JPH0497225A - Optical element - Google Patents

Optical element

Info

Publication number
JPH0497225A
JPH0497225A JP21184490A JP21184490A JPH0497225A JP H0497225 A JPH0497225 A JP H0497225A JP 21184490 A JP21184490 A JP 21184490A JP 21184490 A JP21184490 A JP 21184490A JP H0497225 A JPH0497225 A JP H0497225A
Authority
JP
Japan
Prior art keywords
composite material
liquid crystal
optical element
transparent substrates
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21184490A
Other languages
Japanese (ja)
Inventor
Yasushi Nakajima
靖 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP21184490A priority Critical patent/JPH0497225A/en
Publication of JPH0497225A publication Critical patent/JPH0497225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To allow the simplification of a structure, improvement in productivity and the variation of phase differences by forming a composite material of a film in which high-polymer materials and liquid crystal materials to orient molecules in a prescribed direction by the stress applied to the composite material coexist. CONSTITUTION:The composite material 6 form the film in which high-polymer materials 7 and the liquid crystal materials 8 to orient the molecules in the prescribed direction by the stress applied to the composite material coexist. Namely, a sealing material 5 is provided in the form of a frame in the peripheral part between respective transparent substrates 1 and 2 and the composite material 6 is sealed between the transparent substrates 1 and 2 enclosed by this sealing material 5. The composite material 6 is formed by mixing the high-polymer materials 7 of a two-pack curing type consisting of a principal component and a hardener or UV curing type and the liquid crystal materials 8. The liquid crystal materials 8 are regularly oriented in the prescribed direction by the stress applied to the composite material while the composite material is held sealed between a pair of the upper and lower transparent substrates 1 and 2. The optical element which is simple in the structure, is good is productivity and is changed in the phase difference according to the electric field impressed to the composite material 6 is obtd. in this way.

Description

【発明の詳細な説明】 [発明の技術分野1 この発明は液晶材料を用いた光学素子に関する。[Detailed description of the invention] [Technical field of invention 1 The present invention relates to an optical element using a liquid crystal material.

[従来技術とそのeIs点] 従来、ワードプロセッサやパーソナルコンピュータ等の
デイスプレィとして、T N (twiStednes
atic) 13やS T N (super twi
sted nesatic)型の液晶表示パネルが広く
知られている。これらの液晶表示パネルは、光の吸収、
透過を制御したものであり、一対の透明基板の対向面に
透明電極を形成するとともに、これらの透明電極を配向
膜で覆ってラビング処理を施した上、一対の透明基板の
対向間に液晶材料を封入して配向させ、更に各透明基板
の外面に偏光板を設けた構造となっている。これらTN
型やSTN型の液晶表示パネルでは1表示の着色を消す
ため、又は、視野角特性を改善するために、位相板を用
いることが提案されている。従来の位相板は、高分子材
料フィルムを所定の方向に延伸させ、高分子材料の分子
をその方向に配列させることによって製造されていた。
[Prior art and its eIs points] Conventionally, T N (twiStednes) has been used as a display for word processors, personal computers, etc.
atic) 13 and S T N (super twi
2. Description of the Related Art Liquid crystal display panels of the nesatic type are widely known. These liquid crystal display panels absorb light,
Transmission is controlled by forming transparent electrodes on the opposing surfaces of a pair of transparent substrates, covering these transparent electrodes with an alignment film and applying a rubbing process, and then applying a liquid crystal material between the opposing surfaces of the pair of transparent substrates. It has a structure in which a polarizing plate is provided on the outer surface of each transparent substrate. These TN
It has been proposed to use a phase plate in type and STN type liquid crystal display panels in order to eliminate coloring in one display or to improve viewing angle characteristics. Conventional phase plates have been manufactured by stretching a polymeric material film in a predetermined direction and aligning the molecules of the polymeric material in that direction.

しかしながら、上述した高分子フィルムからなる位相板
は、その位相差を均一にすること及び予め定めた所定の
位相差を得ることが固着であり、前記液晶表示パネルの
色消、又は視角を改善することもまた固着であった。
However, the above-mentioned phase plate made of a polymer film is fixed to make the phase difference uniform and to obtain a predetermined phase difference, and to improve the achromatization or viewing angle of the liquid crystal display panel. That was also a fixation.

一方最近では、高分子材料と液晶材料を混合して複合材
料を構成し、この複合材料を対向面に透明電極が設けら
れた一対の透明基板間に封入し、複合材料中の液晶材料
と高分子材料との屈折率が興なる性質を利用して光の透
過と散乱を制御する光学素子が開発されている。この光
学素子は、複合材料に電界が印加されていない状態では
、高分子材料と液晶材料との屈折率の差により複合材料
に入射する光が液晶材料の界面で散乱して白濁状態とな
り、また複合材料に電界が印加されると液晶材料が配向
し、高分子材料と液晶材料の屈折率がほぼ等しくなり、
これにより複合材料に入射する光が散乱せずに透過して
透明な状態となるものである。
On the other hand, recently, a composite material is formed by mixing a polymer material and a liquid crystal material, and this composite material is sealed between a pair of transparent substrates with transparent electrodes on the opposing surfaces, and the liquid crystal material in the composite material and the Optical elements have been developed that control the transmission and scattering of light by utilizing the property that the refractive index of molecular materials changes. In this optical element, when no electric field is applied to the composite material, light incident on the composite material is scattered at the interface of the liquid crystal material due to the difference in refractive index between the polymer material and the liquid crystal material, resulting in a cloudy state. When an electric field is applied to the composite material, the liquid crystal material becomes oriented, and the refractive index of the polymer material and the liquid crystal material become almost equal.
This allows light incident on the composite material to pass through without being scattered, resulting in a transparent state.

しかし、上述した光学素子に用いられる複合材料は、電
界が印加されていないときは液晶分子がランダムな方向
を向いているため光学的に等方性であり、位相差をもっ
ていない。
However, the composite material used in the above-mentioned optical element is optically isotropic and has no phase difference because the liquid crystal molecules are oriented in random directions when no electric field is applied.

[発明の目的] この発明は上述した事情に鑑みてなされたもので、その
目的とするところは、構造が簡単で、生産性がよく、位
相差が可変でさる光学素子を提供することである。
[Objective of the Invention] This invention was made in view of the above-mentioned circumstances, and its object is to provide an optical element with a simple structure, good productivity, and variable phase difference. .

[発明の要点] この発明は上述した目的を達成するために、高分子材料
と液晶材料を混合した複合材料を対向する電極が形成さ
れた一対の透明な電極基板間に封入した光学素子におい
て、前記複合材料は前記高分子材料と、前記複合材料に
加えられた応力により所定の方向に分子が配向された液
晶材料とが混存する膜を形成していることを要点とする
[Summary of the Invention] In order to achieve the above-mentioned object, the present invention provides an optical element in which a composite material in which a polymer material and a liquid crystal material are mixed is sealed between a pair of transparent electrode substrates on which opposing electrodes are formed. The key point of the composite material is that it forms a film in which the polymer material and a liquid crystal material whose molecules are oriented in a predetermined direction due to stress applied to the composite material coexist.

[実施例] 以下、第1図〜第7図を参照して、この発明の詳細な説
明する。
[Example] The present invention will be described in detail below with reference to FIGS. 1 to 7.

第1図〜第3図は一実施例を示す、これらの図において
、1.2はガラス等の透明基板であり、上下に対向して
配置されている。各透明基板l、2の対向面には!TO
(酸化インジウムと酸化スズの混合物)等の透明電極3
.4がパターン形成されている。そして、各透明基板l
、2間における周辺部分にはシール材5が枠状に設けら
れ、このシール材5によって囲まれた透明基板l、2間
には複合材料6が封入されている。
FIGS. 1 to 3 show one embodiment. In these figures, reference numeral 1.2 denotes transparent substrates such as glass, which are arranged vertically facing each other. On the opposing surfaces of each transparent substrate l and 2! T.O.
Transparent electrode 3 such as (mixture of indium oxide and tin oxide)
.. 4 is patterned. And each transparent substrate l
A sealing material 5 is provided in a frame shape around the space between the transparent substrate 1 and the transparent substrate 1 surrounded by the sealing material 5, and a composite material 6 is sealed between the transparent substrate 1 and the space between the two.

複合材料6は、主剤と硬化剤の2液硬化型又は紫外線硬
化型の高分子材料7と、液晶材料8とを混合したもので
あり、上下一対の透明基板l、2間に封入された状態で
、複合材料に加わえられた応力により、液晶材料8が所
定方向に規則的に配向されている。液晶材料8としては
、屈折率異方性Δnが大きなもの、例えばシアノ系液晶
、またはこれらの混合液晶が用いられる。高分子材料7
として、時間の経過と共に硬化する例えば2液硬化型の
エポキシ樹脂を用いる場合、高分子材料7と液晶材料8
の混合は、高分子材料7の硬化剤と液晶材料8を加熱し
ながら混合し、その後この混合物と高分子材料7の主剤
とを混合する。この混合は、高分子材料7の硬化剤に対
して液晶材料8を4二6〜l:9程度の割合で混合した
後、この混合物に対して主剤をlO:1程度の割合で混
合する。これにより、高分子材′I47中に液晶材料8
がつながり合った状態で5割以上混合されたPN(po
lymer network)型の複合材料6が得られ
る。
The composite material 6 is a mixture of a two-component curing type or ultraviolet curing type polymeric material 7 consisting of a main agent and a curing agent, and a liquid crystal material 8, and is sealed between a pair of upper and lower transparent substrates 1 and 2. The liquid crystal material 8 is regularly oriented in a predetermined direction due to the stress applied to the composite material. As the liquid crystal material 8, a material having a large refractive index anisotropy Δn, such as a cyano liquid crystal, or a mixed liquid crystal thereof, is used. Polymer material 7
For example, when using a two-component curing type epoxy resin that hardens over time, the polymer material 7 and the liquid crystal material 8
In the mixing, the curing agent of the polymeric material 7 and the liquid crystal material 8 are mixed while being heated, and then this mixture and the main ingredient of the polymeric material 7 are mixed. In this mixing, the liquid crystal material 8 is mixed with the curing agent of the polymeric material 7 at a ratio of about 426 to 1:9, and then the base material is mixed with this mixture at a ratio of about 1O:1. As a result, the liquid crystal material 8 is placed in the polymer material 'I47.
PN (po
A composite material 6 of the lymer network type is obtained.

次に、上述した光学素子を製造する場合について説明す
る。まず、高分子材料7と液晶材料8を混合した複合材
料6を上下一対の透明基板l、2間に封入する。高分子
材料7として2液硬化型の高分子材料を用いる場合には
、透明基板l、2の一方1例えば下側の透明基板1の透
明電極3側の面に複合材料6をコーティングした上、下
側の透明基板2でシール材5と共に挟むことにより、複
合材料6を封入する。また高分子材料7として、例えば
紫外線硬化型等の粘度の低い高分子材料を用いる場合に
は、透明電極3,4がパターン形成された透明基板1,
2をシール材5で所定間隔を介して接合し、この間隙に
前記複合材料6を注入する。この様にして、一対の透明
基板1.2間に封入された液晶材料8は、第3図に示す
ように。
Next, a case of manufacturing the above-mentioned optical element will be described. First, a composite material 6, which is a mixture of a polymer material 7 and a liquid crystal material 8, is sealed between a pair of upper and lower transparent substrates 1 and 2. When a two-component curing type polymer material is used as the polymer material 7, one of the transparent substrates 1 and 2, for example, the surface of the lower transparent substrate 1 on the transparent electrode 3 side is coated with the composite material 6, and then The composite material 6 is encapsulated by being sandwiched between the lower transparent substrate 2 and the sealing material 5. Further, when using a low viscosity polymer material such as an ultraviolet curing type polymer material as the polymer material 7, the transparent substrate 1 on which the transparent electrodes 3 and 4 are patterned,
2 are joined with a sealing material 5 at a predetermined interval, and the composite material 6 is injected into this gap. In this way, the liquid crystal material 8 sealed between the pair of transparent substrates 1.2 is as shown in FIG.

高分子材料7中に不規則に配列されている。この状態で
は、複合材料6中の高分子材料7が時間の経過と共に硬
化するが、十分に硬化する前に第3図に2点鎖線で示す
ように、上側の透明基板2を下側の透明基板lに対して
相対的にスライドさせる。すると、高分子材料7が延伸
し、その地神方向に高分子材料7の分子が配向される。
They are arranged irregularly in the polymer material 7. In this state, the polymer material 7 in the composite material 6 hardens over time, but before it is sufficiently hardened, the upper transparent substrate 2 is replaced with the lower transparent substrate 2, as shown by the two-dot chain line in FIG. Slide it relative to the substrate l. Then, the polymer material 7 is stretched, and the molecules of the polymer material 7 are oriented in the direction of the earth.

このため、液晶材料8は高分子材料7の分子の配向に沿
って配向される。これにより、M1図に示すように、複
合材料6が数十〜数千mmの位相差をもつPM型の光学
素子が得られる。なお、透明基板l、2の対向間隔を一
定に保つために、ギャップ材(図示せず)を設ける場合
には、複合材料6をコーティングした後にギャップ材を
散布してもよく、またギャップ材を予め複合材料6中に
混合しておいてもよい。
Therefore, the liquid crystal material 8 is oriented along the molecular orientation of the polymer material 7. As a result, as shown in Fig. M1, a PM type optical element in which the composite material 6 has a phase difference of several tens to several thousand mm is obtained. In addition, when providing a gap material (not shown) in order to keep the opposing distance between the transparent substrates 1 and 2 constant, the gap material may be sprayed after coating the composite material 6, or the gap material may be sprayed after coating the composite material 6. It may be mixed into the composite material 6 in advance.

乙のような光学素子は、以下のように動作する。上下の
透明基板1.2の各透明電極3,4に電圧が印加されな
い状態では、第1図に示すように液晶材料8が一定方向
に規則的に配向され、複合材料6が位相差をもっている
ので、複合材料6中に入射した光は、常光と異常光とが
位相差分だけ位相がずれて透過する。そして、透明基板
1.2の互いに対向し合う透明電極3,4に電圧が印加
されると、第2図に示すように、電界に応じて液晶材料
8の液晶分子は透明基板に対して垂直に配向し、複合材
料6中に入射した光は常光と異常光との位相差が生じる
ことなく透過することとなる。
An optical element like B operates as follows. When no voltage is applied to each of the transparent electrodes 3 and 4 of the upper and lower transparent substrates 1.2, the liquid crystal material 8 is regularly aligned in a certain direction as shown in FIG. 1, and the composite material 6 has a phase difference. Therefore, the light incident on the composite material 6 is transmitted with the ordinary light and the extraordinary light being out of phase by the phase difference. When a voltage is applied to the transparent electrodes 3 and 4 facing each other on the transparent substrate 1.2, as shown in FIG. The light incident on the composite material 6 is transmitted without causing a phase difference between the ordinary light and the extraordinary light.

したがって、このような光学素子は、第4図および第5
図に示すように、表示素子や位相板等として使用するこ
とができる0例えば、第4図(A)に示すように、光学
素子9を上下の偏光板1O111で挟み、かつ第4図(
B)に示すように、上下の各偏光板10.11の偏光軸
10a。
Therefore, such an optical element is shown in FIGS. 4 and 5.
For example, as shown in FIG. 4(A), an optical element 9 is sandwiched between upper and lower polarizing plates 1O111, and as shown in FIG.
As shown in B), the polarization axis 10a of each of the upper and lower polarizing plates 10.11.

11aを互いに直交するように配置するとともに、光学
素子9の液晶材料8の配向方向8aに対して上下の各偏
光板10.11の偏光軸10a、11aをそれぞれ±4
5°ずらして配置すれば。
11a are arranged to be perpendicular to each other, and the polarization axes 10a and 11a of the upper and lower polarizing plates 10.11 are set at ±4 with respect to the alignment direction 8a of the liquid crystal material 8 of the optical element 9.
If you place them 5 degrees apart.

複合材料6に電界が印加されないときと電界が印加した
ときとで位相差が変化するので1表示素子や調光素子と
して使用することができる。
Since the phase difference changes between when no electric field is applied to the composite material 6 and when an electric field is applied, it can be used as a display element or a light control element.

また、第5図に示すように1例えば5TNffiの液晶
セル12の一面側に上述した光学素子9を配置し、これ
らを上下の偏光板13.14で挟めば、液晶セル12で
生じた位相差を補償することができ、しかも複合材料6
に印加される電界を調整するごとにより、液晶セル12
の位相差の誤差、及び変動に応じて光学素子9の位相差
をW!することができ、位相板光学素子あるいは調光素
子として使用することができる。
Furthermore, as shown in FIG. 5, if the above-mentioned optical element 9 is placed on one side of a liquid crystal cell 12 of 1, for example, 5TNffi, and these are sandwiched between upper and lower polarizing plates 13 and 14, the phase difference generated in the liquid crystal cell 12 can be Composite material 6
By adjusting the electric field applied to the liquid crystal cell 12
The phase difference of the optical element 9 is adjusted according to the error and fluctuation of the phase difference of W! It can be used as a phase plate optical element or a light control element.

なお、上述した実施例では、上下の透明基板1.2を相
対的にスライドさせて液晶材料8を一方向に配向させた
が、第6図に示すように、各透明基板1.2を平行な状
態で回転させることにより、高分子材料7を所定方向に
ねじることにより液晶材料8をツイスト状に配向させて
もよい。
In the above embodiment, the upper and lower transparent substrates 1.2 are slid relative to each other to align the liquid crystal material 8 in one direction, but as shown in FIG. By rotating the polymer material 7 in a predetermined direction, the liquid crystal material 8 may be oriented in a twisted manner.

また、Ws7図に示すように、高分子材料7に対して液
晶材料8の量が少ない混合比1例えば高分子材料7に対
して液晶材料8を5:5〜9:l程度で両者を混合した
F D (polysgar thspersed) 
pの複合材料16を用いてもよい、この複合材料1〜1
6は高分子材料7中で液晶材料8がつながり合わないが
、上述した実施例と同様に、複合材料6に応力を加える
ことにより、液晶材料8を規則的に配向させることがで
きる。したがって、このような複合材料16を用いた光
学素子においても、上述した実施例と同様の作用効果が
あることは言うまでもない。
In addition, as shown in diagram Ws7, the mixture ratio 1 is such that the amount of liquid crystal material 8 is small relative to the polymer material 7. For example, the polymer material 7 and the liquid crystal material 8 are mixed at a ratio of about 5:5 to 9:1. F D (polysgar thspersed)
This composite material 1 to 1 may be used as the composite material 16 of p.
Although the liquid crystal material 8 in the polymer material 7 is not connected to each other in the polymer material 6, the liquid crystal material 8 can be regularly aligned by applying stress to the composite material 6, as in the above embodiment. Therefore, it goes without saying that an optical element using such a composite material 16 also has the same effects as the above embodiment.

〔発明の効果] 以上詳細に説明したように、この発明によれば、高分子
材料と、複合材料に応力を加えて高分子材料の分子を配
向させ、この配向に沿って液晶分子を配向させた液晶材
料とが、混在した複合材料を構成し、この複合材料を対
向面に電極が形成された透明基板間に封入するだけでよ
いので、構造が簡単で、生産性がよく、しかも複合材料
に印加される電界に応じて位相差が変化する光学素子が
得られる。
[Effects of the Invention] As explained in detail above, according to the present invention, stress is applied to a polymer material and a composite material to orient the molecules of the polymer material, and the liquid crystal molecules are aligned along this orientation. The liquid crystal material and liquid crystal material are mixed together to form a composite material, and this composite material only needs to be sealed between transparent substrates with electrodes formed on the opposing surfaces, so the structure is simple, productivity is high, and the composite material An optical element whose phase difference changes depending on the electric field applied to the optical element can be obtained.

6・・・・・・複合材料、7・・・・・・高分子材料、
8・・・・・・液晶材料、9・・・・・・光学素子。
6...Composite material, 7...Polymer material,
8...Liquid crystal material, 9...Optical element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はこの発明の一実施例を示し。 第1図は電界を印加しない状態での光学素子の拡大断面
図、第2図は電界を印加した状態での光学素子の拡大断
面図、第3図は複合材料に応力を加えるときの断面図、
第4図(A)は光学素子を表示素子等として用いる場合
の構成図、第4図(B)は第4図(A)における液晶材
料の配向方向と各偏光板の偏光軸の関係を示す図、第5
図は位相板として使用するときの構成図、第6図は複合
材料に応力を加えるときの変形例を示す平面図、第7W
iは他の実施例を示す拡大断面図である。
1 to 3 show an embodiment of this invention. Figure 1 is an enlarged cross-sectional view of the optical element with no electric field applied, Figure 2 is an enlarged cross-sectional view of the optical element with an electric field applied, and Figure 3 is a cross-sectional view when stress is applied to the composite material. ,
Figure 4 (A) is a configuration diagram when the optical element is used as a display element, etc. Figure 4 (B) shows the relationship between the orientation direction of the liquid crystal material and the polarization axis of each polarizing plate in Figure 4 (A). Figure, 5th
The figure is a configuration diagram when used as a phase plate, Figure 6 is a plan view showing a modification example when applying stress to a composite material, and Figure 7W
i is an enlarged sectional view showing another embodiment.

Claims (1)

【特許請求の範囲】 高分子材料と液晶材料を混合した複合材料を対向する電
極が形成された一対の透明な電極基板間に封入した光学
素子において、 前記複合材料は前記高分子材料と、前記複合材料に加え
られた応力により所定の方向に分子が配向された液晶材
料とが混存する膜を形成していることを特徴とする光学
素子。
[Scope of Claims] An optical element in which a composite material in which a polymer material and a liquid crystal material are mixed is sealed between a pair of transparent electrode substrates on which opposing electrodes are formed, wherein the composite material is a mixture of the polymer material and the liquid crystal material. An optical element characterized by forming a film in which a liquid crystal material and a liquid crystal material whose molecules are oriented in a predetermined direction due to stress applied to the composite material coexist.
JP21184490A 1990-08-10 1990-08-10 Optical element Pending JPH0497225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21184490A JPH0497225A (en) 1990-08-10 1990-08-10 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21184490A JPH0497225A (en) 1990-08-10 1990-08-10 Optical element

Publications (1)

Publication Number Publication Date
JPH0497225A true JPH0497225A (en) 1992-03-30

Family

ID=16612525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21184490A Pending JPH0497225A (en) 1990-08-10 1990-08-10 Optical element

Country Status (1)

Country Link
JP (1) JPH0497225A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990051843A (en) * 1997-12-20 1999-07-05 김영환 Method of manufacturing negative retardation plate for liquid crystal display device
US7034907B2 (en) * 2003-02-11 2006-04-25 Kent State University Stressed liquid crystals as an ultra-fast light modulating material consisting of unidirectionally oriented liquid crystal micro-domains separated by polymer chains
US7595850B2 (en) 2003-02-11 2009-09-29 Kent State University Stressed liquid crystals materials for light modulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990051843A (en) * 1997-12-20 1999-07-05 김영환 Method of manufacturing negative retardation plate for liquid crystal display device
US7034907B2 (en) * 2003-02-11 2006-04-25 Kent State University Stressed liquid crystals as an ultra-fast light modulating material consisting of unidirectionally oriented liquid crystal micro-domains separated by polymer chains
US7595850B2 (en) 2003-02-11 2009-09-29 Kent State University Stressed liquid crystals materials for light modulation
US8054413B2 (en) 2003-02-11 2011-11-08 Kent State University Stressed liquid crystals materials for light modulation

Similar Documents

Publication Publication Date Title
JPH08278488A (en) Liquid crystal display element and its production
US5757454A (en) Liquid crystal display device with homeotropic alignment in which two liquid crystal regions on the same subtrate have different pretilt directions because of rubbing
JP2933261B2 (en) Liquid crystal display
KR100255058B1 (en) Liquid crystal display apparatus having high wide visual angle and high contrast
JPH10133224A (en) Display device
JPH0367219A (en) Liquid crystal display element
GB2266599A (en) Optical phase-retardation compensating film
US5946064A (en) Alignment layer, method for forming alignment layer and LCD having the same
KR960002689B1 (en) Liquid crystal electro-optic device
JPH0497225A (en) Optical element
EP0610924B1 (en) Multi-domain type liquid crystal display
US20040125276A1 (en) Liquid crystal display
JPS60146224A (en) Liquid crystal display device
US9019457B2 (en) Liquid crystal display element
KR100543022B1 (en) Liquid crystal display
JPH02304526A (en) Liquid crystal display element
JP2940100B2 (en) Optical element
KR100249190B1 (en) The method of manufacturing lcd device
KR960029878A (en) Manufacturing method of polymer dispersed liquid crystal display device
KR0163894B1 (en) Pdlc display and its fabrication method
JPH07239475A (en) Orienting method of liquid crystal molecule
JPH0498222A (en) Liquid crystal display
JPH02211424A (en) Production of liquid crystal electrooptical element
JPH01147433A (en) Liquid crystal display element
JPS6329726A (en) Liquid-crystal display element