JPH049467B2 - - Google Patents

Info

Publication number
JPH049467B2
JPH049467B2 JP60045382A JP4538285A JPH049467B2 JP H049467 B2 JPH049467 B2 JP H049467B2 JP 60045382 A JP60045382 A JP 60045382A JP 4538285 A JP4538285 A JP 4538285A JP H049467 B2 JPH049467 B2 JP H049467B2
Authority
JP
Japan
Prior art keywords
sample
reflected
waveguide
radio waves
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60045382A
Other languages
Japanese (ja)
Other versions
JPS61204549A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60045382A priority Critical patent/JPS61204549A/en
Publication of JPS61204549A publication Critical patent/JPS61204549A/en
Publication of JPH049467B2 publication Critical patent/JPH049467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明はシート状或は板状、棒状、ブロツク状
等の各種の材料の繊維の配向度合等の異方性を高
周波を用いて測定する装置に関する。
Detailed Description of the Invention A. Field of Industrial Application The present invention is an apparatus for measuring anisotropy such as the degree of fiber orientation of various materials such as sheets, plates, rods, blocks, etc. using high frequencies. Regarding.

機械抄きの紙はその製造方法から自然に繊維の
方向が或程度揃つて来る。これらの単一物質より
なる材料でなく、繊維質と基質とよりなる複合材
例えばカーボン繊維を混入して強化したプラスチ
ツク等では意識的に繊維の方向を揃えて引張強度
を高めることが行われている。このように材料で
は自然に或は意識的に、その構成要素である繊維
或は分子の方向が或程度揃つているものが多く、
繊維の方向が揃つている度合即ち配向性の度合を
一定に保つことは製品の均一性を得るために必要
である。従つて材料の検査、製造工程の途中で繊
維の配向を迅速に測定できる装置の必要性も高
い。
Machine-made paper naturally has fibers that are oriented to some extent due to its manufacturing method. Instead of materials made of these single substances, composite materials made of fibers and substrates, such as plastics reinforced by mixing carbon fiber, are intentionally aligned in the direction of the fibers to increase tensile strength. There is. In this way, many materials have their component fibers or molecules aligned to some degree, either naturally or intentionally.
It is necessary to maintain a constant degree of orientation of the fibers in order to obtain uniformity of the product. Therefore, there is a high need for an apparatus that can inspect materials and quickly measure fiber orientation during the manufacturing process.

ロ 従来の技術 配向測定法として古くから行われている方法は
機械的方向でシート状の被検材料から色々な方向
で短冊状のテストピースを切取り、その引張強度
を測定し、テストピースの切出し方向と引張強度
との関係を極座標で表すと楕円或はまゆ形の図形
が得られるので、その長径、短径の比から配向度
を測定するものである。この方法は破壊検査であ
り、また非常に時間がかゝるので、最終製品の抜
取り検査にしか適用できず、工程途中の半製品で
測定して結果をより初期の工程にフイールドバツ
クする目的には不向きであつた。このため分子の
配向に対しては赤外線の偏光2色性を利用する方
法が提案されたが、この方法では試料が余り厚く
なく使用する赤外光に対して相当に透明であるこ
とが必要であり、適用される材料が限定される。
より広い範囲に適用されるものとして赤外光の代
わりにマイクロ波電波を利用する方法が提案され
た(特開昭59−224547号)。この方法では繊維を
含む材料の繊維の配向も測定することができる。
B. Prior art A method that has been used for a long time to measure orientation is to mechanically cut out strip-shaped test pieces in various directions from a sheet-like material to be tested, measure their tensile strength, and then cut out the test pieces. When the relationship between the direction and the tensile strength is expressed in polar coordinates, an elliptical or cocoon-shaped figure is obtained, and the degree of orientation is measured from the ratio of the major axis to the minor axis. This method is a destructive test and is very time consuming, so it can only be applied to sampling inspections of final products, and is only suitable for measuring semi-finished products in the middle of the process and feeding back the results to earlier processes. was not suitable. For this reason, a method using infrared polarization dichroism has been proposed for molecular orientation, but this method requires that the sample be not very thick and fairly transparent to the infrared light used. Yes, applicable materials are limited.
A method using microwave radio waves instead of infrared light was proposed as a method that could be applied to a wider range (Japanese Patent Laid-Open No. 59-224547). This method can also measure fiber orientation in fiber-containing materials.

上記提案の方法は電波の試料による吸収が電波
の電界方法と分子或は繊維の配向方法との関係で
変化することを利用するものであるが、配向を高
感度で検出するために、吸収率そのものを測定す
るより空胴共振器の中に試料を入れ、空胴共振器
のQ値或は共振周波数が試料の向きによつて変化
するのを測定するようにしている。この場合空胴
共振器には試料を出入させる隙間をあけておく必
要があり、他方共振器のQ値の高い方が良いの
で、隙間は余り広くできない。このため試料の出
入がやり難く、工程途中の測定には不向きであ
り、試料に対して電波の電界方向を回転させる機
械的構造も複雑になる。即ち試料が帯状材である
場合、これを非破壊で検査するためには空胴共振
器を上下に分割し、その間に試料の帯状材を通
し、上下の空胴共振器を同期的に回転させる構造
とせねばならないから、構造的に大変複雑になる
のである。
The method proposed above utilizes the fact that the absorption of radio waves by a sample changes depending on the electric field method of the radio waves and the orientation method of molecules or fibers. Rather than measuring the sample itself, a sample is placed inside the cavity resonator, and changes in the Q value or resonance frequency of the cavity resonator depending on the orientation of the sample are measured. In this case, it is necessary to leave a gap in the cavity resonator to allow the sample to enter and exit, and since it is better for the resonator to have a higher Q value, the gap cannot be made too wide. For this reason, it is difficult to move the sample in and out, making it unsuitable for measurements during the process, and the mechanical structure for rotating the direction of the electric field of the radio waves with respect to the sample is also complicated. In other words, if the sample is a strip-shaped material, in order to non-destructively inspect it, the cavity resonator is divided into upper and lower parts, the sample strip is passed between them, and the upper and lower cavity resonators are rotated synchronously. Because it has to be structured, it becomes very complex structurally.

ハ 発明が解決しようとする問題点 高周波を利用する上述既提案の方法では被測定
材料の両側に装置が分散配置されるため構造的に
複雑となり、試料の出入口がせまく、測定空間が
閉鎖されているため試料が扱いにくいと言つた問
題があり、また電波が試料を透過できることが必
要なので、赤外光を用いる場合よりはましである
が、試料の厚さに制限があり、紙でも0.3mm程度
が限度でボール紙等の測定は困難であり、一般的
なシート材、棒材、ブロツク等の測定はできない
と言つた問題がある。本発明は高周波電波を利用
する場合のこれらの問題を解決するものである。
C. Problems to be Solved by the Invention In the previously proposed methods that utilize high frequencies, devices are distributed on both sides of the material to be measured, resulting in a complex structure, narrow entrances and exits for the sample, and a closed measurement space. However, it is better than using infrared light because it requires the radio waves to be able to pass through the sample, but there is a limit to the thickness of the sample, and even paper can only be 0.3 mm thick. There is a problem in that it is difficult to measure cardboard, etc. due to the limited degree of measurement, and it is impossible to measure general sheet materials, bars, blocks, etc. The present invention solves these problems when using high frequency radio waves.

ニ 問題点を解決するための手段 試料面に高周波電波を入射させ、試料の同じ側
で反射電波を検出し、入射電波の電界と試料とを
相対的に回転させて、そのときの反射電波の検出
強度の変化を測定するようにした。
D. Means for solving the problem: Inject a high-frequency radio wave onto the sample surface, detect the reflected radio wave on the same side of the sample, and rotate the electric field of the incident radio wave and the sample relative to each other to detect the reflected radio wave at that time. Changes in detection intensity are measured.

ホ 作用 高周波電波を用いる上記既提案の方法は電波の
吸収が試料内の分子、繊維等の配向方向によつて
異なることを利用したものである。光からの類推
によれば、反射は試料表面で起り、試料表面で一
部反射し、一部試料内に進入し、進入した分が一
部吸収されて残部が透過する。従つて透過電波は
配向性に関する情報を持つているが、反射電波は
配向性に関する情報は持つていないと予想され
る。しかし実験してみると、マイクロ波において
反射電波も繊維の配向性に関する情報を持つてい
ることが明かとなつた。これは有機質材料の配向
測定に適当な300MHz〜100GHz(波長1m〜0.3
cm)の電波の波長と試料の厚さとが同程度乃至波
長の方が長いことによるものと思われる。何れに
しても反射波で繊維の配向を測定するので、装置
は試料の片側にまとめて配置でき、構造簡単とな
り、試料測定空間が開放空間になるので、試料の
扱いが容易となる。例えば試料を片側から加熱し
たがら測定するとか反対に湿りを与えて測定する
等と言つた操作も可能となり、試料表面の同一箇
所で目視観察と配向測定とが同時にできる等の特
徴が得られる。
E. Effect The previously proposed method using high-frequency radio waves utilizes the fact that the absorption of radio waves differs depending on the orientation direction of molecules, fibers, etc. in the sample. By analogy with light, reflection occurs on the sample surface, part of it is reflected from the sample surface, part of it enters the sample, part of it is absorbed, and the rest is transmitted. Therefore, it is expected that the transmitted radio waves have information regarding orientation, but the reflected radio waves do not have information regarding orientation. However, experiments revealed that reflected microwave waves also contain information about fiber orientation. This is suitable for measuring the orientation of organic materials from 300 MHz to 100 GHz (wavelength 1 m to 0.3
This seems to be due to the fact that the wavelength of the radio wave (cm) and the thickness of the sample are about the same or longer. In any case, since the orientation of the fibers is measured using reflected waves, the apparatus can be placed all together on one side of the sample, resulting in a simple structure and the sample measurement space being an open space, making it easier to handle the sample. For example, operations such as heating the sample from one side and then measuring it, or applying moisture to the sample on the other hand and measuring it, are also possible, and features such as visual observation and orientation measurement can be achieved at the same time at the same location on the sample surface.

ヘ 実施例 第1図は本発明の一実施例を示す。1は試料で
回転台2上に載置される。3は導波管で開口端を
試料1に向けており、開口端は電磁ホーン4にな
つている。導波管3の開口端と反対の端には同軸
導波管変換器5がフランジ結合され、同軸導波管
変換器5と発振器6とが同軸ケーブル7接続して
ある。導波管3の側面には別の導波管8が取付け
られ、両導波管の境界壁には管軸方向に1/4波長
隔てゝスリツトが切つてあり、両導波管3,8で
方向性結合器10を構成しており、導波管8の下
端は無反射端にしてある。従つて導波管3を下方
向に進行する波が分かれて導波管8に入つても下
端の無反射端で吸収されてしまう。他方導波管3
内を情報に進む波が導波管8に分かれると導波管
8内を情報に進行して同管の上端に結合された同
軸導波管11、同軸ケーブル12を経て検出器1
3に入射し検出される。導波管3の電磁ホーン接
続部の近くに管軸方向位置調節可能にスタブ14
を取付けてある。試料台2には無反射塗料が塗つ
ており、入射したマイクロ波を吸収してしまうよ
うにしてある。試料を置かない状態で試料台2に
向かつてホーン4からマイクロ波を発射し、スタ
ブ14の管軸方向の位置及び管内への突出量を調
節して検出器13の検出出力が最小になるように
すると、導波管3の管端からの反射が最小にな
る。このように調整しておいて試料台2に試料1
を載せ、試料台2を回転させて、その角位置と検
出器13の出力との関係を極座標形式で記録する
と、試料方向と入射マイクロ波の電界方向との角
度とマイクロ波反射率との関係が求まる。と言う
のは導波管8内に分流して検出器13に検出され
るマイクロ波は導波管3内を上方に向かう波だけ
であり、導波管3の管端反射は最小になるような
してあるので、検出器13で検出されるのは実際
上殆ど試料からの反射波だからである。なお導波
管3の開放端はホーンを着けるだけで管端反射を
打ち消すためのスタブ14はなくてもよく、反対
に管端反射を完全になくしたいときはインピーダ
ンス整合用の空胴を導波管とホーンの間に挿入し
てもよい。
Embodiment FIG. 1 shows an embodiment of the present invention. A sample 1 is placed on a rotating table 2. A waveguide 3 has an open end facing the sample 1, and the open end serves as an electromagnetic horn 4. A coaxial waveguide converter 5 is flange-coupled to the end opposite to the open end of the waveguide 3, and the coaxial waveguide converter 5 and the oscillator 6 are connected by a coaxial cable 7. Another waveguide 8 is attached to the side of the waveguide 3, and slits are cut in the boundary wall between the two waveguides at 1/4 wavelength intervals in the tube axis direction. A directional coupler 10 is constructed, and the lower end of the waveguide 8 is a non-reflection end. Therefore, even if a wave traveling downward through the waveguide 3 is separated and enters the waveguide 8, it will be absorbed at the lower non-reflection end. The other waveguide 3
When the wave propagating to the information inside the waveguide 8 is divided into the waveguide 8, the information propagates inside the waveguide 8 to the detector 1 via the coaxial waveguide 11 and the coaxial cable 12 connected to the upper end of the waveguide 8.
3 and is detected. A stub 14 is installed near the electromagnetic horn connection part of the waveguide 3 so that its position in the tube axis direction can be adjusted.
is installed. The sample stage 2 is coated with non-reflective paint to absorb incident microwaves. A microwave is emitted from the horn 4 toward the sample stage 2 without a sample placed thereon, and the position of the stub 14 in the tube axis direction and the amount of protrusion into the tube are adjusted so that the detection output of the detector 13 is minimized. , the reflection from the tube end of the waveguide 3 is minimized. After making these adjustments, place sample 1 on sample stand 2.
When the sample table 2 is placed on the sample stage 2 and the sample stage 2 is rotated, and the relationship between its angular position and the output of the detector 13 is recorded in polar coordinate format, the relationship between the angle between the sample direction and the electric field direction of the incident microwave and the microwave reflectance can be obtained. is found. This is because the microwaves that are shunted into the waveguide 8 and detected by the detector 13 are only waves that travel upward in the waveguide 3, and the reflection at the end of the waveguide 3 is minimized. This is because what is actually detected by the detector 13 is mostly reflected waves from the sample. Note that the stub 14 for canceling tube end reflections can be omitted by simply attaching a horn to the open end of the waveguide 3.On the other hand, when it is desired to completely eliminate tube end reflections, a cavity for impedance matching is used to guide the wave. It may be inserted between the tube and the horn.

第2図は本発明の他の実施例を示す。この実施
例は前記実施例で試料1を回転させる代わりに、
導波間3の途中にロータリジヨイント15を挿入
し、これを回転させて試料1に入射するマイクロ
波の電界方向を回転させるようにしたもので、こ
の型では試料は帯状材を長さ方向に送りながら測
定することができるので、帯状材の製造工程途中
での測定が可能である。
FIG. 2 shows another embodiment of the invention. In this embodiment, instead of rotating the sample 1 in the previous embodiment,
A rotary joint 15 is inserted in the middle of the waveguide 3, and the rotary joint 15 is rotated to rotate the direction of the electric field of the microwave incident on the sample 1. In this type, the sample is a strip-shaped material in the longitudinal direction. Since the measurement can be performed while the strip material is being fed, it is possible to measure it during the manufacturing process of the strip material.

上述各実施例で試料の背面の試料台2に無反射
塗料を塗布するのは試料を透過したマイクロ波が
他物に当たつて反射され、検出器13に入射して
試料から反射されたマイクロ波に対するバツクグ
ラウンドレベルを高め、試料の異方性に対する信
号のS/N比を低下させることがないようにする
ためである。試料台を金属にしてマイクロ波をよ
く反射するようにしておいても同じ効果が得られ
る。紙とか木材のような木質繊維が配向した試料
の場合、マイクロ波の電界方向が透過マイクロ波
の減衰の大きい方向で反射率も低いので、薄い試
料の測定では検出器13で検出されるのは試料に
よる反射波と、試料を透過して試料台で反射され
再び試料を透過して試料によつて二回減衰作用を
受けた波で、両者は試料の繊維配向の情報を同相
で担つているので、繊維配向に関する信号が強め
合うことになり、測定感度が向上する。
In each of the above-mentioned embodiments, the reason why the non-reflective paint is applied to the sample stage 2 on the back of the sample is because the microwaves that have passed through the sample are reflected by hitting other objects, enter the detector 13, and are reflected from the sample. This is to increase the background level with respect to the waves and to prevent the S/N ratio of the signal with respect to the anisotropy of the sample from decreasing. The same effect can be obtained by making the sample stage metal so that it reflects microwaves well. In the case of a sample with oriented wood fibers, such as paper or wood, the direction of the electric field of the microwave is the direction in which the transmitted microwave is attenuated the most and the reflectance is low, so when measuring a thin sample, what is detected by the detector 13 is The wave reflected by the sample and the wave that passes through the sample, is reflected by the sample stage, passes through the sample again, and is attenuated twice by the sample; both carry information about the fiber orientation of the sample in the same phase. Therefore, the signals related to fiber orientation are strengthened, and the measurement sensitivity is improved.

第3図の実施例はマイクロ波発振器6にパルス
状マイクロ波発振器を用いたものである。第1図
の実施例と対応する部分には同じ符号を付し一々
の説明は省略する。検出器13の出力はパルス状
でゲート回路17を通して平滑回路18に印加さ
れ平滑化されて記録装置19に入力される。ゲー
ト回路17は発振器6の出力パルスを遅延回路2
0で遅延させたパルス信号で開かれるようになつ
ており、ゲート回路17が開くタイミングが試料
1からの反射波の検出出力が検出器13から出力
されるタイミングと一致するように遅延回路20
の遅延時間が設定されている。電磁ホーン4から
発射されるマイクロ波の方向は広がりを持つてい
るので、試料透過波が他物体で反射されて検出器
13に入射するのを防いだだけでは試料以外の物
体からの反射波の妨害を排除することができな
い。しかしこの実施例ではゲート回路17が開か
れるタイミングが試料からの反射波が検出される
タイミングと合わせてあるので、他物体からの反
射波の妨害作用を著しく低下させることができ
る。
In the embodiment shown in FIG. 3, a pulsed microwave oscillator is used as the microwave oscillator 6. Components corresponding to those in the embodiment shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. The output of the detector 13 is applied in pulse form to a smoothing circuit 18 through a gate circuit 17, smoothed, and input to a recording device 19. The gate circuit 17 transfers the output pulse of the oscillator 6 to the delay circuit 2.
The delay circuit 20 is designed to be opened by a pulse signal delayed by 0, and the delay circuit 20 is set so that the timing at which the gate circuit 17 opens coincides with the timing at which the detection output of the reflected wave from the sample 1 is output from the detector 13.
delay time is set. Since the microwaves emitted from the electromagnetic horn 4 have a wide range of directions, simply preventing the waves transmitted through the sample from being reflected by other objects and entering the detector 13 will prevent the waves reflected from objects other than the sample from entering the detector 13. Unable to eliminate interference. However, in this embodiment, since the timing at which the gate circuit 17 is opened coincides with the timing at which the reflected waves from the sample are detected, the interference effect of the reflected waves from other objects can be significantly reduced.

第4図は第1図の構成による実施例を示す。第
4図aは試料として厚さ10mmの松の板材を用い、
使用周波数は3490.25MHz、図の動径方向がマイ
クロ波の電界方向で、松の繊維の方向はy軸方向
であり、動径長が反射波検出出力の相対値を示
す。グラフはほぼ楕円を呈し長径対短径比は
1.9:1.0である。この実施例の場合、木材板の厚
さ10mmでは透過マイクロ波は検出できず、従来法
では測定不可能である。第4図bは機械抄き紙を
試料としたもので、使用周波数3491.85MHz、y
軸方向がパルプ懸濁水の流れ方向で、繊維はその
方向に配向しているが、グラフの長径短径の比は
1.3:1.0で松材の繊維配向より配向度合いが低
い。第4図cはカーボン含有エポキシ樹脂板で厚
さ5mmのものを試料としたもので、使用周波数は
3475.13MHz、y軸方向は樹脂の延伸方向でカー
ボン繊維の配向の著しいことが判る。この例の場
合も透過マイクロ波の検出は殆ど不可能である。
FIG. 4 shows an embodiment having the configuration shown in FIG. Figure 4a uses a pine board with a thickness of 10 mm as a sample.
The frequency used is 3490.25MHz, the radial direction in the figure is the electric field direction of the microwave, the direction of the pine fiber is the y-axis direction, and the radial length indicates the relative value of the reflected wave detection output. The graph is almost elliptical, and the ratio of major axis to minor axis is
1.9:1.0. In the case of this example, transmitted microwaves cannot be detected when the wood board has a thickness of 10 mm, making it impossible to measure using conventional methods. Figure 4b is a sample of machine-made paper, with a working frequency of 3491.85MHz, y
The axial direction is the flow direction of the pulp suspension water, and the fibers are oriented in that direction, but the ratio of the major axis to the minor axis in the graph is
1.3:1.0, the degree of fiber orientation is lower than that of pine wood. Figure 4c shows a sample of a carbon-containing epoxy resin plate with a thickness of 5 mm, and the operating frequency is
At 3475.13MHz, the y-axis direction is the stretching direction of the resin, and it can be seen that the carbon fibers are significantly oriented. In this example as well, detection of transmitted microwaves is almost impossible.

ト 効果 本発明においては、高周波の試料からの反射波
を検出するものであるから、装置が試料の片側に
まとまつて配置され、このことは長く続く帯状
材、大面積試料、コンベアにより移送され物品等
の材質の異方性の測定に当た大へん有利な特徴
で、装置構造が簡単となる。また試料を空胴共振
器のような閉鎖空間内に導入するのでなく、開放
的な状態で測定ができるので、試料の出入交換が
容易であり試料の形状についての制限がなく、ど
のような物品でもそのまゝ測定ができ、従つて非
破壊検査に好適である。更に反射波を検出するも
のであるから、透過電波が殆ど検出されないよう
な厚い材料或は吸収の大きい材料でも測定が可能
である。更に試料が開放的な空間で測定できるの
で、高温或は湿つて蒸気を発生しているような試
料でも直接測定することができ、また試料を加熱
或は冷却しながら或は延伸しながら異方性の変化
を追跡すると言つた測定も容易に実施することが
できる。なお反射波の検波出力から物質の複素透
電率を演算により求めることも可能である。
Effects In the present invention, since high-frequency waves reflected from a sample are detected, the devices are arranged all together on one side of the sample. This is a very advantageous feature when measuring the anisotropy of materials such as materials, and the device structure is simple. In addition, since the sample can be measured in an open state rather than being introduced into a closed space such as a cavity resonator, it is easy to exchange the sample in and out, and there are no restrictions on the shape of the sample. However, it can be measured as is, making it suitable for non-destructive testing. Furthermore, since reflected waves are detected, it is possible to measure even thick materials or materials with high absorption in which almost no transmitted radio waves are detected. Furthermore, since the sample can be measured in an open space, it is possible to directly measure samples that are hot or humid and generate steam. Measurements such as tracking changes in sex can also be easily performed. Note that it is also possible to calculate the complex conductivity of the material from the detected output of the reflected wave.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の側面図、第2
図は他の実施例の側面図、第3図は更に他の実施
例の側面及び構成ブロツク図、第4図a,b,c
は夫々実測例のグラフである。
FIG. 1 is a side view of an apparatus according to an embodiment of the present invention, and FIG.
The figure is a side view of another embodiment, FIG. 3 is a side view and configuration block diagram of still another embodiment, and FIGS. 4 a, b, c
are graphs of actual measurement examples.

Claims (1)

【特許請求の範囲】[Claims] 1 高周波電波の発射端を試料に向けて配置し、
試料に対してこの発射端と同じ側に試料からの反
射高周波電波の受波端を配置して試料からの反射
電波を検出する手段を設けると共に、試料を入射
電波の入射方向を軸として回転させる機構或は試
料への入射電波の偏波方向を回転させる機構を設
けたことを特徴とする試料の構成繊維の配向測定
装置。
1 Place the emitting end of the high-frequency radio wave toward the sample,
A means for detecting the reflected radio waves from the sample is provided by arranging a receiving end of the high-frequency radio waves reflected from the sample on the same side of the sample as the emitting end, and the sample is rotated around the direction of incidence of the incident radio waves. 1. An apparatus for measuring the orientation of fibers constituting a sample, comprising a mechanism or a mechanism for rotating the polarization direction of radio waves incident on the sample.
JP60045382A 1985-03-07 1985-03-07 Measuring instrument for anisotropy of sample Granted JPS61204549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045382A JPS61204549A (en) 1985-03-07 1985-03-07 Measuring instrument for anisotropy of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045382A JPS61204549A (en) 1985-03-07 1985-03-07 Measuring instrument for anisotropy of sample

Publications (2)

Publication Number Publication Date
JPS61204549A JPS61204549A (en) 1986-09-10
JPH049467B2 true JPH049467B2 (en) 1992-02-20

Family

ID=12717717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045382A Granted JPS61204549A (en) 1985-03-07 1985-03-07 Measuring instrument for anisotropy of sample

Country Status (1)

Country Link
JP (1) JPS61204549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044340A1 (en) * 1997-03-28 1998-10-08 Oji Paper Co., Ltd. Orientation measuring instrument

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270648A (en) * 1988-04-22 1989-10-27 Kanzaki Paper Mfg Co Ltd Apparatus for measuring electrical characteristics of material
US5132903A (en) * 1990-06-19 1992-07-21 Halliburton Logging Services, Inc. Dielectric measuring apparatus for determining oil and water mixtures in a well borehole
CN110031484B (en) * 2019-03-05 2022-06-24 四川大学 Separation field reconstruction test platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134345A (en) * 1979-04-06 1980-10-20 Nec Corp Measuring device of radio wave scattering characteristic
JPS5752533A (en) * 1980-07-21 1982-03-29 Kinugawa Rubber Ind Co Ltd Manufacture for core of welt
JPS57169661A (en) * 1981-04-11 1982-10-19 Dainippon Printing Co Ltd Detection of putrefaction of content in sealed vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134345A (en) * 1979-04-06 1980-10-20 Nec Corp Measuring device of radio wave scattering characteristic
JPS5752533A (en) * 1980-07-21 1982-03-29 Kinugawa Rubber Ind Co Ltd Manufacture for core of welt
JPS57169661A (en) * 1981-04-11 1982-10-19 Dainippon Printing Co Ltd Detection of putrefaction of content in sealed vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044340A1 (en) * 1997-03-28 1998-10-08 Oji Paper Co., Ltd. Orientation measuring instrument

Also Published As

Publication number Publication date
JPS61204549A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
JP4546326B2 (en) Sensing device
EP1982163B1 (en) Methods and apparatus for determining fibre orientation
EP2201350A1 (en) System and method for characterizing fibrous materials using stokes parameters
Okamura Microwave technology for moisture measurement
US4155035A (en) Device for the measurement of the moisture content of a sample
FI93493B (en) A multi-point measuring device for measuring the microwave field dissipated by an object
Laurent et al. Laser induced zero-group velocity resonances in transversely isotropic cylinder
Kraszewski Microwave instrumentation for moisture content measurement
JPH0229982B2 (en)
JPH049467B2 (en)
Jia et al. Optical heterodyne detection of pulsed ultrasonic pressures
US6049211A (en) Method and apparatus for determination of fiber orientation in paper or paperboard web
US6930492B2 (en) Using surface microwaves for measuring and determining density and/or moisture content of a material
Cand et al. Detection of in‐plane and out‐of‐plane ultrasonic displacements by a two‐channel confocal Fabry–Perot interferometer
JPH01270648A (en) Apparatus for measuring electrical characteristics of material
EP1017996B1 (en) Nondestructive testing of dielectric materials
JPH09269301A (en) Apparatus for measuring orientation properties by microwave
SU1758530A1 (en) Method of measuring dielectric penetration of materials
SU826227A1 (en) Moisture-content determining method
JP4000789B2 (en) Orientation measuring device
Deblock et al. A continuous wave method for ultrasonic characterization of liquid materials
Blitz Microwave methods
KR20240005356A (en) Device and method for estimating residual stress
JP2003014658A (en) Microwave non-destructive evaluation device
JPS6359459B2 (en)