JPH0494722A - Method and device for desulfurizing waste gas - Google Patents

Method and device for desulfurizing waste gas

Info

Publication number
JPH0494722A
JPH0494722A JP2214034A JP21403490A JPH0494722A JP H0494722 A JPH0494722 A JP H0494722A JP 2214034 A JP2214034 A JP 2214034A JP 21403490 A JP21403490 A JP 21403490A JP H0494722 A JPH0494722 A JP H0494722A
Authority
JP
Japan
Prior art keywords
desulfurization
gas
reaction tower
exhaust gas
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2214034A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nishimura
泰行 西村
Hiroyuki Kako
宏行 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2214034A priority Critical patent/JPH0494722A/en
Publication of JPH0494722A publication Critical patent/JPH0494722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent water condensation on the wall of a desulfurization tower and on the wall on the downstream side of the tower by making the gas temp. on the center side lower than that on the wall surface side in the direction vertical to the gas flow. CONSTITUTION:An opening is provided on the upstream and downstream sides of the gas flow in a desulfurization tower 4, and a gas flow dividing member 100 is provided to divide the gas flow into the wall surface and center sides of the tower. Water spray nozzles 101 and 102 for supplying atomized water to the divided waste gas flows respectively close to the opening of the member 100 on the upstream side. Water is sprayed from the nozzle 101 at the center of the tower and the nozzle 102 on the wall surface side. Consequently, the gas temp. at the center is made lower than that on the wall surface side, condensation of water on the tower wall and on the wall on the downstream side of the tower is prevented, and high desulfurization efficiency is attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルカリまたはアルカリ土類金属の酸化物また
は水酸化物のうち一種類以」二を脱硫剤として用いる脱
硫装置に係り、特に脱硫性能向上法に関するものである
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a desulfurization device using one or more oxides or hydroxides of alkali or alkaline earth metals as a desulfurization agent, and particularly relates to desulfurization equipment that uses as a desulfurization agent It is about improvement methods.

[従来の技術] 火力発電所における重油焚、石炭焚ボイラから411出
される排ガス中には、硫黄化合物(SOx)やHCff
などの酸性有害物質が通常、100〜3000ppmの
割合で含まれており、酸性雨や光化学スモッグの原因物
質とされるため、その効果的な処理手段が望まれている
。従来から湿式法(例えば石灰石−石膏法)または乾式
法(活性炭法)が実施されている。湿式法は有害物質の
除去率が高い反面、廃水処理が困難で、排ガスを再加熱
する必要があり、設備費や運転費か高く、乾式法では高
い除去率が得られないという問題があった。
[Conventional technology] The exhaust gas emitted from heavy oil-fired and coal-fired boilers in thermal power plants contains sulfur compounds (SOx) and HCff.
Generally, acidic harmful substances such as 100 to 3000 ppm are contained, and are considered to be the causative agents of acid rain and photochemical smog, so effective treatment means are desired. Conventionally, wet methods (e.g. limestone-gypsum method) or dry methods (activated carbon method) have been practiced. While the wet method has a high removal rate of harmful substances, it has problems in that it is difficult to treat wastewater, requires reheating the exhaust gas, has high equipment and operating costs, and cannot achieve a high removal rate with the dry method. .

このため、無排水の低コス1〜プロセスで高い除去率か
得られる脱硫方法の開発が望まれている。
For this reason, there is a desire to develop a desulfurization method that provides a high removal rate in a waste-free, low-cost process.

ボイラなとの排ガスの脱硫法としては、上記方法のほか
に、消石灰やそのスラリを排ガス中に噴霧する半乾式法
や火炉内あるいは煙道内の高温ガス中に石灰石を直接分
散させて酸性有害物質を除去する乾式法が提案されてお
り、設備費や運転費が安いという特徴を有しているが、
いずれの方法も除去率が低いという問題がある。
In addition to the above methods, desulfurization methods for exhaust gas from boilers include a semi-dry method in which slaked lime or its slurry is sprayed into the exhaust gas, and a method in which limestone is directly dispersed in the hot gas in the furnace or flue to remove acidic harmful substances. A dry method has been proposed to remove
Both methods have the problem of low removal rates.

消石灰や生石灰を排ガス中に噴霧して排ガス中のSOヶ
と反応させ、これを集塵装置で除去する方法の代表的な
フローシートを第4図に示す。ボイラ1からの排ガス2
はエアヒータ3で温度を下げられ、脱硫反応塔4に導か
れる。消石灰などの脱硫剤5は煙道6または脱硫反応塔
4内に噴霧して供給され、この時水も供給されることに
より排ガスの温度を下げ、湿度を上げる。この除水は脱
硫剤5と別に供給しても、脱硫剤5をスラリとして同時
に供給してもよい。反応した脱硫剤5は排ガス中の灰と
ともに集塵装置8で捕集され、廃棄される。このような
方法において、酸性有害物質の除去率は排ガス中の水分
(相対湿度)が支配的であるとされている。すなわち酸
性有害物質の除去率を上けるためには、排ガスの温度を
下(ツ゛、水分濃度を上けることか必要である。水分濃
度を上げるなめに、水や消石灰スラリを噴霧する方法が
提案されているが、このような排ガス中の水分濃度を上
げる方法は水の凝縮等の運転操作上、限界があるため、
SOX除去率の向上は十分てはない。
FIG. 4 shows a typical flow sheet of a method in which slaked lime or quicklime is sprayed into exhaust gas to react with SO in the exhaust gas, and then removed by a dust collector. Exhaust gas 2 from boiler 1
is lowered in temperature by an air heater 3 and guided to a desulfurization reaction tower 4. A desulfurizing agent 5 such as slaked lime is supplied by spraying into the flue 6 or the desulfurizing reaction tower 4, and water is also supplied at this time to lower the temperature of the exhaust gas and increase the humidity. This water removal may be supplied separately from the desulfurizing agent 5, or the desulfurizing agent 5 may be supplied simultaneously as a slurry. The reacted desulfurizing agent 5 is collected together with ash in the exhaust gas by a dust collector 8 and discarded. In such a method, the removal rate of acidic harmful substances is said to be dominated by moisture (relative humidity) in the exhaust gas. In other words, in order to increase the removal rate of acidic harmful substances, it is necessary to lower the exhaust gas temperature (or increase the moisture concentration).In order to increase the moisture concentration, a method of spraying water or slaked lime slurry has been proposed. However, this method of increasing the water concentration in exhaust gas has limitations in terms of operation, such as water condensation.
The improvement in SOX removal rate is not sufficient.

SOy除去率が低い場合は、集塵装W8によって捕集さ
れた未反応の脱硫剤5を含む粒子に水や蒸気を添加し、
表面に形成された反応生成物の殻を破壊した後、この一
部を再び排ガス中に噴霧することによって除去率を向上
する方法も提案されている(例えば、米国特許明細書第
3431289号、特開昭6135827号)。しかし
、集塵装置8て捕集された未反応の脱硫剤5を含む粒子
をリサイクルする場合、集塵装置8て処理しなければな
らない粒子量が増加し、集塵装置8の処理容量を増やさ
なければならなくなる。また、リサイクルのための設備
も必要になるため、設備費や運転費も高くなるという問
題があった。
If the SOy removal rate is low, water or steam is added to the particles containing the unreacted desulfurization agent 5 collected by the dust collector W8,
A method has also been proposed in which the removal rate is improved by destroying the shell of the reaction product formed on the surface and then spraying a part of it back into the exhaust gas (for example, U.S. Pat. No. 3,431,289, esp. No. 6135827). However, when recycling particles containing unreacted desulfurizing agent 5 collected by the dust collector 8, the amount of particles that must be treated by the dust collector 8 increases, and the processing capacity of the dust collector 8 must be increased. I will have to. Furthermore, since equipment for recycling is also required, there is a problem in that equipment costs and operating costs become high.

[発明が解決しようとする課題] 上記従来の技術技術の項に記載した消石灰や生石灰を排
ガス中に噴霧して排ガスの脱硫処理方法において、酸性
有害物質の除去率を上げるためには、排ガス中の水分濃
度を上げる方法は水の凝縮等の運転操作上、限界がある
と述べた。それは、脱硫反応塔壁の水の凝縮および脱硫
反応塔下流壁の水の凝縮によりスケール等のトラブルが
生じるからである。そのため脱硫率が低くなり、装置コ
ストが高価になる問題があった。
[Problems to be Solved by the Invention] In the method for desulfurizing exhaust gas by spraying slaked lime or quicklime into the exhaust gas described in the section of the prior art, in order to increase the removal rate of acidic harmful substances, it is necessary to He stated that there are limits to the method of increasing the water concentration in terms of operation, such as water condensation. This is because troubles such as scaling occur due to condensation of water on the walls of the desulfurization reaction tower and condensation of water on the downstream walls of the desulfurization reaction tower. Therefore, there was a problem that the desulfurization rate was low and the equipment cost was high.

そこで本発明の目的は、排ガス中に脱硫剤を噴霧する排
ガス脱硫処理方法において、排ガス中の水分濃度を上げ
るなからも脱硫反応塔壁および脱硫反応塔下流壁の水の
凝縮を防止し、同時に高い脱硫率を得る簡易排ガス脱硫
方法を提供することである。
Therefore, an object of the present invention is to prevent the condensation of water on the walls of the desulfurization reaction tower and the downstream wall of the desulfurization reaction tower without increasing the moisture concentration in the exhaust gas, in an exhaust gas desulfurization treatment method in which a desulfurization agent is sprayed into the exhaust gas. An object of the present invention is to provide a simple exhaust gas desulfurization method that achieves a high desulfurization rate.

[課題を解決するための手段] 本発明の上記目的は、次の構成により達成される。[Means to solve the problem] The above object of the present invention is achieved by the following configuration.

すなわち、アルカリ金属系またはアルカリ土類金属系化
合物を含む脱硫剤を燃焼装置内または燃焼装置から排出
される排ガス煙道に供給した後に脱硫反応塔に導き、排
ガス中の硫黄酸化物を除去する排ガス脱硫方法において
、 脱硫反応塔への水の噴霧量により、該脱硫反応塔内のガ
ス流方向の垂直断面に対して、該脱硫反応塔壁面側のガ
ス流のガス温度よりも該脱硫反応塔内のガス流の中心部
側のガス温度を低くする排ガス脱硫方法、または、 アルカリ金属系またはアルカリ土類金属系化合物を含む
脱硫剤を燃焼装置内または燃焼装置から排出される排ガ
ス煙道に供給した後に脱硫反応塔に導き、排ガス中の硫
黄酸化物を除去し、反応後の脱硫剤を排ガス中の灰とと
もに集塵装置で集塵する排ガス脱硫装置において、 該脱硫反応塔内のガス流の上流側と下流側には開口部を
設け脱硫反応塔の壁面側と中心部側とにガス流を分流す
るガス流分流用部材と、該ガス流分流用部材のガス流上
流側てあって、壁面側と中心部側の開口部近傍には前記
分流された排ガスに噴霧状の水をそれぞれ供給する水噴
霧用ノズルと、を設けた排ガス脱硫装置、 である。
In other words, a desulfurizing agent containing an alkali metal or alkaline earth metal compound is supplied into the combustion equipment or into the exhaust gas flue discharged from the combustion equipment, and then introduced into the desulfurization reaction tower to remove sulfur oxides from the flue gas. In the desulfurization method, depending on the amount of water sprayed into the desulfurization reaction tower, the temperature inside the desulfurization reaction tower is lower than the gas temperature of the gas flow on the wall surface side of the desulfurization reaction tower with respect to a vertical cross section in the gas flow direction within the desulfurization reaction tower. An exhaust gas desulfurization method that lowers the gas temperature at the center of the gas stream, or a desulfurization agent containing an alkali metal or alkaline earth metal compound is supplied into the combustion equipment or into the exhaust gas flue discharged from the combustion equipment. In the flue gas desulfurization equipment, which is then led to the desulfurization reaction tower, removes sulfur oxides in the flue gas, and collects the desulfurization agent after the reaction together with the ash in the flue gas in a dust collector, the gas flow upstream of the desulfurization reaction tower is a gas flow diversion member having openings on the side and downstream sides and dividing the gas flow between the wall side and the center side of the desulfurization reaction tower; The exhaust gas desulfurization apparatus is provided with water spray nozzles for supplying atomized water to the separated exhaust gas, respectively, near the openings on the side and center sides.

[作用] ガス中の相対湿度を高めると脱硫性能は向上するか、脱
硫反応塔壁の水の凝縮および脱硫反応塔下流壁の水の凝
縮等が生じる。この防止のため、ガス流方向の垂直断面
方向に対して、壁面側のガス温度よりもガス中心部側の
方向く壁面より遠い位置)のガス温度を低くする。この
ガス中心部の温度は飽和温度Tsよりも高く、飽和温度
Ts+15℃よりも低くする。
[Function] Increasing the relative humidity in the gas improves the desulfurization performance or causes condensation of water on the wall of the desulfurization reaction tower and condensation of water on the downstream wall of the desulfurization reaction tower. In order to prevent this, the gas temperature in the gas center side (a position farther from the wall surface) is made lower than the gas temperature on the wall surface side with respect to the vertical cross-sectional direction of the gas flow direction. The temperature of this gas center is higher than the saturation temperature Ts and lower than the saturation temperature Ts+15°C.

[実施例] 本発明は、下記の実施例によって、さらに詳細に説明さ
れるが、下記の例で制限されるものではない。
[Examples] The present invention will be explained in more detail by the following examples, but is not limited thereto.

実施例1 脱硫剤として消石灰を用い、石炭焚ボイラの排ガスを脱
硫処理する場合について、本発明法による装置を適用し
た実施例を説明する。
Example 1 An example will be described in which an apparatus according to the present invention is applied to desulfurize exhaust gas from a coal-fired boiler using slaked lime as a desulfurization agent.

第1図において、ボイラ1からの排ガス2はエアヒータ
3て温度を下げられ、脱硫反応塔4に導かれる。脱硫剤
5はノズル1]よりエアヒータ3と脱硫反応塔4間の煙
道6に噴霧される。脱硫剤5は煙道6を経て脱硫反応塔
4内に導かれる。
In FIG. 1, exhaust gas 2 from a boiler 1 is lowered in temperature by an air heater 3, and is led to a desulfurization reaction tower 4. The desulfurizing agent 5 is sprayed from the nozzle 1 into the flue 6 between the air heater 3 and the desulfurizing reaction tower 4. The desulfurization agent 5 is introduced into the desulfurization reaction tower 4 through a flue 6.

脱硫反応塔4内では第2図に示ずように、脱硫反応塔4
内のガス流の上流側と下流側には開口部を設け、脱硫反
応塔の壁面側と中心部側とのガス流を分流するガス流分
流用部材100か設けられ、ガス流分流用部材100の
上流側開口部近傍には前記分流された排ガスに噴霧状の
水を供給する水噴霧用ノズル101.10’2をそれぞ
れ設りる。
In the desulfurization reaction tower 4, as shown in FIG.
Openings are provided on the upstream and downstream sides of the gas flow in the desulfurization reaction tower, and a gas flow diversion member 100 is provided to divide the gas flow between the wall side and the center side of the desulfurization reaction tower. Water spray nozzles 101, 10'2 for supplying atomized water to the separated exhaust gas are provided near the upstream openings of the exhaust gases.

水を脱硫反応塔中央部のノズル101および脱硫反応塔
壁面部のノズル102から噴霧することにより、排ガス
中の温度を下げる。このとき脱硫反応塔4壁面領域ての
温度T2と脱硫反応塔4内部側の領域での温度T1は次
の関係となるようにノズル101および102の調節ハ
ルツ111および112により水の流層を調整する。
By spraying water from a nozzle 101 at the center of the desulfurization reaction tower and a nozzle 102 at the wall of the desulfurization reaction tower, the temperature in the exhaust gas is lowered. At this time, the flow layer of water is adjusted by adjusting the nozzles 101 and 102 by adjusting Hartz 111 and 112 so that the temperature T2 in the wall area of the desulfurization reaction tower 4 and the temperature T1 in the inner area of the desulfurization reaction tower 4 have the following relationship. do.

Ts<Tl<Ts+15℃ Tl<T2 (TS :排ガス中の断熱飽和温度) 脱硫反応塔4内で脱硫剤5はSO2等の酸性有毒ガスと
反応し、反応した脱硫剤5は排ガス2中の灰とともに集
塵装置8で捕集され、廃棄される。
Ts<Tl<Ts+15°C Tl<T2 (TS: adiabatic saturation temperature in exhaust gas) In the desulfurization reaction tower 4, the desulfurization agent 5 reacts with acidic toxic gas such as SO2, and the reacted desulfurization agent 5 turns into ash in the exhaust gas 2. They are also collected by the dust collector 8 and discarded.

水を噴霧する際、脱硫率をより向上させるため、煙道6
、脱硫反応塔4内または集塵装置8内に温度センサ、露
点計、湿度計、水分計等を取り付け、その信号により水
の供給を制御する。こうして、装置内での凝縮を防止し
ながら、排ガスの温度をさらに下げ、湿度を上げること
も可能である。
When spraying water, the flue 6
A temperature sensor, a dew point meter, a hygrometer, a moisture meter, etc. are installed in the desulfurization reaction tower 4 or the dust collector 8, and the supply of water is controlled based on the signals thereof. In this way, it is possible to further lower the temperature and increase the humidity of the exhaust gas while preventing condensation within the device.

この装置を用いて、A炭(排ガス中のSO2濃度101
000ppを燃焼したときの脱硫性能を測定した。ただ
し、脱硫剤は消石灰を用い、消石灰を排ガス中に含まれ
るSO2に対しモル比で2倍(以下、Ca/S=2と略
す。)添加した。また、脱硫反応塔4内のT1=60℃
、T2=75℃になるように水をノズル101,102
から噴霧した。ボイラ1出口および集塵装置8出口にお
いて、ガス中の水分を除去した後、SO2濃度を測定し
たところそれぞれ11000ppおよび150ppmで
あった。すなわち、排力゛ス中のSC2の内85%が除
去されたことになる。
Using this device, coal A (SO2 concentration in exhaust gas 101
The desulfurization performance was measured when 000pp was burned. However, slaked lime was used as the desulfurization agent, and the slaked lime was added at a molar ratio twice that of SO2 contained in the exhaust gas (hereinafter abbreviated as Ca/S=2). In addition, T1 in the desulfurization reaction tower 4 = 60°C
, water is poured into the nozzles 101, 102 so that T2=75°C.
It was sprayed from. After removing moisture from the gas at the boiler 1 outlet and dust collector 8 outlet, SO2 concentrations were measured and found to be 11,000 ppm and 150 ppm, respectively. In other words, 85% of the SC2 in the exhaust gas was removed.

実施例2 実施例]と同一の装置を用いて、同一条件で脱硫率を測
定しな。ただし、脱硫反応塔4内のT1上58℃、T2
上75℃になるように水をノズル101.102から噴
霧しな。
Example 2 The desulfurization rate was measured under the same conditions using the same equipment as in Example. However, 58°C above T1 in the desulfurization reaction tower 4, T2
Spray water from nozzles 101 and 102 so that the temperature is above 75°C.

この時は、集塵装置8出口におけるSO2濃度は]、 
20 p p mであり、脱硫率88%が得られた。
At this time, the SO2 concentration at the exit of the dust collector 8 is]
20 ppm, and a desulfurization rate of 88% was obtained.

実施例3 実施例1と同一の装置を用いて、同一条件で脱硫率を測
定した。たたし、脱硫反応塔4内のT2上75℃一定に
なるようにし、T1の温度を55〜70℃になるように
水の噴霧量を変化させることにより、T1温度と脱硫率
との関係を調べた。
Example 3 Using the same apparatus as in Example 1, the desulfurization rate was measured under the same conditions. However, by keeping T2 in the desulfurization reaction tower 4 constant at 75°C and changing the amount of water sprayed so that the temperature of T1 becomes 55 to 70°C, the relationship between T1 temperature and desulfurization rate can be determined. I looked into it.

その結果を第3図に示す。。The results are shown in FIG. .

T1温度か小さいほど脱硫率が高くなる傾向がある。The lower the T1 temperature, the higher the desulfurization rate tends to be.

比較例 第4図に示した従来技術に基つく装置を用いて、A炭に
ついて実施例1と同じ条件で脱硫率を測定した。ただし
、脱硫反応塔4内のガス温度は70℃とした。
Comparative Example The desulfurization rate of coal A was measured under the same conditions as in Example 1 using a device based on the prior art shown in FIG. However, the gas temperature in the desulfurization reaction tower 4 was 70°C.

ボイラ1出口および集塵装置8出口において、ガス中の
水分を除去した後、SO2濃度を測定したところそれぞ
れ11000ppおよび400ppmであった。すなわ
ち、排ガス中のSC2の内60%が除去されたことにな
る。
After removing moisture from the gas at the boiler 1 outlet and dust collector 8 outlet, SO2 concentrations were measured and found to be 11,000 ppm and 400 ppm, respectively. That is, 60% of SC2 in the exhaust gas was removed.

このように脱硫反応塔4内の排ガス温度を制御しない脱
硫装置は本発明法による脱硫装置に比較して脱硫率が低
くなっている。
As described above, the desulfurization equipment that does not control the exhaust gas temperature in the desulfurization reaction tower 4 has a lower desulfurization rate than the desulfurization equipment using the method of the present invention.

以上の実施例では脱硫剤として消石灰の例を示したが、
そのほか生石灰や水酸化す)・リウム、炭酸すI〜リウ
ム等のアルカリおよびアルカリ土類金属の酸化物、水酸
化物および炭酸塩等が用いられる。
In the above examples, slaked lime was used as a desulfurizing agent, but
In addition, oxides, hydroxides, and carbonates of alkali and alkaline earth metals, such as quicklime, hydroxide, and carbonate, are used.

[発明の効果コ 本発明によれば、脱硫反応壁温は高温ガスを流通させて
、水の凝縮を防止し、脱硫反応塔内に相対湿度を70〜
100%を保持する部を維持することができるため、高
い脱硫率が得られる。
[Effects of the Invention] According to the present invention, the desulfurization reaction wall temperature is reduced by circulating high-temperature gas to prevent water condensation and keep the relative humidity within the desulfurization reaction tower at 70~70°C.
A high desulfurization rate can be obtained because it is possible to maintain a portion that maintains 100%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例におりる脱硫装置のフローシ
ートである。第2図は本発明の他の実施例における脱硫
反応塔の概略図である。第3図はガス温度T1と脱硫率
の関係、第4図は従来の脱硫装置のフローシートである
。 1・・・ボイラ、2・・・排ガス、3・・・エアヒータ
、4・・・脱硫反応塔、5・・・脱硫剤、11・・・脱
硫剤噴霧ノズル、100・ガス流分流用部材 出願人 バブコック日立株式会社 代理人 弁理士 松永孝義 はか1名 (%)*碧禰
FIG. 1 is a flow sheet of a desulfurization apparatus according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a desulfurization reaction tower in another embodiment of the present invention. FIG. 3 shows the relationship between gas temperature T1 and desulfurization rate, and FIG. 4 shows a flow sheet of a conventional desulfurization apparatus. DESCRIPTION OF SYMBOLS 1...Boiler, 2...Exhaust gas, 3...Air heater, 4...Desulfurization reaction tower, 5...Desulfurization agent, 11...Desulfurization agent spray nozzle, 100. Application for gas flow diversion member Person Babcock Hitachi Co., Ltd. Representative Patent Attorney Takayoshi Matsunaga Haka1 person (%) * Aoi

Claims (5)

【特許請求の範囲】[Claims] (1)アルカリ金属系またはアルカリ土類金属系化合物
を含む脱硫剤を燃焼装置内または燃焼装置から排出され
る排ガス煙道に供給した後に脱硫反応塔に導き、排ガス
中の硫黄酸化物を除去する排ガス脱硫方法において、 脱硫反応塔への水の噴霧量により、該脱硫反応塔内のガ
ス流方向の垂直断面に対して、該脱硫反応塔壁面側のガ
ス流のガス温度よりも該脱硫反応塔内のガス流の中心部
側のガス温度を低くすることを特徴とする排ガス脱硫方
法。
(1) A desulfurizing agent containing an alkali metal or alkaline earth metal compound is supplied into the combustion equipment or into the exhaust gas flue discharged from the combustion equipment, and then introduced into the desulfurization reaction tower to remove sulfur oxides from the exhaust gas. In the flue gas desulfurization method, the amount of water sprayed into the desulfurization reaction tower is such that the temperature of the gas stream on the wall side of the desulfurization reaction tower is lower than the gas temperature of the gas flow on the wall surface side of the desulfurization reaction tower with respect to a vertical cross section in the gas flow direction within the desulfurization reaction tower. An exhaust gas desulfurization method characterized by lowering the gas temperature at the center of the gas flow.
(2)脱硫反応塔内のガス流の中心部側のガス温度は飽
和温度Tsよりも高く、飽和温度Ts+15℃よりも低
くすることを特徴とする請求項1記載の排ガス脱硫方法
(2) The exhaust gas desulfurization method according to claim 1, characterized in that the gas temperature on the center side of the gas flow in the desulfurization reaction tower is higher than the saturation temperature Ts and lower than the saturation temperature Ts+15°C.
(3)アルカリ金属系またはアルカリ土類金属系化合物
を含む脱硫剤を燃焼装置内または燃焼装置から排出され
る排ガス煙道に供給した後に脱硫反応塔に導き、排ガス
中の硫黄酸化物を除去し、反応後の脱硫剤を排ガス中の
灰とともに集塵装置で集塵する排ガス脱硫装置において
、 該脱硫反応塔内のガス流の上流側と下流側には開口部を
設け脱硫反応塔の壁面側と中心部側とにガス流を分流す
るガス流分流用部材と、該ガス流分流用部材のガス流上
流側であって、壁面側と中心部側の開口部近傍には前記
分流された排ガスに噴霧状の水をそれぞれ供給する水噴
霧用ノズルと、を設けたことを特徴とする排ガス脱硫装
置。
(3) A desulfurizing agent containing an alkali metal or alkaline earth metal compound is supplied into the combustion equipment or into the flue of flue gas discharged from the combustion equipment, and then introduced into the desulfurization reaction tower to remove sulfur oxides from the flue gas. In an exhaust gas desulfurization device in which the desulfurization agent after reaction is collected together with ash in the exhaust gas by a dust collector, openings are provided on the upstream and downstream sides of the gas flow in the desulfurization reaction tower on the wall surface side of the desulfurization reaction tower. and a gas flow diversion member that divides a gas flow into a central part side, and a gas flow diversion member on the gas flow upstream side of the gas flow diversion member, in the vicinity of the openings on the wall side and the central part side, the diverted exhaust gas is An exhaust gas desulfurization device comprising: a water spray nozzle that supplies water in the form of a spray to each of the exhaust gas desulfurizers.
(4)脱硫反応塔の中心部側の水噴霧ノズル数および噴
霧量を多くし、脱硫反応塔の壁面側の水噴霧ノズル数お
よび水噴霧量を少なくすることを特徴とする請求項3記
載の排ガス脱硫装置。
(4) The number of water spray nozzles and the amount of water sprayed on the center side of the desulfurization reaction tower are increased, and the number of water spray nozzles and the amount of water sprayed on the wall side of the desulfurization reaction tower are decreased. Exhaust gas desulfurization equipment.
(5)煙道、脱硫反応塔内または集塵装置内に温度セン
サ、露点計、湿度計、水分計を取り付け、その信号によ
り水噴霧ノズルからの水噴霧量を制御する制御装置を設
けたことを特徴とする請求項3記載の排ガス脱硫装置。
(5) A temperature sensor, dew point meter, hygrometer, and moisture meter are installed in the flue, desulfurization reaction tower, or dust collector, and a control device is installed to control the amount of water spray from the water spray nozzle based on the signals from the temperature sensor, dew point meter, hygrometer, and moisture meter. The exhaust gas desulfurization apparatus according to claim 3, characterized in that:
JP2214034A 1990-08-13 1990-08-13 Method and device for desulfurizing waste gas Pending JPH0494722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214034A JPH0494722A (en) 1990-08-13 1990-08-13 Method and device for desulfurizing waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214034A JPH0494722A (en) 1990-08-13 1990-08-13 Method and device for desulfurizing waste gas

Publications (1)

Publication Number Publication Date
JPH0494722A true JPH0494722A (en) 1992-03-26

Family

ID=16649182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214034A Pending JPH0494722A (en) 1990-08-13 1990-08-13 Method and device for desulfurizing waste gas

Country Status (1)

Country Link
JP (1) JPH0494722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188569A (en) * 2007-02-08 2008-08-21 Mitsubishi Heavy Ind Ltd Waste gas treatment method and apparatus
CN111265983A (en) * 2020-03-25 2020-06-12 吐鲁番瑞德化轻有限公司 Two-section binary flue gas treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188569A (en) * 2007-02-08 2008-08-21 Mitsubishi Heavy Ind Ltd Waste gas treatment method and apparatus
CN111265983A (en) * 2020-03-25 2020-06-12 吐鲁番瑞德化轻有限公司 Two-section binary flue gas treatment system

Similar Documents

Publication Publication Date Title
JP4932840B2 (en) Method for removing sulfur trioxide from exhaust gas stream
JP2009507632A (en) Removal of sulfur trioxide from exhaust gas stream
US4853194A (en) Method for treating exhaust gas
JP3308286B2 (en) Dry flue gas desulfurization apparatus and method
KR102059188B1 (en) Wet flue gas desulfurization apparatus and wet flue gas desulfurization method
JPH0494722A (en) Method and device for desulfurizing waste gas
JPH0557141A (en) Flue gas desulfurization apparatus
JPH0724252A (en) Wet flue gas desulfurizer by magnesium oxide and method thereof
JPS6251645B2 (en)
JPH11147024A (en) Flue-gas treatment method
JP2725784B2 (en) Flue gas desulfurization method
JPH04141214A (en) Exhaust gas desulfurizer
JPH04300626A (en) Device for desulfurizing flue gas and its operating method
JPH0663353A (en) Wet flue gas desulfurizer and its method
JPH0494721A (en) Waste combustion gas purifying device
JPH04114718A (en) Simplified desulfurizer
JPH04110020A (en) Exhaust gas purifying method
JPH05301018A (en) Device for treating combustion exhaust gas
JPH04300625A (en) Dry desulfurizing method
JPS60222135A (en) Treatment of drainage
JPH04114719A (en) Treating device for combustion exhaust gas
JPH04135618A (en) Method for desulfurizing stack gas
JPH04358518A (en) Desulfurizing agent blowing device
JP2002035544A (en) System for treating waste smoke from boiler
JPH04110019A (en) Stack gas desulfurization device