JPH0497221A - Optical element - Google Patents

Optical element

Info

Publication number
JPH0497221A
JPH0497221A JP21184090A JP21184090A JPH0497221A JP H0497221 A JPH0497221 A JP H0497221A JP 21184090 A JP21184090 A JP 21184090A JP 21184090 A JP21184090 A JP 21184090A JP H0497221 A JPH0497221 A JP H0497221A
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
polymer material
voltage
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21184090A
Other languages
Japanese (ja)
Inventor
Yasushi Nakajima
靖 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP21184090A priority Critical patent/JPH0497221A/en
Publication of JPH0497221A publication Critical patent/JPH0497221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To reduce electric power consumption by nearly equaling the refractive indices of the high-polymer material and liquid crystal material of a composite material in the state of not impressing a voltage thereto and generating a difference in the refractive indices of the high-polymer material and the liquid crystal material in the state of impressing the voltage thereto. CONSTITUTION:The composite material 6 consists of the mixture composed of the high-polymer material 7 and the liquid crystal material 8 which is nearly equal in the refractive index in the state of not impressing the voltage between electrodes 3 and 4 facing each other to the refractive index of the high-polymer material. A photosensitive resin, such as, for example, UV curing resin, is used as the high-polymer material 7 in this case and the liquid crystal compsn. having the large refractive index anisotropy DELTAn and the refractive index of the bulk nearly equal to the refractive index of the high-polymer material 7 is used as the liquid crystal material 8. A liquid crystal compd. of, for example, a cyano biphenyl system, is used for this liquid crystal compsn. The optical element which allows the transmission of light when not impressed with the voltage and can scatter the light when impressed with the voltage is obtd. in this way.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は液晶材料を用いた光学素子に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an optical element using a liquid crystal material.

[発明の背景] 従来、ワードプロセッサやパーソナルコンピュータ等の
デイスプレィとして、 T N (twistedne
matic)  型やS  T N (super  
twisted  nematic)型の液晶表示パネ
ルが広く知られている。この液晶表示パネルは光の吸収
、透過の制御をするために偏光板を使用しているため、
偏光板が光の偏光方向を揃えるために入射光の半分以上
を吸収してしまう、このため、透過光の明るさは最大で
も入射光の半分以下になり、表示が暗くなるという問題
があった。
[Background of the Invention] Conventionally, T N (twistedne) has been used as a display for word processors, personal computers, etc.
matic) type and S T N (super
2. Description of the Related Art Twisted nematic type liquid crystal display panels are widely known. This liquid crystal display panel uses polarizing plates to control light absorption and transmission.
In order to align the polarization direction of the light, the polarizing plate absorbs more than half of the incident light.As a result, the brightness of the transmitted light is at most less than half of the incident light, resulting in a dark display. .

これを解決するものとして、最近では、偏光板を使わな
いで光の透過と散乱が制御できる光学素子が開発されて
いる。この種の光学素子は、高分子材料と液晶材料を混
合して複合材料を構成し、この複合材料を一対の透明な
電極基板間に對大してなり、複合材料中の液晶材料の配
向状態によって屈折率が異なる性質を利用して光の透過
と散乱を制御するようになっている。
To solve this problem, optical elements have recently been developed that can control the transmission and scattering of light without using polarizing plates. This type of optical element consists of a composite material made by mixing a polymer material and a liquid crystal material, and this composite material is placed between a pair of transparent electrode substrates to refract light depending on the alignment state of the liquid crystal material in the composite material. The transmission and scattering of light is controlled by utilizing the properties of different rates.

[従来技術の問題点] しかし、上述した光学素子においては、電圧が印加され
ていない状態では、高分子材料と液晶材料との屈折率の
差により複合材料に入射する光が散乱して白濁状態とな
り、また電圧が印加されると液晶材料が配向し、高分子
材料と液晶材料の屈折率がほぼ等しくなり、これにより
複合材料に入射する光が散乱せずに透過して透明な状態
となる。このため、上述した光学素子では、光を透過さ
せたい場合には常に電圧を印加し続けなでればならない
という欠点がある。
[Problems with the prior art] However, in the optical element described above, when no voltage is applied, the light incident on the composite material is scattered due to the difference in refractive index between the polymer material and the liquid crystal material, resulting in a cloudy state. When a voltage is applied, the liquid crystal material becomes oriented, and the refractive index of the polymer material and the liquid crystal material become almost equal, and as a result, light incident on the composite material is transmitted without being scattered, creating a transparent state. . For this reason, the above-mentioned optical element has a drawback in that if it is desired to transmit light, a voltage must be constantly applied and stroked.

[発明の目的] この発明は上述した事情に鑑みてなされたもので、その
目的とするところは、電圧を印加しないときに光を透過
させることができ、電圧を印加したときに光を散乱させ
ることができ、かつ構造が簡単な光学素子を提供するこ
とである。
[Object of the invention] This invention was made in view of the above-mentioned circumstances, and its purpose is to transmit light when no voltage is applied, and scatter light when a voltage is applied. It is an object of the present invention to provide an optical element that can be used in various ways and has a simple structure.

[発明の要点] この発明は上述した目的を達成するために、高分子材料
と液晶材料を混合した複合材料を対向する電極が形成さ
れた一対の透明な電極基板間に封入した光学素子におい
て、前記複合材料は高分子材料と、対向する電極間に電
圧が印加されていない状態における屈折率が前記高分子
材料の屈折率とほぼ等しい液晶材料との混合物からなる
ことを要点とする。
[Summary of the Invention] In order to achieve the above-mentioned object, the present invention provides an optical element in which a composite material in which a polymer material and a liquid crystal material are mixed is sealed between a pair of transparent electrode substrates on which opposing electrodes are formed. The key point of the composite material is that it is made of a mixture of a polymer material and a liquid crystal material whose refractive index in a state where no voltage is applied between opposing electrodes is approximately equal to the refractive index of the polymer material.

[実施例] 以下、第1図および第2図を参照して、この発明の詳細
な説明する。
[Example] The present invention will be described in detail below with reference to FIGS. 1 and 2.

第1図は第1実施例を示す、この図において、1.2は
ガラス等の透明基板であり、上下に対向して配置されて
いる。各透明基板l、2の対向面にはITO(酸化イン
ジウムと酸化スズの混合物)等の透明電極3.4がパタ
ーン形成されている。そして、各透明基板l、2間にお
ける周辺部分にはシール材5が枠状に設けられ、このシ
ール材5によって囲まれた透明基板l、2間には複合材
料6が封入されている。複合材料6は高分子材料7と液
晶材料8を混合したものであり、その混合状態は高分子
材料7よりも液晶材料8の量が多くなる割合、例えば高
分子材料7と液晶材料8の比が1=9〜4:6程度の割
合で混合されている。したがって、複合材料6は高分子
材料7中に液晶材料8が5割以上混在し、液晶材料8が
つながり合っている。この場合、高分子材料7としては
、例えば紫外線硬化型樹脂等の感光性樹脂が用いられる
。また、液晶材料8としては、屈折率異方性Δnが大き
く、かつバルクの屈折率が高分子材料7の屈折率とほぼ
等しい液晶組成物が用いられ、この液晶組成物には例え
ばシアノビフェニル系の液晶化合物が用いられている。
FIG. 1 shows a first embodiment. In this figure, reference numeral 1.2 denotes transparent substrates made of glass or the like, which are arranged vertically facing each other. Transparent electrodes 3.4 made of ITO (a mixture of indium oxide and tin oxide) or the like are patterned on opposing surfaces of each transparent substrate 1, 2. A sealing material 5 is provided in a frame shape in the peripheral portion between each transparent substrate 1 and 2, and a composite material 6 is sealed between the transparent substrates 1 and 2 surrounded by this sealing material 5. The composite material 6 is a mixture of a polymer material 7 and a liquid crystal material 8, and the mixing state is determined by the ratio in which the amount of the liquid crystal material 8 is greater than that of the polymer material 7, for example, the ratio of the polymer material 7 to the liquid crystal material 8. are mixed at a ratio of about 1=9 to 4:6. Therefore, in the composite material 6, more than 50% of the liquid crystal material 8 is mixed in the polymer material 7, and the liquid crystal materials 8 are interconnected. In this case, as the polymer material 7, for example, a photosensitive resin such as an ultraviolet curable resin is used. Further, as the liquid crystal material 8, a liquid crystal composition having a large refractive index anisotropy Δn and a bulk refractive index substantially equal to the refractive index of the polymer material 7 is used, and this liquid crystal composition includes, for example, a cyanobiphenyl-based liquid crystal compounds are used.

このような光学素子を製造する場合には、まず、高分子
材料7としてモノマまたはオリゴマの紫外線硬化型樹脂
を用意し、この紫外線硬化型樹脂と液晶材料8を混合し
て複合材料6を形成する。そして、この複合材料6を上
下一対の透明基板l、2間に封入する際には、透明電極
3.4がパターン形成された透明基板1.2をシール材
5で所定間隔を介して接合し、この間隙に前記複合材料
6を注入し、その注入口を封止した後、紫外線を照射し
て高分子材料7をポリマ化する。あるいは、透明基板l
、2の一方、例えば下側の透明基板1の透明電極3側の
面に複合材料6をコーティングした上、下側の透明基板
2でシール材5と共に挟むことにより、複合材料6を封
入し、しかる後、紫外線を照射して紫外線硬化型樹脂を
ポリマ化する。これにより、高分子材料7中に液晶材料
8がつながり合った所謂、P N (polymer 
network)型の光学素子が得られる。なお、透明
基板l、2の対向間隔を一定に保つために、ギャップ材
(図示せず)を設ける場合には、複合材料6をコーティ
ングした後にギャップ材を散布してもよく、またギャッ
プ材を予め複合材料6中に混合しておいてもよい。
When manufacturing such an optical element, first, a monomer or oligomer ultraviolet curable resin is prepared as the polymer material 7, and this ultraviolet curable resin and the liquid crystal material 8 are mixed to form the composite material 6. . When this composite material 6 is sealed between the pair of upper and lower transparent substrates 1 and 2, the transparent substrates 1.2 on which the transparent electrodes 3.4 are patterned are joined with a sealing material 5 at a predetermined interval. After injecting the composite material 6 into this gap and sealing the injection port, the polymer material 7 is polymerized by irradiation with ultraviolet rays. Alternatively, a transparent substrate l
, 2, for example, the composite material 6 is coated on the surface of the lower transparent substrate 1 facing the transparent electrode 3, and the composite material 6 is encapsulated by sandwiching the composite material 6 between the lower transparent substrate 2 and the sealing material 5, Thereafter, the ultraviolet curable resin is turned into a polymer by irradiation with ultraviolet rays. As a result, the so-called P N (polymer
network) type optical element is obtained. In addition, when providing a gap material (not shown) in order to keep the opposing distance between the transparent substrates 1 and 2 constant, the gap material may be sprayed after coating the composite material 6, or the gap material may be sprayed after coating the composite material 6. It may be mixed into the composite material 6 in advance.

このように、上述した光学素子によれば、以下のような
作用効果を有する。上下の透明基板l、2の各透明電極
3.4に電圧が印加されない状態では、複合材料6の高
分子材料7と液晶材料8の屈折率がほぼ等しいので、複
合材料6中に入射した光は散乱せずにそのまま透過する
。そして、透明基板l、2の互いに対向し合う透明電極
3.4に電圧が印加されると、液晶材料8が電界に応じ
て配向し、高分子材料7と液晶材料8の屈折率に差が生
じるので、複合材料6中に入射した光は高分子材料7と
液晶材料8の界面で散乱し、光学素子の表示が白濁状態
となる。したがって、このような光学素子によれば、光
を透過させたい場合に、常に電圧を印加し続ける必要が
ないので、消費電力を低減でき、しかも偏光板を必要と
しないので、透過率が高く、透明度がよいばかりか、従
来のTN型やSTN型の液晶表示パネルのように配向膜
やラビング処理が不要なので、構造が極めて簡単である
As described above, the optical element described above has the following effects. When no voltage is applied to each transparent electrode 3.4 of the upper and lower transparent substrates 1 and 2, the refractive index of the polymer material 7 and the liquid crystal material 8 of the composite material 6 are almost equal, so that the light incident into the composite material 6 is passes through without scattering. When a voltage is applied to the transparent electrodes 3.4 of the transparent substrates 1 and 2 facing each other, the liquid crystal material 8 is oriented according to the electric field, and the difference in refractive index between the polymer material 7 and the liquid crystal material 8 is created. As a result, the light incident on the composite material 6 is scattered at the interface between the polymer material 7 and the liquid crystal material 8, and the display of the optical element becomes cloudy. Therefore, according to such an optical element, when it is desired to transmit light, there is no need to constantly apply a voltage, so power consumption can be reduced, and a polarizing plate is not required, so the transmittance is high. Not only does it have good transparency, but it also has an extremely simple structure because it does not require an alignment film or rubbing treatment unlike conventional TN or STN liquid crystal display panels.

なお、上述した実施例では高分子材料7として紫外線硬
化型樹脂等の感光性樹脂を用いたが、これに限らず、例
えば主剤と硬化剤とからなる2液硬化型のエポキシ樹脂
を用いても良い。この場合には、時間の経過と共に硬化
剤が硬化するので、硬化する前に複合材料をコーティン
グして上下の透明基板l、2間に封入すればよい、また
、この複合材料においては、2液硬化型のエポキシ樹脂
の硬化剤と液晶材料8を混合した上、これらを主剤と混
合することにより、2液硬化型のエポキシ樹脂中に液晶
材料8をつながり合った状態で5割以上混在させること
ができる。
In the above embodiments, a photosensitive resin such as an ultraviolet curable resin was used as the polymer material 7, but the invention is not limited to this. For example, a two-part curable epoxy resin consisting of a main resin and a curing agent may also be used. good. In this case, since the curing agent hardens over time, it is sufficient to coat the composite material before it hardens and seal it between the upper and lower transparent substrates 1 and 2. By mixing the curing agent of the curable epoxy resin and the liquid crystal material 8 and then mixing these with the main resin, more than 50% of the liquid crystal material 8 is mixed in a two-part curable epoxy resin in a connected state. I can do it.

第2図は第2実施例を示す、この光学素子は、上述した
第1実施例のものと、複合材料10が異なるだけで、他
の部分は同一構造とされている。
FIG. 2 shows a second embodiment. This optical element differs from that of the first embodiment described above only in the composite material 10, and the other parts have the same structure.

この複合材料10は上述した第1実施例と同じ材料であ
るが、その混合比が異なる。すなわち、高分子材料11
と液晶材料12の混合比は、同じ割合か、もしくは液晶
材料12の量を少なくしたものである。したがって、こ
の複合材料は、高分子材料ll中に液晶材料12がつな
がり合わずに不連続な状態で混在する所謂、F D (
polymer dispersed)型のものである
。この複合材料10においても、液晶材料12はそのバ
ルクの屈折率が高分子材料11の屈折率とほぼ等しく、
かつ屈折率異方性Δnが大きな液晶組成物が用いられる
。このような光学素子においても、前述した実施例と同
様の作用効果があることは言うまでもない。
This composite material 10 is the same material as the first embodiment described above, but its mixing ratio is different. That is, the polymer material 11
The mixing ratio of the liquid crystal material 12 and the liquid crystal material 12 is the same ratio, or the amount of the liquid crystal material 12 is reduced. Therefore, this composite material has a so-called F D (
It is of the polymer dispersed type. In this composite material 10 as well, the bulk refractive index of the liquid crystal material 12 is approximately equal to the refractive index of the polymer material 11;
A liquid crystal composition having a large refractive index anisotropy Δn is used. It goes without saying that such an optical element also has the same effects as those of the embodiments described above.

なお、この発明の光学素子は、光を遮るブラインド、光
シャッタ等として使用できるほか、電気光学的に情報を
表示するデイスプレィとして使用することもできる。
The optical element of the present invention can be used not only as a blind that blocks light, a light shutter, etc., but also as a display that displays information electro-optically.

[発明の効果] 以上詳細に説明したように、この発明によれば、電圧を
印加しない状態で複合材料の高分子材料と液晶材料の屈
折率がほぼ等しく、電圧を印加した状態で高分子材料と
液晶材料の屈折率に差が生じるように構成したので、電
圧を印加しないときに光を透過することができ、電圧を
印加したときに光を散乱することができる。このため、
光を透過させたい場合に、常に電圧を印加し続ける必要
がなく、消費電力を低減することができ、しかも偏光板
を必要としないので、透過率がよく、かつ構造が簡単で
、安価に装作することができる。
[Effects of the Invention] As explained in detail above, according to the present invention, the refractive index of the polymer material of the composite material and the liquid crystal material are almost equal when no voltage is applied, and the refractive index of the polymer material and the liquid crystal material are almost equal when no voltage is applied. Since the structure is configured such that there is a difference in the refractive index of the liquid crystal material, light can be transmitted when no voltage is applied, and light can be scattered when a voltage is applied. For this reason,
When you want to transmit light, there is no need to constantly apply a voltage, which reduces power consumption.Furthermore, it does not require a polarizing plate, so it has good transmittance, has a simple structure, and is inexpensive to install. can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例の光学素子の拡大断面図
、第2図は第2実施例の光学素子の拡大断面図である。 l、2・・・・・・透明基板、3.4・・・・・・透明
電極、6.10・・・・・・複合材料、7.11・・・
・・・高分子材料、8,12・・・・・・液晶材料。
FIG. 1 is an enlarged sectional view of an optical element according to a first embodiment of the invention, and FIG. 2 is an enlarged sectional view of an optical element according to a second embodiment. l, 2...Transparent substrate, 3.4...Transparent electrode, 6.10...Composite material, 7.11...
...Polymer material, 8,12...Liquid crystal material.

Claims (1)

【特許請求の範囲】 高分子材料と液晶材料を混合した複合材料を対向する電
極が形成された一対の透明な電極基板間に封入した光学
素子において、 前記複合材料は高分子材料と、対向する電極間に電圧が
印加されていない状態における屈折率が前記高分子材料
の屈折率とほぼ等しい液晶材料との混合物からなること
を特徴とする光学素子。
[Scope of Claims] An optical element in which a composite material in which a polymer material and a liquid crystal material are mixed is sealed between a pair of transparent electrode substrates on which opposing electrodes are formed, wherein the composite material faces the polymer material. An optical element comprising a mixture with a liquid crystal material whose refractive index in a state where no voltage is applied between electrodes is approximately equal to the refractive index of the polymer material.
JP21184090A 1990-08-10 1990-08-10 Optical element Pending JPH0497221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21184090A JPH0497221A (en) 1990-08-10 1990-08-10 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21184090A JPH0497221A (en) 1990-08-10 1990-08-10 Optical element

Publications (1)

Publication Number Publication Date
JPH0497221A true JPH0497221A (en) 1992-03-30

Family

ID=16612458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21184090A Pending JPH0497221A (en) 1990-08-10 1990-08-10 Optical element

Country Status (1)

Country Link
JP (1) JPH0497221A (en)

Similar Documents

Publication Publication Date Title
US5920368A (en) Composite material, display device using the same and process of manufacturing the same
JPH08278488A (en) Liquid crystal display element and its production
JPH0527242A (en) Liquid crystal display device
KR100247640B1 (en) Lcd device and manufacturing method
JP2775769B2 (en) Projection active matrix liquid crystal display device and method of manufacturing the same
KR960002689B1 (en) Liquid crystal electro-optic device
JP2000321562A (en) Liquid crystal optical device having reverse mode optical switching function and its production
JP3050769B2 (en) Liquid crystal display device and method of manufacturing the same
US6017466A (en) Liquid crystal optical element, liquid crystal display element and a projection type liquid crystal display apparatus
JP2940100B2 (en) Optical element
JPH0497221A (en) Optical element
JP3056644B2 (en) Liquid crystal display device and method of manufacturing the same
KR100321255B1 (en) Method for fabricating polymer-dispersed liquid crystal display
JPH07120758A (en) High-molecular dispersion type liquid crystal display device
JP2853268B2 (en) Liquid crystal optical element and manufacturing method thereof
JP3092899B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0497223A (en) Optical element
JP4519256B2 (en) Liquid crystal display
KR100321254B1 (en) Polymer-dispersed liquid crystal display panel
JPH0497225A (en) Optical element
JPH08248398A (en) Liquid crystal display element
JP3074123B2 (en) Liquid crystal display device
JPH04251220A (en) Liquid crystal display element and production thereof
JPH0358021A (en) Active matrix liquid crystal display element and projection type active matrix liquid crystal display device
JPH0497224A (en) Production of optical element