JPH049731B2 - - Google Patents

Info

Publication number
JPH049731B2
JPH049731B2 JP59039057A JP3905784A JPH049731B2 JP H049731 B2 JPH049731 B2 JP H049731B2 JP 59039057 A JP59039057 A JP 59039057A JP 3905784 A JP3905784 A JP 3905784A JP H049731 B2 JPH049731 B2 JP H049731B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
source
titanium
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59039057A
Other languages
Japanese (ja)
Other versions
JPS60183035A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59039057A priority Critical patent/JPS60183035A/en
Publication of JPS60183035A publication Critical patent/JPS60183035A/en
Publication of JPH049731B2 publication Critical patent/JPH049731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な鉄−チタン−マンガン/又はバ
ナジウム含有アモルフアスシリケート及びそれを
活性成分として含む一酸化炭素と水素との混合ガ
スから炭化水素を合成するための触媒に関するも
のである。 従来、触媒の存在下に一酸化炭素と水素とを反
応させることにより炭化水素を製造する方法はフ
イツシヤー・トロプシユ合成として知られてお
り、次式に示すように、COとH2からC−C結合
を形成して行く触媒反応である。 CO+2H2→1/n(−CH2)−o+H2O このフイツシヤー・トロプシユ合成において
は、COが水素化を受けながら重縮合して行くわ
りであるから、触媒の種類や反応条件により、前
記式のnの値、即ち、生成物のC−C重合度が、
さまざまに変るし、生成物の種類もオレフインや
パラフインの他、水素化脱水の不完全な生成物で
あるアルデヒドやケトン等がある。 フイツシヤー・トロプシユ合成においては、一
般に鉄系触媒が採用され、微量のアルカリ金属塩
を添加したものは、C−C重合度の著しく増大し
た生成物を与えるが、生成物の炭素数分布の制御
が著しく困難であるという欠点を有し、この欠点
の改良がフイツシヤー・トロプシユ合成における
最大の技術課題となつている。 一方、触媒に用いる種々の固体無機化合物のう
ち、多孔体物質では、その細孔内壁の面積が外表
面の数十倍から数百倍あるため、触媒の活性点の
ほとんどは細孔内部にあると考えられる。そこ
で、触媒の細孔の大きさが適当であれば、大きす
ぎて細孔内に入れない分子と入れる分子の両方が
存在し、入れない分子は入れる分子に比べて反応
する機会は非常に少なくなる。生成物に関しても
狭い細孔内ではその細孔以上の大きさの分子は生
成されない。このように細孔の構造と分子の形状
という関係が触媒の選択性を決めており、ゼオラ
イトもこうした触媒の一つである。ゼオライト
は、一般に結晶性アルミノケイ酸塩であり、
(SiO2)と(AlO2-とが3次元的に組み合わされ
た多孔性結晶であり、細孔の入口は結晶物質であ
るため、どれも等しい大きさになつており分子形
状選択性触媒として好適である。 このような観点から、フイツシヤー・トロプシ
ユ合成触媒とゼオライトとを組み合わせることが
いくつかなされている。〔P.D.Caesar,J.A.
Brennan,W.E.Garwood,J.Citto,J.Catal.,
56,274(1979);V.U.S.Rao,R,J,Gormley,
Hydrocarbon Proceeding,Nov.139(1980)、E.
P.20140,20141;U.S.P.4298695,4269784〕 しかしながら、従来提案されたフイツシヤー・
トロプシユ合成触媒とゼオライトの組み合せは、
両者を単に混合したり、ゼオライトにフイツシヤ
ー・トロプシユ合成触媒活性成分を単に含浸担持
させた程度であり、生成物の炭素数分布制御の点
では未だ満足すべき結果を与えていない。また、
最近においては、Fe、Ni、Ti、Ru、Rhなどの
結晶性金属シリケートが合成され、フイツシヤ
ー・トロプシユ反応用触媒としての使用が試みら
れているが、(U.S.P.3941871;E.P.0050525 AI;
特開昭56−96720;特開昭57−183316;特開昭57
−183317;特開昭57−183320;特開昭58−
74521)、この場合、生成物の炭素数分布制御に対
し幾分の改良が見られるものの、まだ十分とはい
えない。 また、生成物に占めるオレフインの割合も少な
く、低級オレフイン合成触媒としては不十分であ
る。 本発明者らも先にフイツシヤー・トロプシユ合
成触媒とゼオライトとを組み合せ生成物の炭素数
分布を制御できる特徴ある触媒をいくつか見出し
た。(特願昭58−23、特願昭58−172737)しかし、
生成物の炭素数分布制御を可能し、活性の高くお
よび生成物中に占めるオレフインの割合の大きい
触媒の開発という本発明者らの目的には、まだ十
分とはいえない。 本発明者らはその後の検討の結果、結晶性シリ
ケートの代りに、鉄源、チタン源およびマンガン
又はバナジウム源の混合物を用いて水熱合成され
た鉄−チタン−マンガン又はバナジウム含有アモ
ルフアスシリケートを触媒として用いることによ
り、その活性をさらに向上させることができ、本
発明を完成するに到つた。 本発明の鉄−チタン−マンガン又はバナジウム
含有アモルフアスシリケート(以下単にアモルフ
アスシリケートという。)は、従来公知の水熱合
成法に従つて結晶性シリケートを合成するさい
に、反応助剤として用いられる各種テトラアルキ
ルアンモニウム化合物等の有機化合物を用いて形
成されたものである。 一般にシリカは各種担持触媒の担体として広く
用いられているが、触媒調製時に水ガラスなどの
ように液状のものとして用いることは極くまれで
ある。〔サゾールの固体床の触媒には、シリカ源
としてケイ酸カリが用いられている。(C.D.
Frohning,:Fischer−Tropsch−Synthese,
Chemierohstoff aus Kohle(Farbe J.,ed)
Stuttgart:Thieme1977)〕。また、各種テトラア
ルキルアンモニウム化合物等の有機化合物と併用
することもゼオライト合成を除けばその例は知ら
れていない。なお、本発明と同様に有機化合物を
用いて合成したアモルフアスシリカ・アルミナを
メタノール転化反応やパラフインのクラツキング
反応の触媒として用いている例はあるが(M.R.
S.Manton,J.C.Davidtz,J.Catal.,60,156
(1979);R.L.Espinoza,C.M.Stander,W.G.B.
Mandersloot,Appl.Catal,6,11(1983))。本
発明のアモルフアスシリケートを一酸化炭素と水
素との混合ガスから炭化水素合成の触媒に用いた
例はない。 本発明のアモルフアスシリケートは、シリカ
源、鉄源、チタン源、マンガン及び/又はバナジ
ウム金属源およびアルカリ金属イオン源からなる
水性混合物を水熱合成反応させることによつて製
造される。この場合、反応助剤として、例えば、
各種のテトラアルキルアンモニウム化合物等の慣
用の有機化合物を用いることができる。シリカ源
としては、水ガラス、シリカゲル、シリカゾル又
はシリカが使用される。鉄源としては、硫酸第1
鉄、塩化第1鉄、硫酸第2鉄、塩化第2鉄等が用
いられる。チタン源としては、オキシ硫酸チタ
ン、硫酸チタン、四塩化チタンなどが用いられ
る。アルカリ金属イオン源としては、水ガラス中
の酸化ナトリウム、アルミン酸ソーダ、水酸化ナ
トリウム、水酸化カリウム等が用いられる。マン
ガン源としては、塩化マンガン等が用いられ、バ
ナジウム源としては、バナジン酸アンモニウム等
が用いられる。反応助剤としては従来公知の各種
有機化合物、例えば、テトラホスホニウム化合
物、テトラアルキル化合物、エチレンジアミン、
コリン等も使用可能であるが、好ましくはテトラ
アルキルアンモニウム化合物が好ましく、中でも
臭化テトラアルキルアンモニウムが特に好まし
い。 本発明のアモルフアスシリケートを製造する場
合、その原料反応混合物としては、一般に次の組
成を有するのが好ましい。 Si/Fe(モル比) :2以上 Ti/Fe(モル比) :0.01〜3 M/Fe( 〃 ) :0.01〜3 H2O/SiO2( 〃 ) :30〜70 R4N+/SiO2( 〃 ) :0.08〜0.16 OH-/SiO2( 〃 ) :0.07〜0.3 ここでOH-は混合物中の水酸イオン量を示し、
この値の調整にはアルカリ金属水酸化塩、アルカ
リ金属酸化物等を用いる。R4N+はテトラアルキ
ルアンモニウムイオン量を示す。また、MはV又
はMnを示す。 このような成分組成の水性ゲル混合物を反応温
度0〜100℃で0.1〜200時間加熱撹拌することに
よつて水熱合成を行い、アモルフアスシリケート
を得ることができる。 反応生成物はロ過や遠心分離により処理し、固
形物を水溶液から分離する。得られた固形物はさ
らに水洗処理を施すことによつて、余剰のイオン
性物質を除去し、次いで乾燥することにより、反
応助剤として用いた有機化合物を含むアモルフア
スシリケートを得ることができる。このものを空
気中で300〜900℃、好ましくは400〜700℃の温度
で1〜100時間焼成することによつて、有機化合
物を含まないアモルフアスシリケートを得ること
ができる。 本発明のアモルフアスシリケートは、一酸化炭
素と水素との混合ガスを原料とする炭化水素の合
成用触媒、即ち、フイツシヤー・トロプシユ合成
用触媒として利用される。この場合のフイツシヤ
ー・トロプシユ合成反応条件としては、従来公知
の条件が採用され、例えば、反応温度としては
200〜500℃、好ましくは300〜450℃が採用され、
また反応圧力としては1〜100気圧、好ましくは
10〜50気圧が採用される。原料混合ガス中の
H2/COモル比は0.2〜3、好ましくは0.5〜1で
ある。 本発明のアモルフアスシリケートは、フイツシ
ヤー・トロプシユ合成反応用触媒として有利に利
用される他、ゼオライトを触媒とする他の種々の
反応、例えば、メタノールやジメチルエーテルか
ら炭化水素を合成する場合の反応の他、炭化水素
の分解反応、オレフインの重合反応、有機化合物
の水素化反応、芳香族のアルキル化反応等におけ
る触媒としても利用可能である。 次に、本発明を実施例によりさらに詳細に説明
する。 実施例 1〜4 コロイダルシリカ(触媒化成社製、Cataloid
SI−30)、硫酸第1鉄・7水塩、オキシ硫酸チタ
ン・2水塩、マンガン又はバナジウム化合物、水
酸化カリウム(純度85%)、臭化テトラn−プロ
ピルアンモニウム及び水を下記第1表に示した組
成で含有する均一な水性ゲル状混合物を密閉容器
に入れ、種々の反応温度で40楠間撹拌した。 反応混合物を遠心分離処理して固形物を分離
し、この固形物をイオン性物質がなくなるまで水
洗し、100℃で乾燥した後、500℃で15時間焼成
し、アモルフアスシリケートを得た。これらのも
ののX線回折測定よりいずれも、アモルフアスで
あることが確認された。
The present invention relates to a novel iron-titanium-manganese/or vanadium-containing amorphous silicate and a catalyst for synthesizing hydrocarbons from a mixed gas of carbon monoxide and hydrogen containing the same as an active ingredient. Conventionally, the method of producing hydrocarbons by reacting carbon monoxide and hydrogen in the presence of a catalyst is known as Fischer-Tropsch synthesis, and as shown in the following formula, C-C is produced from CO and H2 . It is a catalytic reaction that forms bonds. CO+2H 2 →1/n(-CH 2 )- o +H 2 O In this Fischer-Tropsch synthesis, CO undergoes polycondensation while undergoing hydrogenation, so depending on the type of catalyst and reaction conditions, the above The value of n in the formula, that is, the C-C polymerization degree of the product,
There are many different types of products, including olefins and paraffins, as well as aldehydes and ketones, which are incomplete products of hydrodehydration. In the Fischer-Tropsch synthesis, an iron-based catalyst is generally employed, and the addition of a trace amount of an alkali metal salt gives a product with a significantly increased degree of C-C polymerization, but it is difficult to control the carbon number distribution of the product. It has the drawback of being extremely difficult, and improving this drawback is the biggest technical challenge in Fischer-Tropsch synthesis. On the other hand, among the various solid inorganic compounds used in catalysts, in porous materials, the area of the inner walls of the pores is several tens to hundreds of times larger than the outer surface, so most of the active sites of the catalyst are located inside the pores. it is conceivable that. Therefore, if the pore size of the catalyst is appropriate, there will be both molecules that are too large to fit into the pores and molecules that can fit into the pores, and molecules that cannot enter will have a much smaller chance of reacting than molecules that can. Become. As for the product, molecules larger than the pore are not produced within the narrow pore. In this way, the relationship between pore structure and molecular shape determines the selectivity of a catalyst, and zeolite is one such catalyst. Zeolites are generally crystalline aluminosilicates,
It is a porous crystal in which (SiO 2 ) and (AlO 2 ) - are combined three-dimensionally, and since the entrance of the pores is a crystalline material, they are all the same size, making it a molecular shape selective catalyst. It is suitable as From this point of view, several attempts have been made to combine Fischer-Tropsch synthesis catalysts and zeolites. [PDCaesar, JA
Brennan, WE Garwood, J. Citto, J. Catal.
56, 274 (1979); VUS Rao, R. J., Gormley,
Hydrocarbon Proceeding, Nov. 139 (1980), E.
P.20140, 20141; USP4298695, 4269784] However, the previously proposed
The combination of Tropschule synthesis catalyst and zeolite is
These methods have been limited to simply mixing the two or simply impregnating and supporting zeolite with active components of the Fischer-Tropsch synthesis catalyst, and have not yet provided satisfactory results in terms of controlling the carbon number distribution of the product. Also,
Recently, crystalline metal silicates such as Fe, Ni, Ti, Ru, and Rh have been synthesized and attempts have been made to use them as catalysts for Fischer-Tropsch reaction (USP3941871; EP0050525 AI;
JP-A-56-96720; JP-A-57-183316; JP-A-57
−183317; Japanese Patent Publication No. 1833-183320; Japanese Patent Publication No. 1983-
74521), although in this case some improvement is seen in controlling the carbon number distribution of the product, it is still not sufficient. Furthermore, the proportion of olefin in the product is small, making it insufficient as a catalyst for synthesis of lower olefins. The present inventors have also previously discovered several characteristic catalysts that can control the carbon number distribution of the product by combining a Fischier-Tropsch synthesis catalyst and zeolite. (Patent application 1982-23, Patent application 1982-172737) However,
The present invention is still not sufficient for the purpose of the present inventors, which is to develop a catalyst that allows control of the carbon number distribution of the product, has high activity, and has a large proportion of olefin in the product. As a result of subsequent studies, the present inventors found that instead of crystalline silicate, iron-titanium-manganese or vanadium-containing amorphous assilicate, which was hydrothermally synthesized using a mixture of an iron source, a titanium source, and a manganese or vanadium source, was used. By using it as a catalyst, its activity can be further improved, leading to the completion of the present invention. The iron-titanium-manganese or vanadium-containing amorphous assilicate (hereinafter simply referred to as amorphous assilicate) of the present invention is used as a reaction aid when synthesizing crystalline silicate according to a conventionally known hydrothermal synthesis method. It is formed using organic compounds such as various tetraalkylammonium compounds. Generally, silica is widely used as a carrier for various supported catalysts, but it is extremely rare to use it in a liquid form such as water glass when preparing a catalyst. [Potassium silicate is used as a silica source in Sasol's solid bed catalyst. (CD
Frohning, : Fischer-Tropsch-Synthese,
Chemierohstoff aus Kohle (Farbe J., ed.)
Stuttgart: Thieme1977)]. Furthermore, there are no known examples of its combined use with organic compounds such as various tetraalkylammonium compounds, except for zeolite synthesis. Note that there are examples of using amorphous silica/alumina synthesized using organic compounds as in the present invention as catalysts for methanol conversion reactions and paraffin cracking reactions (MR
S. Manton, JC Davidtz, J. Catal., 60, 156
(1979); RLEspinoza, CMStander, WGB
Mandersloot, Appl. Catal, 6, 11 (1983)). There is no example of using the amorphous silicate of the present invention as a catalyst for hydrocarbon synthesis from a mixed gas of carbon monoxide and hydrogen. The amorphous silicate of the present invention is produced by subjecting an aqueous mixture consisting of a silica source, an iron source, a titanium source, a manganese and/or vanadium metal source, and an alkali metal ion source to a hydrothermal synthesis reaction. In this case, as a reaction aid, for example,
Conventional organic compounds such as various tetraalkylammonium compounds can be used. As silica source water glass, silica gel, silica sol or silica is used. As a source of iron, sulfuric acid No. 1
Iron, ferrous chloride, ferric sulfate, ferric chloride, etc. are used. As the titanium source, titanium oxysulfate, titanium sulfate, titanium tetrachloride, etc. are used. As the alkali metal ion source, sodium oxide, sodium aluminate, sodium hydroxide, potassium hydroxide, etc. in water glass are used. Manganese chloride or the like is used as the manganese source, and ammonium vanadate or the like is used as the vanadium source. As reaction aids, various conventionally known organic compounds such as tetraphosphonium compounds, tetraalkyl compounds, ethylenediamine,
Although choline and the like can be used, tetraalkylammonium compounds are preferred, and among these, tetraalkylammonium bromide is particularly preferred. When producing the amorphous silicate of the present invention, it is generally preferable that the raw material reaction mixture has the following composition. Si/Fe (molar ratio): 2 or more Ti/Fe (molar ratio): 0.01~3 M/Fe (〃): 0.01~3 H2O / SiO2 (〃): 30~70 R4N + /SiO 2 (〃): 0.08~0.16 OH - / SiO2 (〃): 0.07~0.3 Here, OH - indicates the amount of hydroxyl ion in the mixture,
To adjust this value, an alkali metal hydroxide salt, an alkali metal oxide, etc. are used. R 4 N + indicates the amount of tetraalkylammonium ion. Moreover, M represents V or Mn. Amorphous assilicate can be obtained by hydrothermal synthesis by heating and stirring an aqueous gel mixture having such a component composition at a reaction temperature of 0 to 100°C for 0.1 to 200 hours. The reaction product is treated by filtration or centrifugation to separate solids from the aqueous solution. The obtained solid is further washed with water to remove excess ionic substances, and then dried to obtain an amorphous assilicate containing the organic compound used as a reaction aid. By calcining this product in air at a temperature of 300 to 900°C, preferably 400 to 700°C for 1 to 100 hours, an amorphous assilicate containing no organic compounds can be obtained. The amorphous silicate of the present invention is used as a catalyst for synthesizing hydrocarbons using a mixed gas of carbon monoxide and hydrogen as a raw material, that is, as a catalyst for Fischer-Tropsch synthesis. In this case, conventionally known conditions are adopted as the Fischier-Tropsch synthesis reaction conditions, for example, the reaction temperature is
200~500℃, preferably 300~450℃ is adopted,
The reaction pressure is 1 to 100 atm, preferably
A pressure of 10 to 50 atmospheres is used. in the raw material mixed gas
The H2 /CO molar ratio is between 0.2 and 3, preferably between 0.5 and 1. The amorphous silicate of the present invention can be advantageously used as a catalyst for the Fischer-Tropsch synthesis reaction, as well as in various other reactions using zeolite as a catalyst, such as reactions in the synthesis of hydrocarbons from methanol or dimethyl ether. It can also be used as a catalyst in hydrocarbon decomposition reactions, olefin polymerization reactions, organic compound hydrogenation reactions, aromatic alkylation reactions, etc. Next, the present invention will be explained in more detail with reference to Examples. Examples 1 to 4 Colloidal silica (manufactured by Catalyst Kasei Co., Ltd., Cataloid
SI-30), ferrous sulfate heptahydrate, titanium oxysulfate dihydrate, manganese or vanadium compound, potassium hydroxide (purity 85%), tetra-n-propylammonium bromide, and water in Table 1 below. A homogeneous aqueous gel-like mixture containing the composition shown in is placed in a closed container and stirred for 40 m at various reaction temperatures. The reaction mixture was centrifuged to separate solids, which were washed with water until free of ionic substances, dried at 100°C, and then calcined at 500°C for 15 hours to obtain amorphous assilicate. X-ray diffraction measurements of these materials confirmed that they were all amorphous.

【表】 実施例 5〜8 実施例1〜4で得られたアモルフアスシリケー
ト焼成体を圧力400Kg/cm2で打錠し、次いでこれ
を粉砕して15〜30メツシユにそろえたもの20mlを
内径20mmの反応管に充填した。100ml/minの速
度400〜500℃で15時間水素処理し、ひき続き水素
を一酸化炭素と水素の混合ガス(モル比1:1)
に切り換えGHSV=1000〜10000hr-1で450℃で反
応を行つた。生成物の分析はアルゴンを内部標準
としてガスクロマトグラフを用いて行つた。第2
表にその反応結果を示す。なお、以下に示す転化
率及び選択率はいずれも炭素基準であり、選択率
はCO転化率のうちCO2への転化(CO2収率)を
除いたものを100として算出した。
[Table] Examples 5 to 8 The fired amorphous silicate bodies obtained in Examples 1 to 4 were compressed into tablets at a pressure of 400 Kg/cm 2 , and then crushed to a size of 15 to 30 meshes. A 20 mm reaction tube was filled. Hydrogen treatment was performed at a rate of 100 ml/min at 400 to 500°C for 15 hours, and then the hydrogen was converted into a mixed gas of carbon monoxide and hydrogen (molar ratio 1:1).
The reaction was carried out at 450°C with GHSV = 1000 to 10000 hr -1 . Analysis of the product was performed using a gas chromatograph using argon as an internal standard. Second
The reaction results are shown in the table. Note that the conversion rate and selectivity shown below are both based on carbon, and the selectivity was calculated by setting the CO conversion rate excluding the conversion to CO 2 (CO 2 yield) as 100.

【表】 比較例 実施例1と同様の水性ゲル混合物より水熱合成
(150℃40h)した鉄−チタン−マンガン含有結晶
性シリケート焼成体(BET表面積305m2/g)を
用い、実施例と同様の条件下で反応を行つた。そ
の結果を以下に示す。 圧(Kg/cm2) :10 温度(℃) :450 GHSV(h-1) :1000 CO転化率(%) :10.1 選択率(%) C1 :24.7 C2 :29.0 C3 :21.4 C4 :4.3 C5 :1.0 C6UP又はC :19.6
[Table] Comparative Example Same as Example 1, using an iron-titanium-manganese-containing crystalline silicate fired body (BET surface area 305 m 2 /g) hydrothermally synthesized (150°C 40 hours) from the same aqueous gel mixture as Example 1. The reaction was carried out under the following conditions. The results are shown below. Pressure (Kg/ cm2 ): 10 Temperature (℃): 450 GHSV (h -1 ): 1000 CO conversion rate (%): 10.1 Selectivity (%) C 1 : 24.7 C 2 : 29.0 C 3 : 21.4 C 4 :4.3 C5 :1.0 C6 UP or C :19.6

Claims (1)

【特許請求の範囲】 1 鉄源、チタン源およびマンガン及びバナジウ
ムの中から選ばれる金属源の混合物および有機化
合物を反応助剤として用いて水熱合成反応により
形成されたことを特徴とする鉄−チタン−マンガ
ン又はバナジウム含有アモルフアスシリケート。 2 鉄源、チタン源およびマンガン及びバナジウ
ムの中から選ばれる金属源の混合物および有機化
合物を反応助剤として用いて水熱合成反応により
形成されたことを特徴とする鉄−チタン−マンガ
ン又はバナジウム含有アモルフアスシリケートを
活性成分として含有することを特徴とする一酸化
炭素と水素との混合ガスから炭化水素を合成する
ための触媒。
[Scope of Claims] 1. Iron-formed by a hydrothermal synthesis reaction using a mixture of an iron source, a titanium source, a metal source selected from manganese and vanadium, and an organic compound as a reaction aid. Titanium-manganese or vanadium-containing amorphous silicate. 2. An iron-titanium-manganese or vanadium-containing product formed by a hydrothermal synthesis reaction using a mixture of an iron source, a titanium source, a metal source selected from manganese and vanadium, and an organic compound as a reaction aid. A catalyst for synthesizing hydrocarbons from a mixed gas of carbon monoxide and hydrogen, characterized by containing an amorphous assilicate as an active ingredient.
JP59039057A 1984-02-29 1984-02-29 Catalyst containing iron-titanium-manganese/or vanadium-containing amorpheous silicate as active component Granted JPS60183035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59039057A JPS60183035A (en) 1984-02-29 1984-02-29 Catalyst containing iron-titanium-manganese/or vanadium-containing amorpheous silicate as active component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59039057A JPS60183035A (en) 1984-02-29 1984-02-29 Catalyst containing iron-titanium-manganese/or vanadium-containing amorpheous silicate as active component

Publications (2)

Publication Number Publication Date
JPS60183035A JPS60183035A (en) 1985-09-18
JPH049731B2 true JPH049731B2 (en) 1992-02-21

Family

ID=12542500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59039057A Granted JPS60183035A (en) 1984-02-29 1984-02-29 Catalyst containing iron-titanium-manganese/or vanadium-containing amorpheous silicate as active component

Country Status (1)

Country Link
JP (1) JPS60183035A (en)

Also Published As

Publication number Publication date
JPS60183035A (en) 1985-09-18

Similar Documents

Publication Publication Date Title
US5077026A (en) Ferrisilicate molecular sieve
JP2005138000A (en) Catalyst, method for preparing catalyst and method for producing lower hydrocarbon using the same catalyst
JPS6241573B2 (en)
US5338525A (en) MFI-type zeolite and its preparation process
JP2002509477A (en) Alkylation catalyst and its application
JPS6245847B2 (en)
JP2559066B2 (en) Method for synthesizing crystalline silicate ZSM-11
JPH0456667B2 (en)
JP4247504B2 (en) Dealuminated zeolite IM-5
Kumar et al. Convenient synthesis of crystalline microporous transition metal silicates using complexing agents
JPH049731B2 (en)
JPS6245848B2 (en)
JPH0114171B2 (en)
JPH03502321A (en) Synthetic porous crystalline material, its synthesis and use
JPS632937B2 (en)
EP0070657A1 (en) Transition element-containing crystalline aluminosilicate composition
JPS61200928A (en) Production of lower olefin
JPH06644B2 (en) Method for producing iron-titanium-metal-containing crystalline silicate
KR20190057752A (en) Catalysts supported on modified-carrier for oxidative coupling raction of methane and method for oxidative coupling raction of methane using the same
EP0256065B1 (en) Layered crystalline aluminosilicate and a method for its preparation
JP2650029B2 (en) Catalyst composition and method for producing hydrocarbons from synthesis gas using the catalyst composition
JPH062573B2 (en) Method for producing crystalline iron silicate
JPS6058205B2 (en) Method for producing lower olefins
JPS6139847B2 (en)
KR20240057149A (en) Tandem catalyst for synthesizing methyl acetate from carbon dioxide and method for preparing the same, and method for preparing methyl acetate using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term