JPH0495204A - Nonmagnetic substrate material - Google Patents

Nonmagnetic substrate material

Info

Publication number
JPH0495204A
JPH0495204A JP2210998A JP21099890A JPH0495204A JP H0495204 A JPH0495204 A JP H0495204A JP 2210998 A JP2210998 A JP 2210998A JP 21099890 A JP21099890 A JP 21099890A JP H0495204 A JPH0495204 A JP H0495204A
Authority
JP
Japan
Prior art keywords
nio
substrate material
magnetic
mno
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2210998A
Other languages
Japanese (ja)
Inventor
Norihisa Abiko
安孫子 則久
Yukio Ota
幸雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2210998A priority Critical patent/JPH0495204A/en
Publication of JPH0495204A publication Critical patent/JPH0495204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a magnetic head which has excellent electromagnetic conversion characteristics to a high-hardness recording medium and has a good sliding wear characteristic by using a nonmagnetic substrate material consisting of am MnNiO2 system as the substrate of a thin-film magnetic head. CONSTITUTION:The compsn. of MnO and NiO which are essential components is composed, by molar %, of 20%<MnO<40%, 60%<NiO<80%. This material is so formed that the content of Fe with respect to the essential components is below 0.5wt.% in terms of formula of Fe2O3. Namely, the hardness is enhanced by increasing the ratio of the NiO and the magnetization rate is prevented from increasing by confining the content of the Fe to <0.5%. The nonmagnetic substrate material having the excellent wear resistance is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MnNi0.の非磁性基板材料に関するもの
であり、特に主成分のNiOの比率を高くして硬度を上
げ、摺動摩耗特性を改善した薄膜磁気ヘッド用の非磁性
基板材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to MnNi0. The present invention relates to a non-magnetic substrate material for a thin-film magnetic head, and in particular to a non-magnetic substrate material for a thin-film magnetic head that has a high proportion of NiO as a main component to increase hardness and improve sliding wear characteristics.

(従来の技術) コンピュータ、VTR,PCM録音テープ、電子カメラ
等の高密度記録用のヘッドとして、磁性合金薄膜を非磁
性の基板上に形成した薄膜磁気ヘッドが広く用いられて
いる。
(Prior Art) Thin-film magnetic heads, in which a magnetic alloy thin film is formed on a non-magnetic substrate, are widely used as heads for high-density recording in computers, VTRs, PCM recording tapes, electronic cameras, and the like.

上記非磁性基板の材料のひとつとして、Mn01NiO
またはZnOを主成分とし、岩塩型結晶構造を有する非
磁性基板材料があり、 特許116723号((Z nxM nyN i *−
x−20、)、0≦X≦0.4,0.4≦y≦1.0゜
0、 8≦x+y≦1.0)、特開昭59−908号公
報((Z nxMnyN 1.−x−you) I O
≦X≦0、4. 0.4≦y≦1.Q、  0. 8≦
x + y≦1.0)、及び、特開昭62−12551
号公報(Mn○二67〜90モル%、NiQ:10〜3
3モル%)等が開示されている。
As one of the materials of the non-magnetic substrate, Mn01NiO
Alternatively, there is a non-magnetic substrate material that has ZnO as a main component and has a rock salt crystal structure.
x-20, ), 0≦X≦0.4, 0.4≦y≦1.0゜0, 8≦x+y≦1.0), JP-A-59-908 ((Z nxMnyN 1.- x-you) I O
≦X≦0, 4. 0.4≦y≦1. Q, 0. 8≦
x + y≦1.0) and JP-A-62-12551
Publication No. (Mn○2 67-90 mol%, NiQ: 10-3
3 mol%) etc. are disclosed.

(発明が解決しようとする課題) MnNiO,の基板材料は岩塩型結晶構造を有している
ので、基板上に形成される磁性合金薄膜に近い熱膨張率
を有し、気孔率が低く、加工性に優れ、基板材料として
優れた特性を有している。
(Problem to be solved by the invention) Since the substrate material of MnNiO has a rock salt crystal structure, it has a coefficient of thermal expansion close to that of the magnetic alloy thin film formed on the substrate, has a low porosity, and is easy to process. It has excellent properties as a substrate material.

しかし、最近の著しい高密度記録、高速化に伴う磁気記
録媒体の高硬度化により、上記従来の材料で構成した基
板を用いた薄膜磁気ヘッドでは、磁気媒体に対する摺動
摩耗特性が悪く、ヘッド寿命が短くなるために、更に高
い摺動摩耗特性を有する非磁性基板材料が要求されてき
ている。
However, due to the recent increase in the hardness of magnetic recording media due to remarkable high-density recording and high-speed recording, thin-film magnetic heads using substrates made of the above-mentioned conventional materials have poor sliding abrasion characteristics against the magnetic media, resulting in head lifespans. As the magnetic field becomes shorter, non-magnetic substrate materials with even higher sliding wear characteristics are required.

摺動摩耗特性の改善方法としては、NiOの比率を高く
し、硬度を上げて耐摩耗性を向上することが考えられる
が、従来、非磁性基板材料で一般に用いられているMn
OとNiOの組成範囲よりNiOの比率を高くすると磁
化率が高くなって、磁気ヘッドの基板として必要な非磁
性という特性が損なわれ、実用に供し得なかった。
One possible way to improve sliding wear characteristics is to increase the ratio of NiO to increase hardness and improve wear resistance.
When the ratio of NiO is higher than the composition range of O and NiO, the magnetic susceptibility becomes high, and the nonmagnetic property required as a substrate for a magnetic head is lost, so that it cannot be put to practical use.

(課題を解決するための手段) 本発明は上記課題を解決するために、 薄膜磁気ヘッドの基板に使用され、岩塩型結晶構造を有
するMnNiO2の非磁性基板材料において、 前記非磁性基板材料は、主成分であるMnOとNiOの
組成がモル%で、20%(MnO<40%、60%<N
iOく80%であり、前記主成分に対しFeの含有量が
、Fe2O3の式に換算して0、 5重量%未満である
摺動摩耗特性に優れたことを特徴とする非磁性基板材料
を提供するものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a non-magnetic substrate material of MnNiO2 having a rock salt type crystal structure and used for a substrate of a thin-film magnetic head, the non-magnetic substrate material comprising: The composition of MnO and NiO, which are the main components, is 20% (MnO<40%, 60%<N
A non-magnetic substrate material characterized by excellent sliding abrasion properties, in which the content of Fe is less than 0.5% by weight in terms of the Fe2O3 formula with respect to the main component. This is what we provide.

そして、本発明の非磁性基板材料は、焼結性を改善し粒
径を適度なものにし、あるいは機械加工時の耐チッピン
グ性を向上するために、Y2O3。
The non-magnetic substrate material of the present invention uses Y2O3 in order to improve sintering properties, make the grain size appropriate, or improve chipping resistance during machining.

Cab、AQiOs+ ZrO,等の副成分を適宜1種
または2種以上を含んでいても良い。
It may contain one or more types of subcomponents such as Cab, AQiOs+ZrO, etc. as appropriate.

(作用) MnNiO,の非磁性基板材料は、通常一般に用いられ
ているMnOとN i Oの組成範囲より、N10の比
率を高くすると、硬度は高くなるがその反面、磁化率が
高くなり非磁性材料としての特性が低下する。
(Function) When the non-magnetic substrate material of MnNiO has a higher N10 ratio than the commonly used composition range of MnO and NiO, the hardness increases, but on the other hand, the magnetic susceptibility increases and it becomes non-magnetic. The properties of the material deteriorate.

これは材料中のFe成分量に起因するものと考えられ、
Fe成分量がある範囲を越えると、強磁性体であるFe
とNiが相互に作用しあって、その化合物が磁化を促進
させ、その結果NiOの比率が高い材料の磁化率を高め
るものと推定される。
This is thought to be due to the amount of Fe component in the material,
When the amount of Fe exceeds a certain range, Fe, which is a ferromagnetic material,
It is presumed that NiO and Ni interact with each other, and the compound promotes magnetization, resulting in an increase in the magnetic susceptibility of the material with a high NiO ratio.

そこで、非磁性基板材料に及ぼすFeの含有量の影響を
調べてみると、Fe2O3に換算して0゜5%を境界と
して磁化率に大きな変化があり、0゜5%未満であれば
磁気ヘッド基板として何等支暉の無いことが分かった。
Therefore, when we investigated the effect of the Fe content on the nonmagnetic substrate material, we found that there was a large change in magnetic susceptibility at the boundary of 0°5% in terms of Fe2O3, and if it was less than 0°5%, the magnetic head It turned out that there was no problem as a board.

尚、本発明での主成分MnO,NiOの数値限定の理由
は次のとうりである。
The reason for limiting the numerical values of the main components MnO and NiO in the present invention is as follows.

モル%で、NiO量を60%を越え(MnOを40%未
満)80%未満(MnOを20%を越え)としたのは、
NiOが6o%以下では硬度が上がらないために、摺動
摩耗特性の向上が期待出来ず、80%以上ではMnNi
0.全体の実質的な岩塩型の結晶構造が崩れ、NiOの
一部が単独の岩塩型構造を形成し、焼結性が損われ気孔
率が高くなり、薄膜磁気ヘッド基板としての機能が損わ
れるためである。
In mole%, the NiO amount was set to more than 60% (MnO less than 40%) and less than 80% (MnO more than 20%).
If NiO is less than 60%, the hardness will not increase, so no improvement in sliding wear properties can be expected, and if NiO is more than 80%, MnNi
0. The overall rock-salt-type crystal structure collapses, and a portion of NiO forms an individual rock-salt-type structure, which impairs sinterability and increases porosity, impairing its function as a thin-film magnetic head substrate. It is.

(実施例) (実施例1) M n CO、とN i OのyX料をそれぞれモル%
で、MnO:15%〜50%、NiO:50〜85%の
組成範囲になるように秤量し、更に焼結助剤としてAQ
203を全体量の2重量%秤量、配合し、純水を加えて
ボールミル中で4時間混合した。混合に使用したボール
ミルはFeのコンタミを抑えるためにAQ20.製のも
のを使用した。次に還元雰囲気中(N2)で850℃X
4hrの仮焼後。
(Example) (Example 1) yX materials of M n CO and N i O were each mole%
Then, the composition was weighed to have a composition range of MnO: 15% to 50% and NiO: 50 to 85%, and AQ was added as a sintering aid.
203 was blended in an amount of 2% by weight based on the total amount, pure water was added, and the mixture was mixed in a ball mill for 4 hours. The ball mill used for mixing was AQ20. I used the one made by. Next, in a reducing atmosphere (N2) at 850℃
After 4 hours of calcination.

再度前と同様のAQ20.製のボールミルで48hr粉
砕し、そして、油圧プレスで30X40X15(単位m
m)のブロック形状に3ton/a(の圧力で成形した
。その後N、雰囲気中で1300℃×4hrで焼結し、
11000atの圧力の下で1240”CX1hrのH
IP処理を行なった。
AQ20 again as before. It was ground for 48 hours in a ball mill made by the company, and then 30X40X15 (unit: m) was crushed in a hydraulic press.
It was molded into a block shape with a pressure of 3 ton/a (m). After that, it was sintered at 1300°C for 4 hours in a N atmosphere.
1240”CX1hr H under 11000at pressure
IP processing was performed.

基板材料となる得られた焼結体の主成分M n OとN
iOの組成と熱膨張率、硬度の測定結果、気孔率の評価
を表1に示す。尚、この時のFe、0゜換算のFeの含
有量は主成分に対して、0.2重量%以下であった。
The main components M n O and N of the obtained sintered body, which becomes the substrate material
Table 1 shows the composition of iO, the coefficient of thermal expansion, the measurement results of hardness, and the evaluation of porosity. Incidentally, the content of Fe at this time, calculated as 0°, was 0.2% by weight or less based on the main component.

熱膨張率は上記組成範囲では、Fe−AQ−5i系の金
属軟磁性薄膜の熱膨張率145X10−″に近く特に問
題はない。
In the above composition range, the thermal expansion coefficient is close to that of the Fe-AQ-5i metal soft magnetic thin film, 145 x 10-'', and there is no particular problem.

しかし、NiOが60モル%以下になると必要とする値
まで硬度が上がらず、NiOが80モル%以上になると
焼結性が悪くなって気孔率が少し高くなり、更に、85
%になると基板としては実用上使用できない。
However, if the NiO content is less than 60 mol%, the hardness will not rise to the required value, and if the NiO content is more than 80 mol%, the sinterability will be poor and the porosity will be slightly high.
%, it cannot be practically used as a substrate.

従ッテ、60(NiOく80モル%(20(Mno<4
0モル%)の範囲であれば、硬度、熱膨張率、焼結性の
点で実用上問題がない。
60 (NiO x 80 mol% (20 (Mno<4
0 mol %), there is no practical problem in terms of hardness, coefficient of thermal expansion, and sinterability.

第1表 (実施例2) NiOがモル%で、50,60.75%、MnOがモル
%でそれぞれ50,40.25%の組成範囲になるよう
に秤量し、更に、鉄製のボールミルを使用したときのF
eのコンタミ量は、Fe。
Table 1 (Example 2) NiO was weighed to have a composition range of 50 and 60.75% in mole%, and MnO was in a composition range of 50 and 40.25% in mole%, respectively, and an iron ball mill was used. F when
The amount of contamination of e is Fe.

0、換算で主成分に対し1.5〜2.0重量%であるこ
とを考慮し、Fe2O3を0. 2.0. 5゜0、 
7. 1.0. 2. 0重量%(wt%)になるよう
に添加、配合した以外は、実施例1と同様の方法により
基板材料の焼結体を製作しFe2O3の含有量の影響を
検討した。
Considering that it is 1.5 to 2.0% by weight based on the main component in terms of 0.0. 2.0. 5゜0,
7. 1.0. 2. A sintered body of the substrate material was produced in the same manner as in Example 1, except that Fe2O3 was added and blended so as to be 0% by weight (wt%), and the influence of the content of Fe2O3 was examined.

第1図はFe、0.に換算したFe含有量(wt%)を
パラメーターとして、横軸をNiOのモル比、縦軸をそ
の時の焼結体の磁化率とし、磁化率の傾向を表わしたグ
ラフである。
Figure 1 shows Fe, 0. This is a graph showing the tendency of the magnetic susceptibility, using the Fe content (wt%) as a parameter, the horizontal axis representing the molar ratio of NiO, and the vertical axis representing the magnetic susceptibility of the sintered body at that time.

第1図のグラフより、Fe2O3の含有量が0゜5重量
%以上になると磁化率が急激に高くなり、また、NiO
の比率が多くなるに従って、磁化率に及ぼすFeよ0.
の影響は強くなることが分かる。
From the graph in Figure 1, the magnetic susceptibility increases rapidly when the content of Fe2O3 exceeds 0.5% by weight, and the
As the ratio of Fe increases, the effect of Fe on the magnetic susceptibility decreases.
It can be seen that the influence of

しかし、NiOが80モル%未溝の範囲であれば、Fe
2O3を0.5重量%未満とすることにより、非磁性基
板とし通常要求される5(G)より小さい飽和磁化に抑
えることができる。
However, if NiO is in the range of 80 mol% ungrooved, Fe
By controlling 2O3 to less than 0.5% by weight, the saturation magnetization can be suppressed to less than 5 (G), which is normally required for a nonmagnetic substrate.

(実施例3) 実施例1のNiOが50.60.75モル%の焼結体か
ら、2XIX0.1mmの寸法にブロックを切りだし、
IXo、1mm面がテーブルの摺動面になるようにチッ
プベースに接着しダミーヘッドを作成した。このダミー
ヘッドをVTRデツキに装着し、室温下で走行させテー
プ摺動摩耗試験を行なった。摺動摩耗の測定はダミーヘ
ッドのシリンダーからの突き出し量を測定し、その変化
量を摩耗量として評価した。
(Example 3) A block with dimensions of 2XIX0.1 mm was cut from the sintered body of Example 1 containing 50.60.75 mol% of NiO, and
A dummy head was created by adhering IXo to a chip base so that the 1 mm surface became the sliding surface of the table. This dummy head was mounted on a VTR deck and run at room temperature to perform a tape sliding wear test. Sliding wear was measured by measuring the amount of protrusion of the dummy head from the cylinder, and the amount of change was evaluated as the amount of wear.

第2図は上記方法により評価したテープの走行時間と各
種のダミーヘッドの摩耗量との関係を示したものであり
、比較例として同形状に加工したフェライト単結晶(結
晶方位[211]面)の例も記載しである。
Figure 2 shows the relationship between the running time of the tape and the amount of wear of various dummy heads evaluated by the above method.As a comparative example, a ferrite single crystal processed into the same shape (crystal orientation [211] plane) is shown. An example is also given.

MnOとNiOのモル比が同じで、ビッカース硬度が概
略650前後と低い焼結体では、走行時間が50(H)
と短い時間でも摩耗量が大きい。
For a sintered body with the same molar ratio of MnO and NiO and a low Vickers hardness of around 650, the running time is 50 (H).
The amount of wear is large even in a short period of time.

しかし、NiOの含有量が多くなり、硬度が高くなるに
従って摩耗量が減少し、NiOが75モル%、MnOが
25モル%の焼結体では、単結晶フェライト以下の摩耗
量になることが分かる。
However, it can be seen that as the NiO content increases and the hardness increases, the wear amount decreases, and in a sintered body containing 75 mol% NiO and 25 mol% MnO, the amount of wear becomes less than that of single-crystal ferrite. .

(発明の効果) 本発明のMnNiO,系の非磁性基板材料を薄膜磁気ヘ
ッドの基板として用いることにより、高密度記録、高速
化に伴う高硬度の記録媒体に対し、電磁変換特性に優れ
、摺動摩耗特性の良好な磁気ヘツ7ドを得ることができ
る。
(Effects of the Invention) By using the MnNiO-based nonmagnetic substrate material of the present invention as a substrate of a thin film magnetic head, it has excellent electromagnetic conversion characteristics and is suitable for highly hard recording media that accompany high-density recording and high-speed recording. A magnetic head with good dynamic wear characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFe2O3に換算したFeの含有量をパラメー
タとした時の、NiOのモル比と焼結体の磁化率との関
係を表わす図、第2図は本発明材と従来の単結晶フェラ
イト材料による焼結体の摺動摩耗特性の比較を示した図
である。
Figure 1 shows the relationship between the NiO molar ratio and the magnetic susceptibility of the sintered body when the Fe content converted to Fe2O3 is used as a parameter, and Figure 2 shows the relationship between the present invention material and conventional single crystal ferrite. FIG. 3 is a diagram showing a comparison of sliding wear characteristics of sintered bodies depending on materials.

Claims (1)

【特許請求の範囲】  薄膜磁気ヘッドの基板に使用され、岩塩型結晶構造を
有するMnNiO_2の非磁性基板材料において、 前記非磁性基板材料は、主成分であるMnOとNiOの
組成がモル%で、20%<MnO<40%、60%<N
iO<80%であり、前記主成分に対しFeの含有量が
、Fe_2O_3の式に換算して0.5重量%未満であ
る摺動摩耗特性に優れたことを特徴とする非磁性基板材
料。
[Claims] In a non-magnetic substrate material of MnNiO_2 having a rock salt crystal structure and used for a substrate of a thin-film magnetic head, the non-magnetic substrate material has a composition of main components MnO and NiO in mol%, 20%<MnO<40%, 60%<N
A non-magnetic substrate material characterized in that iO<80%, and the content of Fe is less than 0.5% by weight based on the formula of Fe_2O_3, and has excellent sliding wear characteristics.
JP2210998A 1990-08-09 1990-08-09 Nonmagnetic substrate material Pending JPH0495204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2210998A JPH0495204A (en) 1990-08-09 1990-08-09 Nonmagnetic substrate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2210998A JPH0495204A (en) 1990-08-09 1990-08-09 Nonmagnetic substrate material

Publications (1)

Publication Number Publication Date
JPH0495204A true JPH0495204A (en) 1992-03-27

Family

ID=16598635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210998A Pending JPH0495204A (en) 1990-08-09 1990-08-09 Nonmagnetic substrate material

Country Status (1)

Country Link
JP (1) JPH0495204A (en)

Similar Documents

Publication Publication Date Title
JPS61158862A (en) Magnetic head slider material
KR910009974B1 (en) High saturated magnetic flux density alloy
JPH0495204A (en) Nonmagnetic substrate material
US4298381A (en) Abrasion-resistive high permeability magnetic alloy
KR0142702B1 (en) Nonmagnetic ceramic substrate for magnetic head and the manufacturing method
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
CN1201990A (en) Single crystalline Mn-Zn-Based ferrite material and high-frequency mangetic head
JP3150829B2 (en) Ferromagnetic amorphous ferrite thin film and method for producing the same
US4750951A (en) Amorphous alloy for magnetic heads
JPS6156185B2 (en)
US5404259A (en) Magnetic head having high wear resistance and non-magnetic substrate used in the magnetic head
JPH0567311A (en) Nonmagnetic substrate material and thin film magnetic head
JPS5644751A (en) Amorphous magnetic material
JPH10275724A (en) Non-magnetic material for magnetic head
JPH06333725A (en) High-density ferrite
EP0510202A1 (en) Amorphous soft magnetic material
JPH03146456A (en) Nonmagnetic substrate material
JPS59145760A (en) Free cutting alloy with high magnetic permeability
JPH0153338B2 (en)
JP3019400B2 (en) Amorphous soft magnetic material
JPH01290207A (en) Oxide magnetic material
JPS59145762A (en) Free cutting alloy with high magnetic permeability
JPH01232506A (en) Magnetic head for magnetic tape
JPH01269208A (en) Magnetic head
KR0136419B1 (en) Soft magnetic alloy thin film substrate