JPH0494281A - Liquid crystal television receiver using photoconductive liquid crystal light bulb - Google Patents

Liquid crystal television receiver using photoconductive liquid crystal light bulb

Info

Publication number
JPH0494281A
JPH0494281A JP21127390A JP21127390A JPH0494281A JP H0494281 A JPH0494281 A JP H0494281A JP 21127390 A JP21127390 A JP 21127390A JP 21127390 A JP21127390 A JP 21127390A JP H0494281 A JPH0494281 A JP H0494281A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
photoconductive
layer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21127390A
Other languages
Japanese (ja)
Inventor
Hisashi Hayakawa
尚志 早川
Eiichi Kido
栄一 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21127390A priority Critical patent/JPH0494281A/en
Publication of JPH0494281A publication Critical patent/JPH0494281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

PURPOSE:To improve the yield by providing a voltage application means applying a voltage to two layers of a photoconductive layer and a liquid crystal layer to the television receiver and projecting a video signal converted into light onto a display element comprising a photoconductive liquid crystal light bulb. CONSTITUTION:A light source 11 converts a signal into a beam light, and it radiates to a photoconductive layer 1 of a liquid crystal light bulb via a polygon mirror 12 and a long size mirror 13. Thus, a contrast image with a resistance corresponding to a video image is formed onto the photoconductive layer 1 of the liquid crystal light bulb through the polygon mirror 12 and the long size mirror 13, a voltage is applied between transparent electrodes 3,3 in advance and a phase change takes place to a liquid crystal layer 2 corresponding to a part of the photoconductive layer 1 receiving the light. Then the video image is reproduced on the liquid crystal light bulb depending on the phase change. Thus, the yield is improved by the phase change.

Description

【発明の詳細な説明】 (al産業上の利用分野 この発明は液晶テレビの改良に関する。[Detailed description of the invention] (Al industrial application field This invention relates to improvements in liquid crystal televisions.

<b1従来の技術 近年、CRTを用いたテレビに替わって液晶を用いた液
晶テレヒの開発が進められている。液晶テレビの利点は
、 小型化、すなわち、装置の奥行きを薄くすることが可能 省電力化が可能 ということである。
<b1 Prior Art In recent years, development of liquid crystal televisions using liquid crystals has been progressing in place of televisions using CRTs. The advantages of LCD televisions are that they can be made smaller, that is, the depth of the device can be made thinner, and power consumption can be reduced.

そしてこの液晶層のスイッチングを行うためには、例え
ばアモルファスシリコン等からなる薄膜トランジスタに
よるアクティブマトリクス方式が一般に用いられている
In order to switch the liquid crystal layer, an active matrix method using thin film transistors made of, for example, amorphous silicon is generally used.

(C1発明が解決しようとする課題 しかしながらアクティブマトリクス方式には以下のよう
な問題があった。
(C1 Problems to be Solved by the Invention However, the active matrix method has the following problems.

薄膜トランジスタの作成には微細加工が必要であり、ま
た、工程数も多くなるため製造装置に草大な経費が必要
となる。そして工程数が多ければその分歩留まりが悪く
なってしまう欠点がある。
Fabrication of thin film transistors requires microfabrication, and the number of steps is also large, requiring a large amount of expense for manufacturing equipment. Moreover, there is a drawback that the larger the number of steps, the lower the yield.

また、テレビが大きくなればその分画素数を増やさなけ
ればならず、各画素に対して薄膜トランジスタが必要に
なるのでコスト高になる。さらに、表示の解像度を高め
るためには薄膜トランジスタをさらに小さく構成しなけ
ればならず技術的に非常に困歎で、かつその分コスト的
にも高価になってしまう。
Furthermore, as the television becomes larger, the number of pixels must be increased accordingly, and a thin film transistor is required for each pixel, resulting in higher costs. Furthermore, in order to improve the resolution of the display, the thin film transistor must be made smaller, which is technically very difficult and increases the cost accordingly.

この発明の目的は、液晶層の構成の歩留まりを向上させ
、かつ製造コストを安価にすることのできる光導電型液
晶ライトブルト用いたテレビを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a television using a photoconductive liquid crystal display that can improve the yield of the liquid crystal layer structure and reduce manufacturing costs.

(di課題を解決するための手段 この発明は、光導電層、液晶層およびこの二層に電圧を
印加する電圧印加手段とを備える光導電型液晶ライトバ
ルブからなる表示素子と、映像信号を光に変換して前記
表示素子に投影する投影手段と、 を設けたことを特徴とする。
(di Means for Solving the Problems) The present invention provides a display element consisting of a photoconductive liquid crystal light valve comprising a photoconductive layer, a liquid crystal layer, and voltage application means for applying a voltage to these two layers, and a projection means for converting the converted image into the image and projecting the converted image onto the display element.

また、前記投影手段は、映像信号をヒーム光として照射
する光源と、 このビーム光を一方向に操作させるポリゴンミラーと、 前記ヒーム光を、ポリゴンミラーによる操作方向と垂直
な方向に操作させる回転可能な長尺ミラーと、を備えて
構成してもよい。
Further, the projection means includes a light source that irradiates the video signal as beam light, a polygon mirror that operates the beam light in one direction, and a rotatable unit that operates the beam light in a direction perpendicular to the direction in which the beam light is operated by the polygon mirror. It may also be configured to include a long mirror.

(e)作用 まず光導電型液晶ライトバルブの光導電層においては、
投影手段により映像信号に対応した光が照射されると光
が当たった部分は光導電性を生じ抵抗が小さくなるが、
他の部分は非常に抵抗の大きいままである。この状態で
電圧印加手段により光導電層および液晶層に電圧を印加
すると、光導電層が光導電性を生じた部分では、印加さ
れた電圧の殆どが液晶層に掛かる。一方、光導電層に光
が照射されなかった部分は光導電層が絶縁性を有し、印
加電圧が光導電層と液晶層とで二層されるそこで電圧印
加手段により光導電層、液晶層に印り口される電圧を、
液晶層にのみ電圧が掛かったときに液晶層がスイッチン
グを起ごす程に裔く、かつ、液晶層と光導電層とで電圧
が分配されたときには液晶層がスイッチングを起こさな
い程に低い値に設定しておけば、光導電層への光照射に
よって液晶層がスイッチングを起こすことになる。
(e) Function First, in the photoconductive layer of a photoconductive liquid crystal light valve,
When light corresponding to a video signal is irradiated by the projection means, the portion that is hit by the light becomes photoconductive and the resistance decreases.
Other parts remain very resistive. When a voltage is applied to the photoconductive layer and the liquid crystal layer by the voltage applying means in this state, most of the applied voltage is applied to the liquid crystal layer in the portion where the photoconductive layer has developed photoconductivity. On the other hand, in the areas where the photoconductive layer is not irradiated with light, the photoconductive layer has an insulating property, and the applied voltage is applied to the photoconductive layer and the liquid crystal layer. The voltage stamped on
A value that is high enough to cause the liquid crystal layer to switch when a voltage is applied only to the liquid crystal layer, and low enough that the liquid crystal layer does not cause switching when the voltage is distributed between the liquid crystal layer and the photoconductive layer. If set to , the liquid crystal layer will undergo switching due to the irradiation of light onto the photoconductive layer.

これにより液晶層には、テレビ、ビデオ等の映像の信号
に対応する像が書き込まれる。
As a result, an image corresponding to a video signal from a television, video, etc. is written on the liquid crystal layer.

また、投影手段としてポリゴンミラーと回転可能な長尺
ミラーとを用いた場合、長尺ミラーはビーム光を主走査
方向に振って表示素子上において主走査方向の走査を行
う。ポリゴンミラーはビーム光を副走査方向に振り、そ
のビーム光は長尺ミラーで反射されて表示素子に入射さ
れる。このときビーム光は長尺ミラーの長手方向に沿っ
て走査される。テレビの映像信号を受信し、その映像を
液晶層に書き込むとき、長尺ミラーによる反射角度を主
走査方向に一画素分ずつ変化させてゆき、長尺ミラーの
一角度においてポリゴンミラーにより副走査方向に一走
査分つつ走査する。このときノ長尺ミラーの角度変化の
タイミング、ポリゴンミラーのm1転速度をテレビの走
査速度と一致させれはテレビ映像をそのまま再現させる
ことができる。
Further, when a polygon mirror and a rotatable elongated mirror are used as the projection means, the elongated mirror swings a beam of light in the main scanning direction to scan the display element in the main scanning direction. The polygon mirror swings the beam light in the sub-scanning direction, and the beam light is reflected by the elongated mirror and enters the display element. At this time, the beam light is scanned along the longitudinal direction of the long mirror. When receiving a television video signal and writing the video onto the liquid crystal layer, the reflection angle by the long mirror is changed by one pixel in the main scanning direction, and at one angle of the long mirror, the polygon mirror is used to change the reflection angle in the sub-scanning direction. The image is scanned by one scan. At this time, if the timing of the angle change of the elongated mirror and the m1 rotation speed of the polygon mirror are made to match the scanning speed of the television, the television image can be reproduced as is.

(fl実施例 第1図は液晶ライトバルブの断面構成を示した図である
。透明電極3.3間には電圧が印加される(電圧印加手
段4)。透明電極3.3の間に、光導電層1および液晶
層2が配置され、さらに光導電層1と液晶層1との間に
は反射層5が配置されている。反射層5は液晶層2側か
ら入射される光(参照光9)を反射する。液晶層2の両
側の配光処理膜6,6は液晶の配光性を制御する膜であ
り、必要に応して設けるものである。また7、7は入射
光、参照光の入射する側に表面に反射防止層が付された
基板ガラスである。
(fl Embodiment FIG. 1 is a diagram showing the cross-sectional structure of a liquid crystal light valve. A voltage is applied between the transparent electrodes 3.3 (voltage application means 4). Between the transparent electrodes 3.3, A photoconductive layer 1 and a liquid crystal layer 2 are disposed, and a reflective layer 5 is disposed between the photoconductive layer 1 and the liquid crystal layer 1.The reflective layer 5 absorbs light incident from the liquid crystal layer 2 side (see The light distribution processing films 6, 6 on both sides of the liquid crystal layer 2 are films that control the light distribution of the liquid crystal, and are provided as necessary. , a substrate glass with an antireflection layer on its surface on the side where the reference light is incident.

第2図はこの液晶ライトバルブへの情報の書き込み装置
の構成を示し、同図(A)は平面図、同図(B)は側面
図である。
FIG. 2 shows the configuration of a device for writing information to the liquid crystal light valve, with FIG. 2(A) being a plan view and FIG. 2(B) being a side view.

例えばテレビの受信信号やビテオ信号は光源1)に人力
される。光源1)は、この信号をビー1、光に変換して
ポリゴンミラー1223よひ長尺ミラー13を介して液
晶ライトバルブ10の光導電層l側から照射する。ポリ
コンミラー12は(A)図中矢印で示したように回転制
御され、光源からの光を副走査方向に振ってゆく。この
ときのポリゴンミラーによる光の動きの範囲は、長尺ミ
ラー12の長手方向の範囲内である。また同図(B)に
示したように長尺ミラー12は回動可能に設けられ、光
の反射角度が可変である。長尺ミラー12の回動によっ
て光源1)から照射された光は主走査方向に振られてゆ
く。
For example, a television reception signal or a video signal is input manually to the light source 1). The light source 1) converts this signal into beam 1 and irradiates it from the photoconductive layer l side of the liquid crystal light valve 10 via the polygon mirror 1223 and the elongated mirror 13. The polycon mirror 12 is rotationally controlled as shown by the arrow in the figure (A), and swings the light from the light source in the sub-scanning direction. The range of light movement by the polygon mirror at this time is within the range of the long mirror 12 in the longitudinal direction. Further, as shown in FIG. 2B, the elongated mirror 12 is rotatably provided, and the reflection angle of light is variable. As the elongated mirror 12 rotates, the light emitted from the light source 1) is deflected in the main scanning direction.

このようにポリゴンミラー12および長尺ミラー13に
よって液晶ライトバルブの光導電層には映像に対応する
抵抗のコントラスト像が形成されてゆく。そして透明電
極3,3間には予め電圧が印加されており、光導電層1
に光が照射された部分に対応する液晶層2は相変化を生
しる。この相変化状態によって液晶ライトバルブ10に
映像が再生されろ。このとき例えば液晶層は光の当たっ
た部分、当たらなかつ10部分の何れか一方が透明状態
で、他方が懸濁状態になっている。このため液晶層2に
参照光9を照射したとき、透明な部分ては参照光か液晶
層2を通過して反射層5によって反射され、再び液晶層
2を通過して光が参照される。しかし懸濁した部分ては
光か検出されることかない。この光の有無が映像として
見られる。
In this way, a contrast image of resistance corresponding to an image is formed on the photoconductive layer of the liquid crystal light valve by the polygon mirror 12 and the elongated mirror 13. A voltage is applied in advance between the transparent electrodes 3, 3, and the photoconductive layer 1
The liquid crystal layer 2 corresponding to the portion irradiated with light undergoes a phase change. An image is reproduced on the liquid crystal light valve 10 according to this phase change state. At this time, for example, one of the 10 parts of the liquid crystal layer that is exposed to light and the 10 areas that are not exposed to light is in a transparent state, and the other is in a suspended state. Therefore, when the reference light 9 is irradiated onto the liquid crystal layer 2, the transparent portion of the reference light passes through the liquid crystal layer 2, is reflected by the reflective layer 5, and passes through the liquid crystal layer 2 again for reference. However, the suspended part cannot be detected by light. The presence or absence of this light can be seen as an image.

また、このときの1画素は光源から照射される光ビーム
のビーム径に対応し、個々の画素ごとに色フィルタを配
置しておけばカラー像として参照することができる。
Further, one pixel at this time corresponds to the beam diameter of the light beam emitted from the light source, and if a color filter is arranged for each pixel, it can be referred to as a color image.

〈実施例1〉 液晶としてフェニルシクロヘキサン系液晶にカイラル材
としてコレステリンクツナノエイトを重量比で7〜8%
混合し、膜厚としては7〜8μmとした。そしてこの膜
厚の20%のねしれピッチを有するように作成した。な
お配光処理膜には後述する反射層表面に、シラン処理剤
が塗布された後、高温処理された垂直配光処理膜を使用
した。
<Example 1> Phenylcyclohexane liquid crystal as a liquid crystal and cholesteric tunanoate as a chiral material in a weight ratio of 7 to 8%
The mixture was mixed to a film thickness of 7 to 8 μm. The film was made to have a welt pitch of 20% of this film thickness. As the light distribution film, a vertical light distribution film was used in which a silane treatment agent was applied to the surface of a reflective layer, which will be described later, and then subjected to high temperature treatment.

この液晶は電圧が印加されないときに透明で、電圧が印
加されることによって白濁する。すなわち光源によって
光が日、6射されなかった領域では参照光が液晶層を通
過し反射されて参照光として見られるが、光が照射され
た領域においては参照光が反射されず光が認識されない
。したがってテレビ信号と同し像を得るためには光源の
制御として、テレビ信号が受信された画素では光を照射
せず、テレビ信号が受信された画素で光を照射するとい
う制御が必要になる。
This liquid crystal is transparent when no voltage is applied, and becomes cloudy when a voltage is applied. In other words, in the areas where the light is not irradiated by the light source, the reference light passes through the liquid crystal layer and is reflected and seen as the reference light, but in the areas where the light is irradiated, the reference light is not reflected and the light is not recognized. . Therefore, in order to obtain the same image as the television signal, it is necessary to control the light source so that the pixel that receives the television signal is not irradiated with light, but the pixel that receives the television signal is irradiated with light.

光導電層としてはアモルファスシリコン(以下、a−5
iという。)からなるものを使用した。なおa−5iは
例えばプラズマCVD法により基板温度を250度に設
定して作成したものが使用される。
The photoconductive layer is amorphous silicon (hereinafter referred to as a-5
It's called i. ) was used. Note that a-5i is made by, for example, a plasma CVD method with the substrate temperature set at 250 degrees.

また原料ガスとしてはSiHいB2H6の混合ガスを使
用し、B、H,の供給量を適宜設定することによってa
−5iを真性半導体とし、暗導電度が2X10−”、光
導電層が3X10−’の特性を持つa−5iを作成した
In addition, a mixed gas of SiH and B2H6 is used as the raw material gas, and by appropriately setting the supply amounts of B and H, a
A-5i was prepared by using -5i as an intrinsic semiconductor and having dark conductivity of 2X10-'' and a photoconductive layer of 3X10-''.

さらに透明電極としてITOを用い、反射層として屈折
率の互いに大きく異なる2種類の材料のからなる反射材
を用いた。例えば膜厚が0.1〜0゜5μm程度のMg
F2とZnSとの糾み合わせ、SiとSiO□との組み
合わせ、を10〜15層積層した多層膜からなる誘電ミ
ラーである。なお前述したように光導電層としてa−5
iを使用した場合、Si以外の原子による汚染を防止す
るためにSlとSiO□との糺み合わせのものを用いる
ことが望ましい。
Further, ITO was used as the transparent electrode, and a reflective material made of two types of materials with significantly different refractive indexes was used as the reflective layer. For example, Mg with a film thickness of about 0.1 to 0.5 μm
This is a dielectric mirror made of a multilayer film consisting of 10 to 15 laminated layers of a combination of F2 and ZnS and a combination of Si and SiO□. As mentioned above, a-5 is used as the photoconductive layer.
When i is used, it is desirable to use a combination of Sl and SiO□ to prevent contamination by atoms other than Si.

さらに透明電極3.3には通常、IKIlz、5Vの電
場が印加されるが、残存する映像情報を消去するため画
面走査が開始されるまでにIOVの交流電場が印加され
る。
Further, an electric field of IKIlz, 5V is normally applied to the transparent electrode 3.3, but an alternating current electric field of IOV is applied before screen scanning is started in order to erase remaining image information.

このような構成により、光源1)は、テレビの映像信号
に応して光ビームをポリゴンミラー12および長尺ミラ
ー13を介して液晶ライトパルフ10に照射する。する
と光が照射された部分の液晶層が透明状態から乳白色に
変化する。この液晶の相変化が映像として参照光により
読み出される〈実施例2〉 液晶として、正の誘電異方性を持つツィステッド・ネマ
チック材を用いた。この液晶は液晶分子が面に平行に一
軸配向するように処理したガラスを直交して対向させ、
その中に液晶が封入されている。液晶分子は90度ねし
れて配向し、光が入射すると分子軸に沿って伝搬されて
偏波面が90度回転する(旋光性を有している)。一方
、一定板上の電圧を印加するとスイッチングを起こして
液晶分子が電界方向に配列を変え、旋光性が失われて光
は真っ直くに通過する。
With such a configuration, the light source 1) irradiates the liquid crystal light pulse 10 with a light beam via the polygon mirror 12 and the elongated mirror 13 in response to a television video signal. The liquid crystal layer in the area exposed to the light changes from transparent to milky white. This phase change of the liquid crystal is read out as an image using a reference light (Example 2) A twisted nematic material having positive dielectric anisotropy was used as the liquid crystal. This liquid crystal is made by orthogonally opposing glass that has been treated so that the liquid crystal molecules are uniaxially aligned parallel to the plane.
A liquid crystal is sealed inside. Liquid crystal molecules are oriented with a twist of 90 degrees, and when light is incident, it is propagated along the molecular axis and the plane of polarization is rotated by 90 degrees (having optical rotation). On the other hand, when a constant voltage is applied to the plate, switching occurs and the liquid crystal molecules change their alignment in the direction of the electric field, losing optical rotation and allowing light to pass straight through.

第3図に示したように、この液晶に対する参照光の入射
側と反射側に偏光板14a、14bを配置する。この2
枚の偏向板14a、14bは無電圧時の液晶において9
0度ねじれた光は通過させるが、電圧印加時ムこ真っ直
ぐに通過する光は遮断する。すなわちこの液晶では、無
電圧時には光が透過するが、スイッチングを起こす程度
の電圧が印加されると光が透過しなくなる。なお第3図
において、入射光側の構成をは実施例1と同様である。
As shown in FIG. 3, polarizing plates 14a and 14b are arranged on the incident side and reflection side of the reference light with respect to the liquid crystal. This 2
The deflection plates 14a and 14b are 9 in the liquid crystal display when no voltage is applied.
Light that is twisted by 0 degrees is allowed to pass through, but light that passes straight through when a voltage is applied is blocked. In other words, this liquid crystal allows light to pass through when no voltage is applied, but when a voltage that causes switching is applied, light no longer passes through the liquid crystal. In FIG. 3, the configuration on the incident light side is the same as in the first embodiment.

この液晶と、光導電層1反射層、透明電極を積層して液
晶テレビのデバイスが構成される。なおこの場合、実施
例1同様に光源としてテレビ信号と反転した光を照射す
るものが用いられる。
A liquid crystal television device is constructed by laminating this liquid crystal, a photoconductive layer 1 reflective layer, and a transparent electrode. In this case, as in the first embodiment, a light source that emits light that is inverse to the television signal is used.

(gi全発明効果 この発明によγLば、従来のアクティツマトリクスのよ
うに画素ごとにTPTのような電圧印加手段を設ける必
要がなく、製作コストを安価にすることができる。また
、一画素のサイズも光ビームのスポット径まで小さくす
ることができ、光解像度を期待できる。
(gi Overall Effect of the Invention With γL, it is not necessary to provide a voltage application means such as TPT for each pixel as in the conventional actitus matrix, and the manufacturing cost can be reduced. The size can be reduced to the spot diameter of the light beam, and optical resolution can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は液晶ライトバルブの構成例を示した断面図、第
2図は第1の実施例である液晶テレビの構成を示した図
であり、同図(A)は平面図、同図(B)は側面図″□
、第3図は他の実施例である液晶テレビの参照光側の構
成を示す平面図である。 l−光導電層、2−液晶層、3−透明電極、4電圧印加
手段、5−反射層、6−配光処理lIり、7基板ガラス
、8−入射光、自−参曜光。
FIG. 1 is a cross-sectional view showing an example of the configuration of a liquid crystal light valve, and FIG. 2 is a diagram showing the configuration of a liquid crystal television according to the first embodiment. B) is a side view ″□
, FIG. 3 is a plan view showing the configuration of the reference light side of a liquid crystal television according to another embodiment. 1-photoconductive layer, 2-liquid crystal layer, 3-transparent electrode, 4-voltage application means, 5-reflective layer, 6-light distribution treatment, 7-substrate glass, 8-incident light, self-transparent light.

Claims (2)

【特許請求の範囲】[Claims] (1)光導電層、液晶層およびこの二層に電圧を印加す
る電圧印加手段とを備える光導電型液晶ライトバルブか
らなる表示素子と、 映像信号を光に変換して前記表示素子に投影する投影手
段と、 を設けたことを特徴とする光導電型液晶ライトバルブを
用いた液晶テレビ。
(1) A display element consisting of a photoconductive liquid crystal light valve, which includes a photoconductive layer, a liquid crystal layer, and a voltage application means for applying a voltage to these two layers, and converts a video signal into light and projects it onto the display element. A liquid crystal television using a photoconductive liquid crystal light valve, characterized in that a projection means is provided.
(2)請求項(1)記載の投影手段が少なくとも、映像
信号をビーム光として照射する光源と、 このビーム光を一方向に走査させるポリゴンミラーと、 前記ビーム光を、ポリゴンミラーによる走査方向と垂直
な方向に走査させる回転可能な長尺ミラーと、 を備えてなる光導電型液晶ライトバルブを用いた液晶テ
レビ。
(2) The projection means according to claim (1) includes at least a light source that irradiates the video signal as a beam light, a polygon mirror that scans the beam light in one direction, and a polygon mirror that scans the beam light in one direction. A liquid crystal television using a photoconductive liquid crystal light valve, comprising: a rotatable long mirror that scans in a vertical direction; and a photoconductive liquid crystal light valve.
JP21127390A 1990-08-08 1990-08-08 Liquid crystal television receiver using photoconductive liquid crystal light bulb Pending JPH0494281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21127390A JPH0494281A (en) 1990-08-08 1990-08-08 Liquid crystal television receiver using photoconductive liquid crystal light bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21127390A JPH0494281A (en) 1990-08-08 1990-08-08 Liquid crystal television receiver using photoconductive liquid crystal light bulb

Publications (1)

Publication Number Publication Date
JPH0494281A true JPH0494281A (en) 1992-03-26

Family

ID=16603193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21127390A Pending JPH0494281A (en) 1990-08-08 1990-08-08 Liquid crystal television receiver using photoconductive liquid crystal light bulb

Country Status (1)

Country Link
JP (1) JPH0494281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548420A (en) * 1993-03-16 1996-08-20 Fuji Xerox Co., Ltd. Liquid-crystal display device and method for both displaying fast moving images and holding static images
US5566012A (en) * 1994-01-04 1996-10-15 Fuji Xerox Co., Ltd. Optically addressed liquid crystal displaying and recording device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548420A (en) * 1993-03-16 1996-08-20 Fuji Xerox Co., Ltd. Liquid-crystal display device and method for both displaying fast moving images and holding static images
US5566012A (en) * 1994-01-04 1996-10-15 Fuji Xerox Co., Ltd. Optically addressed liquid crystal displaying and recording device

Similar Documents

Publication Publication Date Title
TW536688B (en) Liquid crystal display element
US5526149A (en) Reflection type liquid crystal display device
US6493051B2 (en) Transflective liquid crystal display device
KR100239266B1 (en) Optical compensator for liquid crystal display
US20020036732A1 (en) Transflective color LCD device
JPH05203915A (en) Display device
KR100348359B1 (en) Liquid Crystal Display
CN101548223A (en) Self-compensating, quasi-homeotropic liquid crystal device
US5305129A (en) Liquid crystal display device of optical writing type having a carbon dispersed light absorbing layer and a cholesteric reflector
JP2002533749A5 (en)
US5071230A (en) Liquid crystal display device with selective transmitting means and an impedance changing layer
US6052165A (en) Reflective liquid crystal display (LCD) device having an internal reflection reducer
US7372524B2 (en) Liquid crystal display device
JPH0688969A (en) Optical valve having twisted vertical liquid crystal
US7982833B2 (en) Transflective liquid crystal display panel having a plurality of apertures with a specific ratio of aperture width to aperture interval
US7256844B2 (en) Liquid crystal display device
JPH0494281A (en) Liquid crystal television receiver using photoconductive liquid crystal light bulb
JP2003107477A (en) Liquid crystal display device
JP4649149B2 (en) Liquid crystal display device
JPH0719000B2 (en) Matrix display
JP2007025469A (en) Optical element and liquid crystal display device
JPH0854618A (en) Reflection type display device
JP3073657B2 (en) Liquid crystal light valve and projection type liquid crystal display device using the same
JP2001147427A (en) Liquid crystal display device
JPH10268315A (en) Reflection type liquid crystal display panel, and projection type liquid crystal display panel using the same