JPH0495766A - Manufacture of oxygen sensor - Google Patents

Manufacture of oxygen sensor

Info

Publication number
JPH0495766A
JPH0495766A JP2208372A JP20837290A JPH0495766A JP H0495766 A JPH0495766 A JP H0495766A JP 2208372 A JP2208372 A JP 2208372A JP 20837290 A JP20837290 A JP 20837290A JP H0495766 A JPH0495766 A JP H0495766A
Authority
JP
Japan
Prior art keywords
noble metal
electrode
solid electrolyte
oxygen sensor
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2208372A
Other languages
Japanese (ja)
Inventor
Takao Kojima
孝夫 小島
Hiroyuki Ishiguro
石黒 宏之
Masahiko Yamada
雅彦 山田
Akio Mizutani
昭夫 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2208372A priority Critical patent/JPH0495766A/en
Publication of JPH0495766A publication Critical patent/JPH0495766A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To avoid the formation of a hollow and the deterioration of an insulating layer part by a method wherein an organic precious metal ink is applied and baked onto a main body or the like of a solid electrolyte, and a plated layer is formed by plating on a part where a nucleus of precious metal is formed. CONSTITUTION:With using a transfer printing pad, an ink pattern part formed rectangular onto a transfer plate with an organic platinum ink of an organic platinum compound including an organic binder is transferred to the outer peripheral wall corresponding to a hole 11a at the tubular wall of a cylindrical main body 1A of a solid electrolyte, so that a film 4 for formation of a precious metal nucleus for a measuring electrode is formed. Moreover, the film 4 is baked for two hours at 700 deg.C, whereby a part 4A of the precious metal nucleus is formed. Thereafter, an insulating pipe 10 having the main body of the solid electrolyte with the precious metal nucleus is soaked into an electroless plating solution, thereby to form a plated layer 5 on the part 4A. Accordingly, a basic model of an oxygen sensor having an outer electrode 6 comprised of the forming part 4A and plated layer 5 on the forming part 4A is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野:1 本発明は、酸素センサの製造方法に関し、更に詳しくい
えば、電極の固体ii鯉質本体への密着性に優れ、これ
に伴い耐被毒性、絶縁性、生産性、経済性等の緒特性に
優れた酸素センサを製造する方法に関する。
Detailed Description of the Invention [Industrial Field of Application: 1] The present invention relates to a method for manufacturing an oxygen sensor, and more specifically, the present invention relates to a method for manufacturing an oxygen sensor, and more specifically, it has excellent adhesion of an electrode to a solid carp material body, and is accompanied by a method for manufacturing an oxygen sensor. The present invention relates to a method for manufacturing an oxygen sensor with excellent properties such as toxicity, insulation, productivity, and economic efficiency.

本発明は、例えば内燃機関や各種燃焼機器等に於けるジ
ルコニアラムダセンサ、空燃比センサ等に利用される。
INDUSTRIAL APPLICATION This invention is utilized for a zirconia lambda sensor, an air-fuel ratio sensor, etc. in an internal combustion engine, various combustion equipment, etc., for example.

〔従来の技術〕[Conventional technology]

セラミ、り酸素センサは、広範囲での酸ss度の検出が
可能であり、また応答が早く、更に高温に鮒える等の優
れた特性を有しているため燃焼管理用、公害計測用等に
広く用いられている。
Ceramic oxygen sensors are capable of detecting acid levels over a wide range, and have excellent characteristics such as quick response and the ability to be heated to high temperatures, making them suitable for combustion control, pollution measurement, etc. Widely used.

かかる、酸素センサは、一般には固体電解質本体上の所
定部分に基準電極、測定電極等の電極が形成されてし)
る。そして、これらの電極を形成する方法としては、■
未伎成固体電解質本体上に主としてPtよりなるペース
トを塗布し、焼成して電極を形成する方法、■固体電解
質本体上の電極形成予定部分に対し貴金属塩等による無
電解メッキを施し電極を形成する方法が知られている(
特公昭52−30699号公報、特公昭59−2438
2号公報等)。
Such an oxygen sensor generally has electrodes such as a reference electrode and a measurement electrode formed on a predetermined portion of the solid electrolyte body.
Ru. As for the method of forming these electrodes, ■
A method of applying a paste mainly made of Pt onto an unfinished solid electrolyte body and firing it to form an electrode. ■ Forming an electrode by applying electroless plating with noble metal salt etc. to the area on the solid electrolyte body where the electrode is to be formed. It is known how to do it (
Special Publication No. 52-30699, Special Publication No. 59-2438
Publication No. 2, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記■の従来方法では、セラミック本体の焼結
と電極形成が、同時焼成によりなされるためセラミック
本体の焼結温度が律速となり、この結果、電極部分に必
要なポーラス性以上の多量な空孔が形成されてしまい、
使用中に於いて使用雰囲気中の被毒物質の影響を受けや
すい。また、前記■の従来方法によるに於ける電極では
、それを取り囲む本体上に発熱部が絶縁層を介して存在
する場合には、絶縁層部の絶縁性を損なうことがある。
However, in the conventional method (2) above, the sintering of the ceramic body and the formation of the electrode are performed by simultaneous firing, so the sintering temperature of the ceramic body becomes rate-determining. A hole is formed,
During use, it is easily affected by poisonous substances in the operating atmosphere. Further, in the electrode according to the conventional method (2), if a heat generating part is present on the surrounding main body with an insulating layer interposed therebetween, the insulation properties of the insulating layer part may be impaired.

また、固体電解質本体上に直接有機白金ペーストを印刷
して電極を形成する方法も考えられるが、この方法では
、十分に強固な密着した白金皮膜を得るのは難しい。こ
の理由は、十分にさだがではないが、有機白金ペースト
中の有機樹脂の分解、脱離と白金の焼結とが加熱処理中
に同時に進行するため固体電解質表面との密着力以上に
焼結力が働くからと考えられる。また、これを解決しよ
うとするとガラス成分等を添加することになるが、この
方法では白金皮膜に求められている高い触媒活性を損な
うこともある。また、この固体電解質本体上に直接有機
白金ペーストを印刷して電極を形成する方法では、多量
の白金等を必要とするため経済憧等に於いて問題があり
、更に曲面上に印刷する場合は作業性にも劣るものであ
る。
Another possible method is to form electrodes by directly printing organic platinum paste on the solid electrolyte body, but with this method, it is difficult to obtain a sufficiently strong and adherent platinum film. The reason for this is, although not completely obvious, that the decomposition and desorption of the organic resin in the organic platinum paste and the sintering of the platinum proceed simultaneously during heat treatment, resulting in sintering that exceeds the adhesion to the solid electrolyte surface. This is thought to be due to the force acting on it. Further, in order to solve this problem, a glass component or the like must be added, but this method may impair the high catalytic activity required of the platinum film. In addition, the method of forming electrodes by directly printing organic platinum paste on the solid electrolyte body requires a large amount of platinum, which poses problems in economic terms. It is also inferior in workability.

本発明は、上記問題点を解決するものであり、電極を有
機貴金属インク(特に、貴金属含有率が0.5〜10重
量%)により形成された貴金属核付け形成部及びその上
に形成されたメッキ層より構成することにより、電極の
固体電解質本体への密着性に優れ、これに伴い耐被毒性
、絶縁性、生産性等の緒特性に優れた酸素センサを製造
する方法を提供するものである。
The present invention solves the above-mentioned problems, and includes electrodes formed on a noble metal nucleation forming part formed of an organic noble metal ink (in particular, a noble metal content of 0.5 to 10% by weight) and a noble metal nucleation forming part formed thereon. The present invention provides a method for manufacturing an oxygen sensor that has excellent adhesion of the electrode to the solid electrolyte body by being composed of a plating layer, and has excellent properties such as toxicity resistance, insulation properties, and productivity. be.

ご11!iを解決するための手段〕 水軍1発明に係わる酸素センサの製造方法は、固体電解
質本体上に電極を形成する第1工程と、該電極を被覆し
保護する電極保護層を形成する第2工程と、を具備する
酸素センサの製造方法において、前記第1工程は、前記
固体電解質本体上に有機貴金属化合物を含む有機貴金属
インクからなる塗膜を形成し、その後該塗膜を焼付けて
貴金属核付け形成部を形成し、次いで、メッキ法により
前記貴金属核付け形成部上にメッキ層を形成して、前配
貴金属核付は形成部及び該形成部上に形成された前記メ
ッキ層から構成される前記電極を形成することを特徴と
する。
Go 11! Means for Solving Problem i] The method for manufacturing an oxygen sensor according to the Suigun 1 invention includes a first step of forming an electrode on a solid electrolyte body, and a second step of forming an electrode protective layer that covers and protects the electrode. In the method for manufacturing an oxygen sensor, the first step includes forming a coating film made of an organic noble metal ink containing an organic noble metal compound on the solid electrolyte body, and then baking the coating film to attach noble metal nuclei. forming a forming part, and then forming a plating layer on the noble metal nucleating forming part by a plating method, so that the pre-disposed noble metal nucleating part is composed of the forming part and the plating layer formed on the forming part. The method is characterized in that the electrode is formed.

上記「固体電解質本体」は、イオン伝導性を有するもの
であればよく、例えばZr0z −Y20s 、Z r
 O2Ca O等の部分安定化又は安定化ジルコニア等
からなる焼結体を用いることができる。また、その全体
形状は特に問わず、例えば有底の筒状体とか平板状体が
ある。また、その肉厚も特に問わない。
The above-mentioned "solid electrolyte main body" may be anything as long as it has ionic conductivity, for example, Zr0z -Y20s, Zr
A sintered body made of partially stabilized O2CaO or stabilized zirconia can be used. Further, the overall shape is not particularly limited, and examples thereof include a bottomed cylindrical body and a flat plate-like body. Further, the wall thickness is not particularly limited.

前記「有機貴金属化合物」中の「貴金属元素」とは、触
媒活性をもつものであり具体的には、Ag、Au及び白
金族元素(Ru、Os%Rh、Ir5Pd、Pt)が挙
げられ、これらのうちから目的、用途に応じて1種類又
は2種類以上の貴金属元素を含有する有機金属化合物を
選択して使用することができる。また、本第2発明に示
すように、有機貴金属インク中の貴金属含有率は、有機
貴金属インクの全量に対して0.5〜10重量%(以下
、単に「%」という。)であることが好ましい。0.5
%未渦の場合では、形成される核が少なすぎるためメッ
キ時の無電解反応速度が遅くなり実用上間離がある。一
方、10%を越える場合では、焼結時に有機樹脂が抜け
ると同時に貴金属の焼成反応が進行し、メッキ層の十分
な皮膜強度が得られないためである。
The "noble metal element" in the "organic noble metal compound" is one that has catalytic activity, and specifically includes Ag, Au, and platinum group elements (Ru, Os%Rh, Ir5Pd, Pt). Depending on the purpose and use, organometallic compounds containing one or more noble metal elements can be selected and used. Further, as shown in the second invention, the noble metal content in the organic noble metal ink may be 0.5 to 10% by weight (hereinafter simply referred to as "%") based on the total amount of the organic noble metal ink. preferable. 0.5
%, in the case of no vortex, too few nuclei are formed, so the electroless reaction rate during plating is slow, and there is a gap in practical use. On the other hand, if it exceeds 10%, the firing reaction of the noble metal proceeds at the same time as the organic resin comes out during sintering, making it impossible to obtain sufficient film strength of the plating layer.

前記「焼付け」は、前記「有機貴金属化合物」を含む有
機貴金属インクにより固体電解質本体上に活性化のため
の核、即ち、貴金属核を形成するためになされる。ここ
で、「核」とは、本体上に主として島状に点在する形状
体をいい、無電解メッキ反応時の還元反応触媒として作
用するものであるが、その大きさ、形状は特に問わない
。尚、この核は通常、0.1〜0.8μmの各々独立し
た半球状体であるが、これらがいくつか重なったもので
もよい。また、焼付は温゛度、加熱時間等の諸条件は、
有機貴金属インク、固体電解質本体の種類、酸素センサ
の使用目的等に応じて決定される。更に、有機貴金属イ
ンクの固体電解質本体等の上への塗膜形成は、スクリー
ン印刷、転写等により行うことができるが、特に転写の
場合は曲面上の目的とする位置へより正確に塗膜を形成
することができる。
The "baking" is performed to form a nucleus for activation, that is, a noble metal nucleus, on the solid electrolyte body using the organic noble metal ink containing the "organic noble metal compound." Here, "nuclei" refers to shaped bodies scattered mainly in the form of islands on the main body, and acts as a reduction reaction catalyst during the electroless plating reaction, but their size and shape are not particularly limited. . The nucleus is usually an independent hemispherical body with a diameter of 0.1 to 0.8 μm, but several hemispherical bodies may be overlapped. In addition, the baking conditions such as temperature and heating time are as follows.
It is determined depending on the type of organic noble metal ink, solid electrolyte body, purpose of use of the oxygen sensor, etc. Furthermore, the formation of a coating film of organic noble metal ink on the solid electrolyte body, etc. can be performed by screen printing, transfer, etc., but especially in the case of transfer, it is necessary to more accurately apply the coating film to the desired position on the curved surface. can be formed.

前記「貴金属核付け形成部」とは、前記「核」が集まっ
た部分(領域)をいう。
The "noble metal nucleation forming part" refers to a portion (region) where the "nuclei" are gathered.

前記「メッキ層」は、互いに連結されない貴金属核上を
中心として析出され、ひいてはこれらの貴金属核間を連
結して層状となって形成されるものである。従って、貴
金属核の形成のみでは導通されないが、このメッキ層の
形成により電極として作用することとなる。また、この
メッキ層は、必ずしも貴金属核付け形成部と同一材料か
らなる必要はなく他の種類の貴金属、更にはNi等の貴
金属以外の金属から形成されてもよい。尚、これが同種
材料の場合には、密着性に優れ、また貴金属材料の場合
には触媒活性等に優れる。
The "plated layer" is deposited mainly on noble metal nuclei that are not connected to each other, and is formed in a layered manner by connecting these noble metal nuclei. Therefore, although the formation of the noble metal core alone does not result in conduction, the formation of this plating layer causes it to function as an electrode. Further, this plating layer does not necessarily have to be made of the same material as the noble metal nucleation forming part, and may be made of other kinds of noble metals, or even metals other than noble metals such as Ni. Note that if this material is of the same type, it has excellent adhesion, and if it is a noble metal material, it has excellent catalytic activity.

〔作用〕[Effect]

本発明においては、先ず固体電解質本体等の上に有機貴
金属インクが塗布され、焼付けられ、これによりアイラ
ンド(島)状の貴金属核が強固に密着形成されることと
なる。次いで、この貴金属核の集合した領域、即ち貴金
属核付け形成部上にメッキ法によりメッキ層が形成され
る。この場合、このメッキ層も、貴金属核付け形成部を
仲介として固体電解質本体との強固な結合状態を得るこ
ととなる。従って、貴金属核付け形成部及びその上に形
成されたメッキ層よりなる電極は、固体電解質本体との
密着性において優れたものとなる。
In the present invention, first, an organic noble metal ink is applied onto a solid electrolyte body, etc., and is baked, thereby forming an island-shaped noble metal core in firm adhesion. Next, a plating layer is formed by a plating method on the area where the noble metal nuclei have gathered, that is, on the noble metal nucleation formation portion. In this case, this plated layer also obtains a strong bond with the solid electrolyte main body through the noble metal nucleation forming portion. Therefore, the electrode made of the noble metal nucleation forming portion and the plating layer formed thereon has excellent adhesion to the solid electrolyte body.

このようにして、形成された電極部分には、多量な空孔
が形成される心配もなく、また、絶縁層部の絶縁性を損
なうこともないため、酸素センサとしては、十分な性能
を維持することとなる。
In this way, there is no need to worry about the formation of a large number of pores in the formed electrode part, and the insulation properties of the insulating layer part will not be impaired, so it maintains sufficient performance as an oxygen sensor. I will do it.

また、電極が不連続となることもないため数層にわたる
焼付けを必要とせず生産性の点でも優れている。また、
高価な有機貴金属の使用量を少なくすることも容易とな
り経済性においても優れている。
Furthermore, since the electrodes are not discontinuous, it is not necessary to bake several layers, which is excellent in terms of productivity. Also,
It is also easy to reduce the amount of expensive organic noble metals used, which is excellent in terms of economy.

更に、メッキ層を形成する隙は、例えば貴金属化合物含
有のメッキ液槽中に、貴金属植付の固体電解質本体等を
入れ、無電解メッキをする。これにより、その貴金属核
付け形成部上にメッキ層が形成される。従って、貴金属
核付け形成部を所望の形状に形成することにより、メッ
キ時のマスキングが不要となる。
Further, to form a gap in which a plating layer is to be formed, electroless plating is performed by placing a solid electrolyte body or the like in which a noble metal is planted in a plating liquid tank containing a noble metal compound, for example. As a result, a plating layer is formed on the noble metal nucleation forming portion. Therefore, by forming the noble metal core forming portion into a desired shape, masking during plating becomes unnecessary.

〔実施例〕〔Example〕

以下、実施例により本発明を明らかにする。 The present invention will be clarified by examples below.

(1)試験片の作成 ■実施品Nα1 第1図に示すように、厚さ0.3mmのZr0−YzO
−グリーンシートの一方の面上(内側となる面上)に、
Ptペーストを印刷法により塗布して、内側電極用塗膜
(巾=2.6mm、長さ=6.5mm、厚さ=15μm
)2及びこれに接続する内側リード引出し部用塗膜31
を形成した。また、このグリーンシートの他方の面上(
外側となる面上)の外側電極部分6となる部分を除き、
アルミナペーストを印刷法により塗布して、第1絶縁層
用塗M8を形成した。また、この第1絶縁層用塗膜8上
の前記内側リード引出し部用塗膜31に対応する位置に
、該内側リード引出し部用塗膜と同様の方法にて外側リ
ード引出し部用塗膜32を形成した。更に、外側リード
引出し部用塗膜32の一端部(外側電極6と接続する部
分)及び外側電極形成予定部以外の部分等にアルミナペ
ーストを塗布して第2絶縁層用塗膜9を形成した。また
、外側電極6となる部分には、メッキ被膜のより強固な
密着力を付与するため、グリーンシートに使用した固体
電解質と同一材料からなる粒子(平均造粒粒径50〜6
0μm)の配合されたジルコニアペーストを塗布する。
(1) Preparation of test piece ■Product Nα1 As shown in Figure 1, Zr0-YzO with a thickness of 0.3 mm
−On one side of the green sheet (on the inside side),
Pt paste was applied by a printing method to form a coating film for the inner electrode (width = 2.6 mm, length = 6.5 mm, thickness = 15 μm).
) 2 and the coating film 31 for the inner lead drawer part connected to this
was formed. Also, on the other side of this green sheet (
Excluding the part that will become the outer electrode part 6 (on the outer surface),
Alumina paste was applied by a printing method to form a first insulating layer coating M8. Further, a coating film 32 for outer lead drawer portions is applied to a position corresponding to the coating film 31 for inner lead drawer portions on this first insulating layer coating film 8 in the same manner as the coating film for inner lead drawer portions. was formed. Furthermore, alumina paste was applied to one end of the outer lead drawer part coating film 32 (the part connected to the outer electrode 6) and a part other than the part where the outer electrode was to be formed, to form a second insulating layer coating film 9. . In addition, in order to provide stronger adhesion of the plating film to the part that will become the outer electrode 6, particles made of the same material as the solid electrolyte used for the green sheet (average particle diameter 50-6
0 μm) is applied.

尚、この場合、ジルコニア粒子とジルコニア粉末の配合
比(重量比)が5:5〜8:2で、且つ、粒子は100
0〜1350℃の間で仮焼されたものからなるものを用
いた方が、焼結接点の少ないジルコニア粒子のみからな
るものを用いるよりも好ましい。
In this case, the blending ratio (weight ratio) of zirconia particles and zirconia powder is 5:5 to 8:2, and the particles are 100
It is more preferable to use a material calcined at a temperature of 0 to 1350° C. than to use a material made only of zirconia particles with few sintered contacts.

別に、上記グリーンシートと同材質であり、180°対
向位置に直径1mmの孔11a、llbを配設した円筒
状碍管10を製作する。次いで、第2図に示すように、
前記塗膜付グリーンシートをこの碍管9に、電極2が孔
11a、llbを覆うように巻き付けた後、焼成するこ
とにより固体電解質本体1A、内側電極2A、内側リー
ド引出し部31A、外側リード引出しB52A、第1絶
縁層8A及び第2絶縁層9Aを得た。
Separately, a cylindrical insulator tube 10 is manufactured, which is made of the same material as the green sheet and has holes 11a and llb with a diameter of 1 mm arranged at 180° opposing positions. Next, as shown in Figure 2,
The green sheet with a coating film is wound around the insulator tube 9 so that the electrode 2 covers the holes 11a and llb, and then fired to form the solid electrolyte main body 1A, the inner electrode 2A, the inner lead drawer part 31A, and the outer lead drawer B52A. , a first insulating layer 8A and a second insulating layer 9A were obtained.

一方、転写印刷用パッド(この印刷用機械;タンポ印刷
機)を用いて、有機質系バインダーを含む有機白金化合
物(有機白金インク中の白金濃度は、2%)よりなる有
機白金インク (粘度;80〜200ポイズ、ブルック
フィールド社製DVH粘度計にて測定)により転写盤上
に長方形状(2,5mmx6.5mmX0.1mm)に
形成されたインクパターン部を前記筒状体の固体電解質
本体IAO管壁に配設した孔11aに対応する外周壁に
転写し、測定電極用貴金属核付け形成部用塗膜4を形成
した。尚、このインクの粘度が80〜200ポイズの場
合は、実際の作業性に優れるし、転写にも好都合である
On the other hand, using a transfer printing pad (this printing machine; tampo printing machine), an organic platinum ink (viscosity: 80 ~200 poise, measured with a Brookfield DVH viscometer), the ink pattern part formed in a rectangular shape (2.5 mm x 6.5 mm x 0.1 mm) on the transfer plate was applied to the solid electrolyte body IAO tube wall of the cylindrical body. This was transferred onto the outer peripheral wall corresponding to the hole 11a provided in the hole 11a, thereby forming the coating film 4 for the noble metal core forming part for the measurement electrode. Incidentally, when the viscosity of this ink is 80 to 200 poise, it is excellent in actual workability and convenient for transfer.

更に、これを700℃にて2時間焼付1才を行い貴金属
核付は形成部4Aを形成した。尚、この核は直径及び高
さがいずれも約0.3μmの半球状体である。尚、この
貴金属核付き部の抵抗値が無限大を示すことから、各校
が連結していないことが判る。
Furthermore, this was baked at 700° C. for 2 hours to form a noble metal core forming portion 4A. Note that this nucleus is a hemispherical body with a diameter and height of about 0.3 μm. In addition, since the resistance value of this noble metal cored part shows infinity, it can be seen that the respective schools are not connected.

次いで、無電解メッキ液中に上記貴金属核付き固体電解
質本体を有する碍管10を浸漬し、貴金属核付は形成部
4A上にメッキ層5 (第3図及び第4図参照)を形成
した。これにより、貴金属核付は形成部4Aとこの上に
形成されたメッキ層5とから構成される外側電極6を有
する酸素センサ素体(実施品No、 1 )を製作した
。尚、このメッキは、4価のPtアンミン錯塩水溶液を
用い、ヒドラジンを還元剤とし、析出、乾燥後大気中に
て熱処理しく1000〜1300℃、1時間)、行った
ものである。
Next, the insulator tube 10 having the solid electrolyte body with a noble metal core was immersed in an electroless plating solution, and a plating layer 5 (see FIGS. 3 and 4) was formed on the noble metal core forming portion 4A. As a result, an oxygen sensor element body (Product No. 1) having an outer electrode 6 composed of a noble metal core forming portion 4A and a plating layer 5 formed thereon was manufactured. This plating was performed using an aqueous solution of a tetravalent Pt ammine complex salt and hydrazine as a reducing agent, and after precipitation and drying, heat treatment was performed in the atmosphere at 1000 to 1300° C. for 1 hour).

■実施品No、 2〜4及び仕較品Nα1〜4有機白金
インク中の白金含有量をそれぞれ1.5.10重量%と
したこと以外は、実施品No、 1と同様の酸素センサ
素体を製作し、それぞれ実施品Nα2〜4とする。また
、同様に有機白金インク中の白金含有量をそれぞれ0.
2.15、[0,50重量%とした酸素センサ素体を製
作し、それぞれ比較品Nα1〜4とする。
■Product Nos. 2 to 4 and reference products Nα1 to 4 Oxygen sensor body similar to Product No. 1, except that the platinum content in the organic platinum ink was 1.5 and 10% by weight, respectively. were manufactured and designated as actual products Nα2 to Nα4, respectively. Similarly, the platinum content in the organic platinum ink was set to 0.
2.15 and [0.50% by weight oxygen sensor bodies were manufactured and designated as comparative products Nα1 to Nα4, respectively.

■実施品Nα5〜6 実施品N111の酸素センサ素体の外周全面上に、更に
スピネルを溶射し、第3図及び第4図に示すように約5
0〜150μの電極保護層7を形成して、酸素センサ(
実施品Nα5)を作成した。また、第5図に示すように
実施品No、 5の酸素センサのアルミナ絶縁層中にヒ
ータ12を内蔵させた構造の酸素センサ(実施品No、
 6 )も作製した。尚、このヒータ12は、素体(主
として電極りを加熱するために電極部を取り囲むように
配置されている。
■Products Nα5 to 6 Spinel was further sprayed on the entire outer periphery of the oxygen sensor body of product N111, and approximately 50%
An electrode protective layer 7 with a thickness of 0 to 150 μm is formed to form an oxygen sensor (
A practical product Nα5) was created. In addition, as shown in FIG. 5, an oxygen sensor having a structure in which a heater 12 is built into the alumina insulating layer of the oxygen sensor of Example No. 5 (Example No. 5) is used.
6) was also produced. Note that this heater 12 is arranged so as to surround the electrode portion in order to heat the element body (mainly the electrode).

■同時焼成比較品(Nα5) 実施品と同様に、厚さQ、3mmのZ r O2Y20
.グリーンシート上に、Ptペーストを、印刷法により
塗布して、内側電極用塗膜及びこれに接続する内側リー
ド引出し部用塗膜を形成した。また、内側電極にシート
を介して対向する部分にも同じPtペーストを用いて、
外側電極用塗膜及びこれに接続するリード引き出し部用
塗膜を同様の方法により形成した。更に、外側電極部以
外に絶縁層を設けるためアルミナペースト用塗膜を塗布
して絶縁層用塗膜を形成した。
■ Simultaneously fired comparison product (Nα5) Same as the tested product, Z r O2Y20 with thickness Q, 3mm.
.. Pt paste was applied onto the green sheet by a printing method to form a coating film for the inner electrode and a coating film for the inner lead lead-out portion connected thereto. In addition, the same Pt paste was used for the part facing the inner electrode through the sheet,
A coating film for the outer electrode and a coating film for the lead lead-out portion connected thereto were formed by the same method. Furthermore, in order to provide an insulating layer in areas other than the outer electrode portion, an alumina paste coating was applied to form an insulating layer coating.

別に、上記グリーンシートと同材質であり、180°対
向位置に直径1mmの孔を配設した円筒状碍管を製作す
る。次いで、前記塗膜付グリーンシートをこの碍管に、
後で形成する電極が孔を覆うように巻き付けた後、焼成
することにより固体電解質本体、内側電極、内側リード
引出し部、外側電極、外側リード引出し部及び絶縁層を
得て、酸素センサ素体を作製した。
Separately, a cylindrical insulator tube made of the same material as the green sheet and having holes with a diameter of 1 mm arranged at positions 180 degrees opposite to each other was manufactured. Next, the green sheet with the coating film is applied to this insulator,
After winding the electrode to cover the hole, which will be formed later, is fired to obtain the solid electrolyte body, the inner electrode, the inner lead lead part, the outer electrode, the outer lead lead part, and the insulating layer to form the oxygen sensor element. Created.

次いで、この酸素センサ素体の外周全面上に、実施品N
α5と同様にスピネルを溶射し、酸素センサ(比較品N
α5)を製作した。
Next, on the entire outer periphery of this oxygen sensor body, the applied product N
Spinel was sprayed in the same way as α5, and the oxygen sensor (comparative product N
α5) was manufactured.

■メッキ比較品(No、 6 ) 実施品に用いたのと同様の固体電解質本体上にに対して
4価のPtアンミン錯塩水溶液を用いて無電解メッキを
施し、電極を形成し、酸素センサ素体を製作した。
■Plated comparison product (No. 6) Electroless plating was performed using a tetravalent Pt ammine complex aqueous solution on a solid electrolyte body similar to that used in the actual product to form an electrode and an oxygen sensor element. Made the body.

次いで、この酸素センサ素体に対しても実施品Nα6と
同様のヒータ及びアルミナ絶縁層を設けて比較品NCL
6の酸素センサを製作した。
Next, a heater and an alumina insulating layer similar to those of the implemented product Nα6 were provided to this oxygen sensor body to obtain a comparative product NCL.
6 oxygen sensors were manufactured.

尚、前記比較品に係わる酸素センサ素体の外側リード引
出し部32Bに対しても、実施品と同様の絶縁層が形成
されている。
Incidentally, an insulating layer similar to that of the actual product is also formed on the outer lead lead-out portion 32B of the oxygen sensor element related to the comparative product.

(2)性能試験と性能評価 ■初期密着性 実施品No、 1〜4と仕較品No、 1〜4の素体上
のメッキ皮膜強度をテープテストにより調べた。
(2) Performance test and performance evaluation ■Initial adhesion The strength of the plating film on the element bodies of test products Nos. 1 to 4 and comparison products Nos. 1 to 4 was examined by a tape test.

比較品No、 1の場合には、もともとメッキの付が悪
く、十分な導通抵抗を示さないものもあった。
In the case of comparative products No. 1, some of them were originally poorly plated and did not exhibit sufficient conduction resistance.

また、比較品Nα2〜4の場合には、剥離が大きく密着
性の低さを示していた。
Moreover, in the case of comparative products Nα2 to Nα4, peeling was large and showed low adhesion.

一方、実施品Nα1〜4の場合には、剥離を生ずること
もなく、密着性の高さを示していた。
On the other hand, in the case of Examples Nα1 to Nα4, no peeling occurred and high adhesion was exhibited.

■耐久密着性 実施品Nα5及び比較品Nα5の酸素センサの外側l棒
部分6をブンゼンバーナーで連続加熱し、電極と固体電
解質本体間の密着性の経時的変化を調べ、その結果を第
6図に示した。
■Durable adhesion The outer l rod portion 6 of the oxygen sensor of the tested product Nα5 and the comparative product Nα5 was continuously heated with a Bunsen burner, and changes over time in the adhesion between the electrode and the solid electrolyte body were investigated, and the results are shown in Figure 6. It was shown to.

比較品No、 5の酸素センサにおいては、加熱を継続
したところ、センサ内部抵抗の増加が著しかったが、実
施品No、 5の酸素センサにおいては、加熱を120
0時間継続してもセンサ内部抵抗の増加はわずかであっ
た。尚、比較品No、 5の一部のものは、500時間
の継続加熱により電極と固体電解質本体間の剥離も生じ
た。
In the comparison product No. 5 oxygen sensor, when heating was continued, the sensor internal resistance increased significantly, but in the implementation product No. 5 oxygen sensor, heating was continued to 120°C.
Even after 0 hours of continuous use, the sensor internal resistance increased only slightly. Incidentally, in some of the comparative products No. 5, peeling occurred between the electrode and the solid electrolyte body due to continuous heating for 500 hours.

■電極保護層の絶縁性 実施品No、 6及び比較品No、 6の酸素センサを
用いアルミナ絶縁層の絶縁性を調べた。即ち、800℃
にて、50V−DCの絶縁抵抗計を用いて、抵抗値を調
べてアルミナ絶縁層中に埋没されたヒーターと外側電極
との絶縁性の評価を行った。その結果を第7図に示す。
■Insulating properties of the electrode protective layer The insulating properties of the alumina insulating layer were investigated using the oxygen sensors of tested product No. 6 and comparative product No. 6. That is, 800℃
Using a 50 V-DC insulation resistance meter, the resistance value was examined to evaluate the insulation between the heater embedded in the alumina insulating layer and the outer electrode. The results are shown in FIG.

比較品においては、絶縁抵抗のバラツキが大きく、更に
絶対値が10にΩ程度のものが見られ、実施品に比べて
絶縁性が低下しているこ止を示している。この原因は、
比較品No、 6の電極のメッキ方法では、マスキング
により電極部以外にメッキが付かないようにしているが
、このマスキングの不完全さによるものと考えられる。
In the comparative product, there was a large variation in insulation resistance, and some had an absolute value of about 10Ω, indicating that the insulation property was lower than that of the practical product. The cause of this is
In the electrode plating method for Comparative Product No. 6, masking was used to prevent plating from being deposited on areas other than the electrode portion, but this is thought to be due to incomplete masking.

これに対して、本実施品に於けるアルミナ絶縁層の絶縁
性は、十分に確保されている。
In contrast, the insulating properties of the alumina insulating layer in this example product were sufficiently ensured.

■耐被毒性 実施品Nα5及び比較品No、 5酸素センサを所定の
排気ガス管部に取付けて各素体の耐被毒性(耐鉛被毒性
)の試験を行った。この耐久条件としては、ガソリン中
のPb含有量が50mg/g a 1、ベンチ耐久試験
(全開、中速域、アイドルを含むサイクルパターン耐久
試験、)とした。この結果を第8図及び第9図に示す。
■Toxification Resistance Test Product No.5 and Comparative Product No. 5 Oxygen sensors were attached to the designated exhaust gas pipes, and the toxicity resistance (resistance to lead poisoning) of each element was tested. The durability conditions were such that the Pb content in gasoline was 50 mg/g a 1, and a bench durability test (cycle pattern durability test including full throttle, medium speed range, and idle). The results are shown in FIGS. 8 and 9.

第8図は経過時間と排ガスの雰囲気のリッチ(600m
V)からり−ン(300mV)への応答性との関係を示
し、第9図は制御空燃比とセンサの制御周波数との関係
を示す。
Figure 8 shows the elapsed time and the rich exhaust gas atmosphere (600 m
Figure 9 shows the relationship between the control air-fuel ratio and the sensor control frequency.

これらに示すように比較品Nα5の酸素センサに於いて
は、1000時間後にて応答性が低下しく第8図)、制
御周波数は低下するとともに制御空燃比特性もリッチ方
向へ大きくシフトしている(第9図)。実施品ではこの
ような変動はほとんどない。以上より、比較品では、被
毒物質である鉛の影響を強く受けている。これは、電極
部分に多連な空孔が形成されており、また高温焼成で電
極を形成するので、ガス−固体電解質−Ptの3相界面
が少なく、そのためガスに対する反応性が劣り、且つP
b等の被毒による影響が強く出るためである。
As shown in these figures, in the comparison product Nα5 oxygen sensor, the response deteriorates after 1000 hours (Fig. 8), the control frequency decreases, and the control air-fuel ratio characteristics also shift significantly toward the rich direction (Fig. 8). Figure 9). There is almost no such variation in the tested product. From the above, the comparative products are strongly affected by lead, which is a poisonous substance. This is because multiple pores are formed in the electrode part, and since the electrode is formed by high-temperature firing, there are few three-phase interfaces of gas-solid electrolyte-Pt, and therefore the reactivity with gas is poor, and Pt
This is because the effects of poisoning such as b.

一方、実施品No、 5の酸素センサでは、このような
ことはなく極めて耐被毒性が良好である。
On the other hand, the oxygen sensor of Example No. 5 does not have this problem and has extremely good poison resistance.

(3)実施例の効果 以上の様に、本実施例に係わる酸素センサの製遣方法に
よれば、電極と固体電解質本体の付着強度等の向上、こ
れに伴う耐被毒性、絶縁性等センサの性能の維持、向上
が可能となる。また、所定の白金濃度を有するので、電
極の初期密着性にも優れる。
(3) Effects of Example As described above, according to the manufacturing method of the oxygen sensor according to the present example, the adhesion strength between the electrode and the solid electrolyte body can be improved, and the toxicity resistance, insulation, etc. of the sensor can be improved accordingly. It is possible to maintain and improve the performance of Furthermore, since it has a predetermined platinum concentration, it has excellent initial adhesion of the electrode.

尚、本発明においては、前記具体的実施例に示すものに
限られず、目的、用途に応じて本発明の範囲内で種々変
更した実施例とすることができる。
It should be noted that the present invention is not limited to those shown in the above-mentioned specific embodiments, and may be modified in various ways within the scope of the present invention depending on the purpose and use.

〔発明の効果〕〔Effect of the invention〕

本発明に係わる酸素センサの製造方法を用いれば、前記
作用に示すように、電極と固体電解質本体の付着強度等
の向上、また酸素センサの使用に際して電極自体の固体
電解質本体からの剥離等を防止できる。
By using the method for manufacturing an oxygen sensor according to the present invention, as shown in the above-mentioned effects, it is possible to improve the adhesion strength between the electrode and the solid electrolyte body, and also to prevent the electrode itself from peeling off from the solid electrolyte body when using the oxygen sensor. can.

従って、電極を貴金属積付は形成部及びその上に形成さ
れたメッキ層により構成することにより、固体電解質本
体との密着性及びメッキ層の緻密性に優れ、そのため耐
被毒性、絶縁性等センサの性能の維持、向上が可能とな
る。
Therefore, by configuring the electrode with a precious metal forming part and a plating layer formed on it, it has excellent adhesion with the solid electrolyte body and the density of the plating layer, and therefore has excellent toxicity resistance, insulation, etc. It is possible to maintain and improve the performance of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例において酸素センサ素体の固体電解質本
体となるグリーンシートに内側電極用塗膜等を形成した
状態を示す一部断面図、第2図は実施例において固体電
解質本体上に有機貴金属インクからなる塗膜を形成した
状態を示す一部縦断面図、第3図は実施例に係わる酸素
センサの一部横断面図、第4図は実施例に係わる酸素セ
ンサにおいて外側電極等の構成を説明する一部横断面図
、第5図は実施品No、 6のヒータが埋設された酸素
センサの外側電極等の構成を説明する一部横断面図、第
6!!Iはセンサ内部抵抗の経時的変化を示すグラフ、
第7図はアルミナ絶縁層の絶縁性を抵抗値により評価し
た結果を示すグラフ、第8図は経過時間と排ガスの雰囲
気のリッチからリーンへの応答性きの関係を示すグラフ
、第9図は制御空燃比特性とセンサの制御周波数との関
係を示すグラフである。 1;グリーンシート、IA;固体電解質本体、2;内側
電極用塗膜、2A;内側電極、31;内側リード引出し
部用側ll!、 32 ;外側リード引出し部用塗膜、
31A;内側リード引出し部、32A:外側リード引出
し部、4;貴金属積付は形成部用塗膜、4A;貴金属積
付は形成部、5;メッキ層、6;電極、7;電極保護層
、8;第1絶縁層用塗膜、8A;第1絶縁層、9;第2
絶縁層用塗膜、9A;第2絶縁層、10;碍管、12;
ヒータ 第1図 特許出願人  日本特殊陶業株式会社 代 理 人   弁理士 小島清路 第2図 第5図 第6図 吟f’el(hr) 寛売晶No、6 に舅−手め、6
Fig. 1 is a partial cross-sectional view showing a state in which a coating film for the inner electrode is formed on a green sheet which becomes the solid electrolyte body of the oxygen sensor element in the example, and Fig. FIG. 3 is a partial cross-sectional view of the oxygen sensor according to the embodiment. FIG. A partial cross-sectional view explaining the configuration, FIG. 5 is a partial cross-sectional view explaining the configuration of the outer electrode, etc. of the oxygen sensor in which the heater of Implementation Product No. 6 is embedded, No. 6! ! I is a graph showing changes in sensor internal resistance over time;
Figure 7 is a graph showing the results of evaluating the insulation properties of the alumina insulating layer using resistance values, Figure 8 is a graph showing the relationship between elapsed time and responsiveness from rich to lean exhaust gas atmosphere, and Figure 9 is It is a graph showing the relationship between controlled air-fuel ratio characteristics and control frequency of a sensor. 1; Green sheet, IA; Solid electrolyte main body, 2; Coating film for inner electrode, 2A; Inner electrode, 31; Side for inner lead extraction part ll! , 32 ; Coating film for outer lead drawer part;
31A; Inner lead drawer part, 32A: Outer lead drawer part, 4; Coating film for forming part for precious metal stacking, 4A; Precious metal stacking part for forming part, 5; Plating layer, 6; Electrode, 7; Electrode protective layer, 8; Coating film for first insulating layer, 8A; First insulating layer, 9; Second
Coating film for insulating layer, 9A; second insulating layer, 10; porcelain tube, 12;
Heater Figure 1 Patent Applicant NGK Spark Plug Co., Ltd. Representative Patent Attorney Kiyomichi Kojima Figure 2 Figure 5 Figure 6 Gin f'el (hr) Kanmai Akira No. 6 ni-teme, 6

Claims (2)

【特許請求の範囲】[Claims] (1)固体電解質本体上に電極を形成する第1工程と、
該電極を被覆し保護する電極保護層を形成する第2工程
と、を具備する酸素センサの製造方法において、 前記第1工程は、前記固体電解質本体上に有機貴金属化
合物を含む有機貴金属インクからなる塗膜を形成し、そ
の後該塗膜を焼付けて貴金属核付け形成部を形成し、 次いで、メッキ法により前記貴金属核付け形成部上にメ
ッキ層を形成して、前記貴金属核付け形成部及び該形成
部上に形成された前記メッキ層から構成される前記電極
を形成することを特徴とする酸素センサの製造方法。
(1) A first step of forming an electrode on the solid electrolyte body,
A method for manufacturing an oxygen sensor, comprising: a second step of forming an electrode protective layer that covers and protects the electrode, wherein the first step comprises forming an organic noble metal ink containing an organic noble metal compound on the solid electrolyte body. A coating film is formed, and then the coating film is baked to form a noble metal nucleation forming part, and then a plating layer is formed on the noble metal nucleation forming part by a plating method, so that the noble metal nucleation forming part and the noble metal nucleation forming part are formed. A method for manufacturing an oxygen sensor, characterized in that the electrode is formed from the plating layer formed on the forming part.
(2)有機貴金属インク中の貴金属含有率は、該有機貴
金属インク全量に対して0.5〜10重量%である第1
請求項記載の酸素センサの製造方法。
(2) The noble metal content in the organic noble metal ink is 0.5 to 10% by weight based on the total amount of the organic noble metal ink.
A method for manufacturing an oxygen sensor according to the claims.
JP2208372A 1990-08-06 1990-08-06 Manufacture of oxygen sensor Pending JPH0495766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208372A JPH0495766A (en) 1990-08-06 1990-08-06 Manufacture of oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208372A JPH0495766A (en) 1990-08-06 1990-08-06 Manufacture of oxygen sensor

Publications (1)

Publication Number Publication Date
JPH0495766A true JPH0495766A (en) 1992-03-27

Family

ID=16555197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208372A Pending JPH0495766A (en) 1990-08-06 1990-08-06 Manufacture of oxygen sensor

Country Status (1)

Country Link
JP (1) JPH0495766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0809101A2 (en) * 1996-05-21 1997-11-26 Denso Corporation Oxygen sensor element and method of producing same
WO1999019722A1 (en) * 1997-10-16 1999-04-22 Global Systems Incorporated Chemical plating method, electrolytic cell and automotive oxygen sensor using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0809101A2 (en) * 1996-05-21 1997-11-26 Denso Corporation Oxygen sensor element and method of producing same
US5948225A (en) * 1996-05-21 1999-09-07 Denso Corporation Oxygen sensor element
EP0809101A3 (en) * 1996-05-21 1999-11-10 Denso Corporation Oxygen sensor element and method of producing same
US6254926B1 (en) 1996-05-21 2001-07-03 Denso Corporation Method of producing oxygen sensor element
WO1999019722A1 (en) * 1997-10-16 1999-04-22 Global Systems Incorporated Chemical plating method, electrolytic cell and automotive oxygen sensor using it
US6315880B1 (en) * 1997-10-16 2001-11-13 Mary R. Reidmeyer Chemical plating method, electrolytic cell and automotive oxygen sensor using it

Similar Documents

Publication Publication Date Title
US4225634A (en) Method for manufacturing gas composition detector
EP0372425A2 (en) Oxygen-sensor element and method for producing the same
KR20010049489A (en) Device for Measuring Combustible-Gas Concentration and Method for Measuring Combustible-Gas Concentration by Use of the Same, and Device for Measuring Hydrocarbon-Gas Concentration and Method for Measuring Hydrocarbon-Gas Concentration by Use of the Same
JPH01184457A (en) Oxygen sensor element
JPH0668480B2 (en) Electrode structure in oxygen sensor
JP2002181769A (en) Oxygen sensor element and production method thereof
JPH05502719A (en) Resistance measurement sensor for gas composition detection and method for manufacturing this resistance measurement sensor
US4265930A (en) Process for producing oxygen sensing element
JPS6213622B2 (en)
JPS61241657A (en) Oxygen sensor element
JPS6017060B2 (en) Manufacturing method of membrane structure oxygen sensor element
JPH02276956A (en) Oxygen sensor and production thereof and method for preventing poisoning
JPH0495766A (en) Manufacture of oxygen sensor
JPH01203963A (en) Oxygen sensor element
JPH01232253A (en) Oxygen sensor element
JP5479409B2 (en) Ammonia gas sensor
JP2589136B2 (en) Oxygen sensor element
JPH07113618B2 (en) Oxygen gas detector
JPH01232252A (en) Oxygen sensor element
JPH0328719A (en) Detecting element
JP2599788B2 (en) Electrochemical element
JP3668059B2 (en) Method for manufacturing heater-integrated oxygen sensor element
JP2007322184A (en) Ammonia gas sensor
JPH05256816A (en) Oxygen sensor and its manufacture
JP2534297B2 (en) Oxygen detection element