ratio of the whole reaction system was 2.4.
During the reaction, a state in which the molten fluoride floated on the aluminum alloy melt was observed.
[0058]
After cooling, the lump of fluoride floating on the upper portion was mechanically removed, only the lower aluminum alloy was taken out, the alloy was cut, the cross section was polished, and then, a scanning electron microscope (manufactured by JEOL Ltd .: JSM-T220) As a result, formation of polyhedral particles of 2 to 10 μm was observed at the bottom of the alloy. Elemental analysis of the particles by EPMA (JXA8600M, manufactured by JEOL Ltd.) revealed that the particles were tantalum diboride.
Thereafter, similarly to Example 1, the powder is treated with 6N hydrochloric acid to obtain a tantalum diboride powder.
[0059]
Example 3
A molten salt C containing 1.0% by weight of boron oxide and 1.0% by weight of titanium oxide was cooled and solidified (67.48 g) and 99.99% by weight of high-purity aluminum (52.36 g) ) Was placed in an alumina tanman tube, heated to 900 ° C. under argon gas flow, and kept at this temperature for 5 hours for reaction.
During the reaction, a state in which the molten fluoride floated on the aluminum alloy melt was observed.
[0060]
After cooling, the lump of fluoride floating on the upper part was mechanically removed, only the lower aluminum was taken out, the alloy was cut, the cross section was polished, and then a scanning electron microscope (manufactured by JEOL Ltd .: JSM-T220 type) As a result, formation of polyhedral particles of 2 to 10 μm was observed at the bottom of the alloy. Elemental analysis of the particles by EPMA (JXW8600M, manufactured by JEOL Ltd.) revealed that the particles were titanium diboride.
[0061]
Comparative Example 1
An aluminum alloy (28.05 g) containing 1.0% by weight of metallic titanium was put into an alumina tanman tube, heated to 800 ° C. under argon gas flow, and only 1.06 g of boron oxide powder was added at this temperature. Thereafter, the temperature was raised to 900 ° C., and the temperature was maintained for 5 hours to cause a reaction. In this case, the B / Ti atomic ratio of the whole reaction system was 5.2.
During the reaction, a state where the molten boron oxide floated on the aluminum alloy melt was observed.
[0062]
After cooling, only the aluminum alloy that settled down was taken out, the alloy was cut, the cross section was polished, and observed with a scanning electron microscope (JSM-T220, manufactured by JEOL Ltd.). No formation of titanium oxide particles was observed.
[0063]
Comparative Example 2
Cooled and solidified molten salt B (66.97 g) was placed in an alumina tanman tube, heated to 800 ° C. under argon gas flow, and boron oxide (2.00 g) was added at this temperature to obtain 2 A molten fluoride containing 9.9% by weight of boron oxide was prepared. Further, an aluminum alloy (44.34 g) containing 1.0% by weight of metal titanium was added, the temperature was raised to 900 ° C., and the temperature was maintained for 5 hours to cause a reaction. In this case, the B / Ti atomic ratio of the whole reaction system was 6.2.
During the reaction, a state in which the molten fluoride floated on the aluminum alloy melt was observed.
[0064]
After cooling, the lump of fluoride floating on the upper portion was mechanically removed, only the lower aluminum alloy was taken out, the alloy was cut, the cross section was polished, and then, a scanning electron microscope (manufactured by JEOL Ltd .: JSM-T220) (Type), it was confirmed that polyhedral particles of 1 to 5 μm and 5 to 10 μm were formed at the bottom of the alloy. The particles were subjected to elemental analysis by EPMA (JXW8600M, manufactured by JEOL Ltd.). As a result, they were titanium diboride and aluminum boride, respectively.
[0065]
Comparative Example 3
Only the molten salt C containing 1.0% by weight of boron oxide and 1.0% by weight of titanium oxide which had been cooled and solidified (80.24 g) was placed in an alumina tanman tube and subjected to 900 gm under argon gas flow. C. and kept at this temperature for 3 hours.
After cooling, the fluoride containing boron oxide and titanium oxide was cut, and the cross section was observed with a scanning electron microscope (manufactured by JEOL Ltd .: JSM-T220 type). The fluoride contained titanium diboride. No particle formation was observed.
[0066]
【The invention's effect】
According to the method of the present invention, an inexpensive oxide or the like is used as a raw material at a low temperature of 1000 ° C. or lower without a pulverizing step, and a fine transition metal borate such as fine titanium diboride containing no aggregated particles. Compound powder can be easily obtained.
These transition metal boride powders such as titanium diboride can be expected to be used as a ceramic raw material for producing a dense sintered body, an additive for dispersion strengthening, an abrasive, and the like, and have great industrial value.

Claims (8)

ホウ素化合物が添加された溶融塩と4族または5族から選ばれる1種の遷移金属元素を含む金属溶湯とを、該溶融塩中のホウ素元素と該金属溶湯中の遷移金属元素との原子比が0.5〜4.0になるような割合で、該金属溶湯の金属の融点以上1000℃未満で保温しながら接触させることにより、該金属溶湯中に遷移金属ホウ化物の粒子を生成させ、次いで、該金属溶湯から該粒子を採取することを特徴とする遷移金属ホウ化物粉末の製造方法。The atomic ratio between the boron element in the molten salt and the transition metal element in the molten metal is determined by mixing the molten salt to which the boron compound is added and the molten metal containing one transition metal element selected from Group 4 or 5 At a rate of 0.5 to 4.0 while maintaining the temperature of the metal in the molten metal at a temperature equal to or higher than the melting point of the metal and less than 1000 ° C., thereby forming transition metal boride particles in the molten metal, Next, a method for producing a transition metal boride powder, comprising collecting the particles from the molten metal. 遷移金属元素がチタンまたはタンタル、金属溶湯がアルミニウム溶湯、ホウ素化合物が酸化ホウ素、ホウ酸、ホウ砂、三塩化ホウ素から選ばれる1種以上の化合物、溶融塩がAlF、NaF、KF、MgF、CaF、BaFから選ばれる2種以上の混合フッ化物である請求項1記載の遷移金属ホウ化物粉末の製造方法。The transition metal element is titanium or tantalum, the metal melt is aluminum melt, the boron compound is at least one compound selected from boron oxide, boric acid, borax, and boron trichloride, and the molten salt is AlF 3 , NaF, KF, MgF 2. The method for producing a transition metal boride powder according to claim 1, wherein the mixed fluoride is two or more kinds of fluorides selected from CaF 2 , CaF 2 and BaF 2 . 遷移金属元素がチタンまたはタンタル、金属溶湯がアルミニウム溶湯、ホウ素化合物が酸化ホウ素、ホウ酸、ホウ砂、三塩化ホウ素から選ばれる1種以上の化合物、溶融塩がAlF、NaF、KF、MgF、CaF、BaFから選ばれる1種以上のフッ化物に、KCl、MgCl、CaCl、BaClから選ばれる1種以上の塩化物を添加したフッ化物と塩化物との混合物である請求項1記載の遷移金属ホウ化物粉末の製造方法。The transition metal element is titanium or tantalum, the metal melt is aluminum melt, the boron compound is at least one compound selected from boron oxide, boric acid, borax, and boron trichloride, and the molten salt is AlF 3 , NaF, KF, MgF 2. A mixture of fluoride and chloride obtained by adding one or more chlorides selected from KCl, MgCl 2 , CaCl 2 and BaCl 2 to one or more fluorides selected from CaF 2 , CaF 2 and BaF 2. Item 4. A method for producing a transition metal boride powder according to Item 1. 金属溶湯がアルミニウム溶湯で、溶融塩と金属溶湯を接触させる温度が660℃以上1000℃未満である請求項1記載の遷移金属ホウ化物粉末の製造方法。The method for producing a transition metal boride powder according to claim 1, wherein the molten metal is an aluminum melt, and the temperature at which the molten salt is brought into contact with the molten metal is 660 ° C or more and less than 1000 ° C. 4族または5族から選ばれる1種の遷移金属元素の化合物およびホウ素化合物が、ホウ素元素と遷移金属元素の原子比が0.5〜4.0になるように添加された溶融塩と、金属溶湯とを、該金属溶湯の金属の融点以上1000℃未満で保温しながら接触させることにより、該金属溶湯中に遷移金属ホウ化物の粒子を生成させ、次いで、該金属溶湯から該粒子を採取することを特徴とする遷移金属ホウ化物粉末の製造方法。A molten salt in which a compound of a transition metal element selected from Group 4 or Group 5 and a boron compound are added so that the atomic ratio of the boron element to the transition metal element is 0.5 to 4.0; By bringing the molten metal into contact with the molten metal while keeping it at a temperature equal to or higher than the melting point of the metal and less than 1000 ° C., particles of transition metal boride are generated in the molten metal, and then the particles are collected from the molten metal. A method for producing a transition metal boride powder, comprising: 金属溶湯がアルミニウム溶湯、遷移金属元素の化合物が酸化チタン、メタチタン酸、四塩化チタンから選ばれる1種以上の化合物、または五酸化タンタル、五塩化タンタルから選ばれる1種以上の化合物、ホウ素化合物が酸化ホウ素、ホウ酸、ホウ砂、三塩化ホウ素から選ばれる1種以上の化合物、溶融塩がAlF、NaF、KF、MgF、CaF、BaFから選ばれる2種以上の混合フッ化物である請求項5記載の遷移金属ホウ化物粉末の製造方法。The molten metal is a molten aluminum, and the compound of the transition metal element is titanium oxide, metatitanic acid, one or more compounds selected from titanium tetrachloride, or tantalum pentoxide, one or more compounds selected from tantalum pentachloride, and a boron compound. One or more compounds selected from boron oxide, boric acid, borax and boron trichloride, and the molten salt is a mixed fluoride of two or more selected from AlF 3 , NaF, KF, MgF 2 , CaF 2 , and BaF 2 A method for producing a transition metal boride powder according to claim 5. 金属溶湯がアルミニウム溶湯、遷移金属元素の化合物が酸化チタン、メタチタン酸、四塩化チタンから選ばれる1種以上の化合物、または五酸化タンタル、五塩化タンタルから選ばれる1種以上の化合物、ホウ素化合物が酸化ホウ素、ホウ酸、ホウ砂、三塩化ホウ素から選ばれる1種以上の化合物、溶融塩がAlF、NaF、KF、MgF、CaF、BaFから選ばれる1種以上のフッ化物に、KCl、MgCl、CaCl、BaClから選ばれる1種以上の塩化物を添加したフッ化物と塩化物との混合物である請求項5記載の遷移金属ホウ化物粉末の製造方法。The molten metal is a molten aluminum, and the compound of the transition metal element is titanium oxide, metatitanic acid, one or more compounds selected from titanium tetrachloride, or tantalum pentoxide, one or more compounds selected from tantalum pentachloride, and a boron compound. One or more compounds selected from boron oxide, boric acid, borax, and boron trichloride, and the molten salt is converted into one or more fluorides selected from AlF 3 , NaF, KF, MgF 2 , CaF 2 , and BaF 2 , KCl, MgCl 2, CaCl 2, BaCl 1 or more and fluoride added the chloride method of manufacturing a transition metal boride powder according to claim 5, wherein a mixture of chloride selected from 2. 金属溶湯がアルミニウム溶湯で、溶融塩と金属溶湯を接触させる温度が660℃以上1000℃未満である請求項5記載の遷移金属ホウ化物粉末の製造方法。The method for producing a transition metal boride powder according to claim 5, wherein the molten metal is an aluminum melt, and a temperature at which the molten salt is brought into contact with the molten metal is 660 ° C or more and less than 1000 ° C.
JP11673095A 1994-05-18 1995-05-16 Method for producing transition metal boride powder Expired - Fee Related JP3598580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11673095A JP3598580B2 (en) 1994-05-18 1995-05-16 Method for producing transition metal boride powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-103734 1994-05-18
JP10373494 1994-05-18
JP11673095A JP3598580B2 (en) 1994-05-18 1995-05-16 Method for producing transition metal boride powder

Publications (2)

Publication Number Publication Date
JPH0834609A JPH0834609A (en) 1996-02-06
JP3598580B2 true JP3598580B2 (en) 2004-12-08

Family

ID=26444328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11673095A Expired - Fee Related JP3598580B2 (en) 1994-05-18 1995-05-16 Method for producing transition metal boride powder

Country Status (1)

Country Link
JP (1) JP3598580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780540B2 (en) * 2010-12-24 2015-09-16 国立研究開発法人物質・材料研究機構 Zirconium diboride powder and synthesis method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551797A (en) * 1978-10-05 1980-04-15 Agency Of Ind Science & Technol Production of vanadium diboride and tantalum diboride single crystal from aluminum bath
JPS60235717A (en) * 1984-05-07 1985-11-22 Shibason:Kk Production of ultrafine powder of titanium diboride
JPH04243913A (en) * 1991-01-25 1992-09-01 Sumitomo Metal Mining Co Ltd Production of fine boride powder
JPH0585720A (en) * 1991-09-30 1993-04-06 Sumitomo Chem Co Ltd Production of titanium diborate fine powder

Also Published As

Publication number Publication date
JPH0834609A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
JP5011468B2 (en) Method for producing metal or metal alloy, electrolytic cell, and molten salt electrolyte
US6699305B2 (en) Production of metals and their alloys
EP1957683B1 (en) Thermal and electrochemical process for metal production
US4390365A (en) Process for making titanium metal from titanium ore
US5397375A (en) Process for the production of metallic titanium and intermediates useful in the processing of ilmenite and related minerals
US4468248A (en) Process for making titanium metal from titanium ore
Takeda et al. Rare earth, titanium group metals, and reactive metals production
CN1479810B (en) Method for producing intermetallic compounds
US11247270B2 (en) Method for preparing vanadium and vanadium alloy powder from vanadium-containing materials through shortened process
JP2011153380A (en) Method for producing titanium
Yuan et al. A critical review on extraction and refining of vanadium metal
US4359449A (en) Process for making titanium oxide from titanium ore
JP4436904B2 (en) Si manufacturing method
CN109055997B (en) Preparation of superfine Al by fused salt electrolysis method3Method for producing Zr intermetallic compound particles
US5587140A (en) Process for producing powders of transition metal boride
CN109797318B (en) Preparation of Al3Method for Ti reinforcing aluminum-based material
JP3598580B2 (en) Method for producing transition metal boride powder
US3775271A (en) Electrolytic preparation of titanium and zirconium diborides using a molten, sodium salt electrolyte
EP0151111A1 (en) Process for making titanium metal from titanium ore
US5087592A (en) Method of producing platelets of borides of refractory metals
Withers et al. The electrolytic production of Ti from a TiO2 feed (the DARPA sponsored program)
US3769185A (en) Electrolytic preparation of zirconium and hafnium diborides using a molten, cryolite-base electrolyte
JP3214836B2 (en) Manufacturing method of high purity silicon and high purity titanium
JPH06279021A (en) Production of titanium diboride fine powder
KR101023225B1 (en) Method of preparing for metal powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees