JPH0494201A - Low power consumption type crystal oscillation circuit - Google Patents

Low power consumption type crystal oscillation circuit

Info

Publication number
JPH0494201A
JPH0494201A JP21110790A JP21110790A JPH0494201A JP H0494201 A JPH0494201 A JP H0494201A JP 21110790 A JP21110790 A JP 21110790A JP 21110790 A JP21110790 A JP 21110790A JP H0494201 A JPH0494201 A JP H0494201A
Authority
JP
Japan
Prior art keywords
circuit
oscillation
voltage
crystal oscillation
oscillation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21110790A
Other languages
Japanese (ja)
Other versions
JP3136600B2 (en
Inventor
Akio Tamagawa
秋雄 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP02211107A priority Critical patent/JP3136600B2/en
Publication of JPH0494201A publication Critical patent/JPH0494201A/en
Application granted granted Critical
Publication of JP3136600B2 publication Critical patent/JP3136600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To quicken the rise of oscillation and to reduce power consumption by decreasing a power supply voltage applied to a crystal oscillation circuit automatically at a point of time when a level detection circuit detects it that the oscillation level of the crystal oscillation circuit reaches a necessary and sufficient voltage for the duration of the oscillation. CONSTITUTION:The oscillation circuit is provided with a level detection circuit 2 having a Schmitt circuit to detect a level of an oscillation output signal of a crystal oscillation circuit 1, a frequency - voltage conversion circuit 3 in which a pulse signal outputted from the level detection circuit 2 is inputted to a switched capacitor circuit 13 and a reference voltage is outputted, and an amplifier circuit 4 amplifying a reference voltage and applying the amplified voltage to the crystal oscillation circuit 1 as a power supply voltage ED. Then the Schmitt circuit of the level detection circuit 2 outputs a pulse signal SP when an amplitude of an oscillation output signal SD outputted from the crystal oscillation circuit 1 reaches a hysteresis width VSMT of the circuit. Thus, the rise of the oscillation is fast and the power consumption is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低消費電力型水晶発振回路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a low power consumption crystal oscillator circuit.

〔従来の技術〕[Conventional technology]

第3図(a)はCMOSトランジスタを用いた基本的な
水晶発振器の回路図である。
FIG. 3(a) is a circuit diagram of a basic crystal oscillator using CMOS transistors.

CMOSインバータCIを増幅器とし、水晶振動子Xと
キャパシタCG、CDと帰還抵抗RFとで構成された帰
還回路FをCMOSインバータC■の人、出力端に並列
接続して水晶発振回路1を構成している。
A crystal oscillation circuit 1 is constructed by using a CMOS inverter CI as an amplifier, and connecting a feedback circuit F composed of a crystal resonator X, a capacitor CG, a CD, and a feedback resistor RF in parallel to the output terminal of a CMOS inverter C. ing.

この水晶発振回路1はCMOS)ランジスタで構成され
ていながらCMOSインバータCIのゲート電圧VGが
ほぼ正弦波で振動するため、CMOS)ランジスタQp
、Qnには第3図(b)に示したような貫通電流iCが
流れて発振回路1の消費電力が高くなるのが欠点である
Although this crystal oscillator circuit 1 is composed of a CMOS transistor, the gate voltage VG of the CMOS inverter CI oscillates in a nearly sinusoidal manner, so the CMOS transistor Qp
, Qn flow through the through current iC as shown in FIG. 3(b), which increases the power consumption of the oscillation circuit 1, which is a drawback.

この貫通電流iCは電源電圧VDの2乗にほぼ比例する
ため、電源電圧VDが上昇すると消費電力は急激に増大
する。
Since this through current iC is approximately proportional to the square of the power supply voltage VD, power consumption increases rapidly as the power supply voltage VD increases.

この消費電力を抑えるためには定電圧源を設けて水晶発
振回路にかかる電圧を制限する方法がある。
In order to suppress this power consumption, there is a method of providing a constant voltage source to limit the voltage applied to the crystal oscillation circuit.

ところが発振回路では一般に立ち上がり時の発振振幅が
小さく、短期間で発振を成長させるためには水晶発振回
路に電源電圧VDを直接印加することが有利である。
However, in an oscillation circuit, the oscillation amplitude at startup is generally small, and in order to grow oscillation in a short period of time, it is advantageous to directly apply the power supply voltage VD to the crystal oscillation circuit.

第4図は上記の点に着目して発明された特公昭60−2
8162号公報に記載されている低消費電力型の水晶発
振回路である。
Figure 4 shows the special public interest issued in 1986-2, which was invented with the above points in mind.
This is a low power consumption type crystal oscillation circuit described in Japanese Patent No. 8162.

この従来の回路は、第3図に示した水晶発振回路1と第
1分周回路31と第2分周回路32とフリップフロップ
回路33とのカスケード回路及び電圧検出回路34の出
力信号を入力するORゲート35と、その出力信号SO
Rで駆動される第1スイツチS1と第2スイツチS2と
、発振回路1と電源VDとの間に挿入されたダイオード
回路38とを有する。
This conventional circuit inputs the output signal of the cascade circuit of the crystal oscillation circuit 1, the first frequency divider circuit 31, the second frequency divider circuit 32, and the flip-flop circuit 33 and the voltage detection circuit 34 shown in FIG. OR gate 35 and its output signal SO
It has a first switch S1 and a second switch S2 driven by R, and a diode circuit 38 inserted between the oscillation circuit 1 and the power supply VD.

次に、この回路の動作を説明する。Next, the operation of this circuit will be explained.

フリップフロップ回833は電源投入後にリセットする
ために第1のスイッチS1をオンする。
The flip-flop circuit 833 turns on the first switch S1 in order to be reset after power is turned on.

したがって水晶発振回路1には電源電圧VDが直接印加
される。
Therefore, the power supply voltage VD is directly applied to the crystal oscillation circuit 1.

そのため、水晶発振回FI!41の発振は急速に安定な
状態になる。
Therefore, the crystal oscillation times FI! The oscillation of 41 quickly becomes stable.

第1分周回路31および第2分周回路32は水晶発振回
路1の出力信号S○のパルスをカウントし、所定計数後
にフリップフロップ回路33をセットする。
The first frequency dividing circuit 31 and the second frequency dividing circuit 32 count the pulses of the output signal S○ of the crystal oscillation circuit 1, and set the flip-flop circuit 33 after a predetermined count.

フリップフロップ凹B33がセットされると第1のスイ
ッチS1はオフし、発振回路1にはダイオードDi、D
2の順電圧分だけ低い低電源電圧VDLが供給され電流
が減少し低消費電力となる。
When the flip-flop concave B33 is set, the first switch S1 is turned off, and the diodes Di and D are connected to the oscillation circuit 1.
A low power supply voltage VDL that is lower by the forward voltage of 2 is supplied, the current is reduced, and power consumption is reduced.

電源電圧VDが電源変動で低下した場合は電圧検出回路
34により再び第1のスイッチS1がオンするため、発
振器電源電圧はVDに戻りこのように広い電源電圧範囲
で安定動作をするように自動調整している。
If the power supply voltage VD decreases due to power supply fluctuations, the voltage detection circuit 34 turns on the first switch S1 again, so the oscillator power supply voltage returns to VD and is automatically adjusted to ensure stable operation in such a wide power supply voltage range. are doing.

第5図は第4図のブロックの発振振幅の成長過程を説明
するための各信号の波形図であり、わかり易いように発
振周期は誇張して書いである。
FIG. 5 is a waveform diagram of each signal for explaining the growth process of the oscillation amplitude of the block in FIG. 4, and the oscillation period is exaggerated for ease of understanding.

ここでは発振振幅が安定した時点t1で第1のスイッチ
S1をオフし、発振回路1に印加する電圧をVDからV
DLに切換えて低消費電力化を図っている。
Here, at time t1 when the oscillation amplitude is stabilized, the first switch S1 is turned off, and the voltage applied to the oscillation circuit 1 is changed from VD to VD.
Switching to DL to reduce power consumption.

実際の低消費電力型水晶発振回路では発振振幅が安定す
るまえに数秒かかる。
In an actual low power consumption crystal oscillator circuit, it takes several seconds before the oscillation amplitude stabilizes.

例えば時計用の水晶発振回路1は32 k Hzを使用
するため発振振幅が安定するまでに敵方すイクル程かか
ることになる。
For example, since the crystal oscillation circuit 1 for a watch uses 32 kHz, it takes about two cycles for the oscillation amplitude to stabilize.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の回路では発振回路の出力をカウントして所定時間
後に発振回路に印加する電圧を低い値に切換えていたた
め、切換え時のカウント数を低目に設定すると発振振幅
が充分安定しないうちに電源が切換わっでしまい、発振
が安定するまでに時間がかかるという欠点があった。
In conventional circuits, the output of the oscillation circuit is counted and the voltage applied to the oscillation circuit is switched to a lower value after a predetermined period of time. Therefore, if the count number at the time of switching is set to a low value, the power supply may turn off before the oscillation amplitude is sufficiently stabilized. The disadvantage is that switching occurs and it takes time for the oscillation to stabilize.

また、切換え時のカウント数を高目に設定すると発振振
幅が充分安定してからもしばらくの間高い電源電圧が直
接発振回路に印加され消費電力が増大するという欠点も
あり、適切にタイミングを設定するのが難しかった。
Also, if the count number at switching is set to a high value, a high power supply voltage will be applied directly to the oscillation circuit for a while even after the oscillation amplitude has stabilized sufficiently, increasing power consumption, so set the timing appropriately. It was difficult to do.

本発明の目的は、発振の立上りが速い低消費電力型水晶
発振回路を提供することにある。
An object of the present invention is to provide a low power consumption type crystal oscillator circuit in which oscillation rises quickly.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の水晶発進回路は、水晶発振子を有する帰還回路
をCMO8?−ランジスタ増幅回路に並列接続した水晶
発振回路と、該水晶発振回路の出力する発振信号を入力
し所定のレベル以上でパルス信号を出力するレベル検出
回路と、前記パルス信号を入力して電源電圧よりも低い
基準電圧を出力する周波数〜電圧変換回路と、前記基準
電圧を入力して前記電源電圧よりも低い値の増幅電圧を
前記水晶発振回路に供給する増幅回路とを含んで構成さ
れている。
The crystal starting circuit of the present invention uses a feedback circuit having a crystal oscillator as CMO8? - A crystal oscillation circuit connected in parallel to the transistor amplifier circuit, a level detection circuit that inputs the oscillation signal output from the crystal oscillation circuit and outputs a pulse signal at a predetermined level or higher, and a level detection circuit that inputs the pulse signal and lowers the power supply voltage. The crystal oscillation circuit includes a frequency-to-voltage conversion circuit that outputs a low reference voltage, and an amplifier circuit that receives the reference voltage and supplies an amplified voltage lower than the power supply voltage to the crystal oscillation circuit.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の回路図である。FIG. 1 is a circuit diagram of an embodiment of the present invention.

低消費型水晶発振回路は、第3図に示した水晶発振回路
1の発振出力信号の振幅レベルを検出するシュミット回
路を有するレベル検出回路2と、該レベル検出回路の出
力するパルス信号をスイッチトキャパシタ回路13に入
力しレファレンス電圧を出力する周波数−電圧変換回路
3と、前記レファレンス電圧を増幅して前記水晶発振回
路1に電源電圧EDとして供給する増幅回路4とを有し
ている。
The low consumption crystal oscillation circuit includes a level detection circuit 2 having a Schmitt circuit for detecting the amplitude level of the oscillation output signal of the crystal oscillation circuit 1 shown in FIG. It has a frequency-voltage conversion circuit 3 that inputs to the circuit 13 and outputs a reference voltage, and an amplifier circuit 4 that amplifies the reference voltage and supplies it to the crystal oscillation circuit 1 as a power supply voltage ED.

ここで、レベル検出回路2のシュミット回路は、水晶発
振回路1の出力する発振出力信号SDの振幅が回路のヒ
ステリシス幅VSMTに達するとパルス信号SPを出力
する。
Here, the Schmitt circuit of the level detection circuit 2 outputs a pulse signal SP when the amplitude of the oscillation output signal SD output from the crystal oscillation circuit 1 reaches the hysteresis width VSMT of the circuit.

このシュミット回路のヒステリシス幅VSMTは水晶発
振回路1が発振を持続するに必要な電圧程度に設定する
The hysteresis width VSMT of this Schmitt circuit is set to approximately the voltage required for the crystal oscillation circuit 1 to sustain oscillation.

通常この電圧VSMTは、PチャネルMO8)ランジス
タQPのしきい値電圧をVTR,NチャネルMOS)ラ
ンジスタQNのしきい値電圧を■TNとすると IVT
PI  +VTN程度である。
Normally, this voltage VSMT is IVT, where the threshold voltage of the P-channel MO8) transistor QP is VTR, and the threshold voltage of the N-channel MOS transistor QN is TN.
It is about PI + VTN.

周波数−電圧変換回路3はパルス信号SPで駆動される
充電スイッチ11及びインバータ9で逆相駆動される放
電スイッチ10を有するスイッチトキャパシタ回路13
と、ソースを接地するNチャネルMOS)−ランジス・
りQNに直列のPチャネルMO3)ランジスタQPのド
レイン節点りが定電流値ISの定電流源7及び充電スイ
ッチ11のそれぞれ一端に接続すると共にローパスフィ
ルタ8の入力端に接続されて構成されている。
The frequency-voltage conversion circuit 3 includes a switched capacitor circuit 13 having a charging switch 11 driven by a pulse signal SP and a discharging switch 10 driven in reverse phase by an inverter 9.
and an N-channel MOS whose source is grounded) - Rungis
The drain node of the P-channel MO3) transistor QP connected in series with QN is connected to one end of each of a constant current source 7 with a constant current value IS and a charging switch 11, and is also connected to the input end of a low-pass filter 8. .

次に回路の動作を説明する。Next, the operation of the circuit will be explained.

レベル変換回路2からのパルス信号SPの入力が無い時
は、スイッチトキャバシタ回路13はオフしており、ド
レインDの電位VDOは第(1)式%式% ここでμ2.μ8はそれぞれ正孔、電子の移動度、(W
p / Lp ) 、  (WN / LN )はそれ
ぞれトランジスタQP、QNのチャネル幅とチャネル長
の比である。
When there is no input of the pulse signal SP from the level conversion circuit 2, the switched capacitor circuit 13 is off, and the potential VDO of the drain D is expressed by the formula (1) % where μ2. μ8 is the mobility of holes and electrons, respectively, (W
p/Lp) and (WN/LN) are the ratios of the channel width and channel length of transistors QP and QN, respectively.

定を流値ISの値は低消費電力化のため微小な値に設定
する。
The current value IS is set to a small value in order to reduce power consumption.

例えば水晶発振回路1の発振周波数が低いほどIS値を
低くする必要があり、時計用の32kH2の発振回路に
おいては1μA以下とするのが望ましい。
For example, the lower the oscillation frequency of the crystal oscillation circuit 1, the lower the IS value needs to be, and in a 32 kHz oscillation circuit for a watch, it is desirable to set it to 1 μA or less.

ローパスフィルタ8の出力する直流電圧VRHはドレイ
ン電圧VD○と等しく、その値を電源電圧VD程度に設
定する。
The DC voltage VRH output from the low-pass filter 8 is equal to the drain voltage VD○, and its value is set to about the power supply voltage VD.

このためには第(1)式において右辺第2項および第4
項の値を大きくする必要があり、これは両トランジスタ
の寸法比(Wp/Lp>および(Wpr / L N 
)を小さくすることによって実現される。
For this purpose, the second term and the fourth term on the right side of equation (1) must be
It is necessary to increase the value of the term, which is determined by the size ratio of both transistors (Wp/Lp> and (Wpr/L N
) is achieved by reducing .

発振出力の振幅が大きくなってレベル検出回路2からパ
ルス信号SPが出力されスイツチトキャパシタ回路13
に供給されると充電スイッチ11はオンで放電スイッチ
10はオフとなり定電流源7の定電流ISからIC=C
・VDO−fの電流を接地点に分流するためトレイン節
点りの電位はVRLに下がる。
The amplitude of the oscillation output increases, and a pulse signal SP is output from the level detection circuit 2 and the switched capacitor circuit 13
When supplied, the charging switch 11 is turned on and the discharging switch 10 is turned off, and from the constant current IS of the constant current source 7, IC=C.
- In order to shunt the current of VDO-f to the ground point, the potential at the train node drops to VRL.

この時のフィルタ8−の出力するレファレンスVREF
の値がIVTPI  +VTN程度になるように定電流
値IsおよびCの値を設定する。
Reference VREF output from filter 8- at this time
The constant current value Is and the value of C are set so that the value of IVTPI +VTN is approximately equal to IVTPI +VTN.

ローパスフィルタ8はスイッチングによって発生したリ
ップル成分を積分して除去し、直流成分だけを増幅回路
4へ伝達する。
The low-pass filter 8 integrates and removes ripple components generated by switching, and transmits only the DC component to the amplifier circuit 4.

増幅回路4は周波数−電圧変換回路3で得られたリファ
レンス電圧VREFを電圧利得1の増幅口N4で増幅し
、水晶発振回路1に対して定電圧を電源電圧EDとして
供給する。
The amplifier circuit 4 amplifies the reference voltage VREF obtained by the frequency-voltage conversion circuit 3 at an amplification port N4 with a voltage gain of 1, and supplies a constant voltage to the crystal oscillation circuit 1 as a power supply voltage ED.

以上各ブロックの動作を説明したが、次に第2図の波形
図を参照して第1図のブロック全体動作を説明する。
The operation of each block has been explained above, and next, the operation of the entire block of FIG. 1 will be explained with reference to the waveform diagram of FIG. 2.

水晶発振図N11の発振出力SOの振幅がレベル検出回
s2の検出電圧VSMT以下の間は、レベル検出回H2
はパルス信号SPを出力しない。
While the amplitude of the oscillation output SO of the crystal oscillation diagram N11 is below the detection voltage VSMT of the level detection circuit s2, the level detection circuit H2
does not output the pulse signal SP.

そのため、充電スイッチ11は開いており周波数−電圧
変換回路3の出力するリファレンス電圧VRHは電源電
圧VDに近く、増幅回路4の出力する水晶発振回路用電
源の電圧EDもVD程度となる。
Therefore, the charging switch 11 is open, the reference voltage VRH output from the frequency-voltage conversion circuit 3 is close to the power supply voltage VD, and the voltage ED of the power supply for the crystal oscillation circuit output from the amplifier circuit 4 is also approximately VD.

したがって水晶発振回路1は電源電圧VDで動作し、す
みやかに発振振幅が立上がる。
Therefore, the crystal oscillation circuit 1 operates with the power supply voltage VD, and the oscillation amplitude quickly rises.

水晶発振回路1の発振振幅が時点10でレベル検出回路
2の検出電圧VSMTに達すると、レベル検出回路2は
パルス信号SPを時点toから出力する。
When the oscillation amplitude of the crystal oscillation circuit 1 reaches the detection voltage VSMT of the level detection circuit 2 at the time point 10, the level detection circuit 2 outputs the pulse signal SP from the time point to.

そこで周波数−電圧変換回路3にパルス信号SPが入力
されると充電スイッチ11が同期動作するので周波数−
電圧変換回路3の出力するリファレンス電圧VREFは
しきい値電圧の和(VPT  十VTN)に下げられる
Therefore, when the pulse signal SP is input to the frequency-voltage conversion circuit 3, the charging switch 11 operates synchronously, so that the frequency -
The reference voltage VREF output from the voltage conversion circuit 3 is lowered to the sum of threshold voltages (VPT + VTN).

増幅回路4は降圧されたVRLと同じ電圧を水晶発振回
路1の電源として供給し、低消費電力動作を行う。
The amplifier circuit 4 supplies the same voltage as the step-down VRL as a power source to the crystal oscillation circuit 1, thereby performing low power consumption operation.

電圧VREFがVRLに降圧後もレベル検出回路2がパ
ルス信号SPを出力し続けるためには、レベル検出値V
SMTはVRLよりも低く設定しておく。
In order for the level detection circuit 2 to continue outputting the pulse signal SP even after the voltage VREF is reduced to VRL, the level detection value V
SMT is set lower than VRL.

他の実施例として、増幅回路4の一端に入力する帰還電
圧を1よりも小さくして電圧利得を1より大きな値に設
定すると、リファレンス電圧VRLを発生するための両
トランジスタQP、QNのチャネル長LNおよびLPを
短く設定することが可能であり、チップ面積を低減でき
る利点がある。
As another example, if the feedback voltage input to one end of the amplifier circuit 4 is set to be smaller than 1 and the voltage gain is set to a value larger than 1, the channel length of both transistors QP and QN for generating the reference voltage VRL is It is possible to set LN and LP short, and there is an advantage that the chip area can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、レベル検出回路により水
晶発振回路の発振振幅が持続するのに必要にして充分な
電圧になった時点で自動的に水晶発振回路に供給する電
源電圧を降圧するので、発振の立上りが速くかつ消費電
力の低い水晶発振回路を実現できるという効果を有する
As explained above, the present invention automatically steps down the power supply voltage supplied to the crystal oscillator circuit when the level detection circuit reaches a sufficient voltage to maintain the oscillation amplitude of the crystal oscillator circuit. This has the effect of realizing a crystal oscillation circuit with fast oscillation rise and low power consumption.

電源電圧、ED・・・水晶発振回路用電源電圧。Power supply voltage, ED...Power supply voltage for crystal oscillation circuit.

Claims (1)

【特許請求の範囲】 1、水晶発振子を有する帰還回路をCMOSトランジス
タ増幅回路に並列接続した水晶発振回路と、該水晶発振
回路の出力する発振信号を入力し所定のレベル以上でパ
ルス信号を出力するレベル検出回路と、前記パルス信号
を入力して電源電圧よりも低い基準電圧を出力する周波
数−電圧変換回路と、前記基準電圧を入力して前記電源
電圧よりも低い値の増幅電圧を前記水晶発振回路に供給
する増幅回路とを含むことを特徴とする低消費電力型水
晶発振回路。 2、前記周波数−電圧変換回路は、一端が節点Dと定電
流源を介して前記電源電圧の端子に接続される定電圧素
子と、前記パルス信号に同期して前記節点Dからコンデ
ンサにバイパス電流を流すスイッチトキャパシタ回路と
、入力端が前記節点Dに接続され出力端から前記基準電
圧を出力するローパスフィルタを有することを特徴とす
る低消費電力型水晶発振回路。
[Claims] 1. A crystal oscillation circuit in which a feedback circuit having a crystal oscillator is connected in parallel to a CMOS transistor amplifier circuit, and an oscillation signal output from the crystal oscillation circuit is input and a pulse signal is output at a predetermined level or higher. a level detection circuit that inputs the pulse signal and outputs a reference voltage lower than the power supply voltage; and a frequency-voltage conversion circuit that inputs the reference voltage and outputs an amplified voltage lower than the power supply voltage. A low power consumption crystal oscillation circuit characterized by comprising an amplifier circuit that supplies an oscillation circuit. 2. The frequency-voltage conversion circuit includes a constant voltage element whose one end is connected to a terminal of the power supply voltage via a node D and a constant current source, and a bypass current flowing from the node D to the capacitor in synchronization with the pulse signal. 1. A low power consumption type crystal oscillation circuit comprising: a switched capacitor circuit that allows a current to flow; and a low-pass filter having an input terminal connected to the node D and outputting the reference voltage from an output terminal.
JP02211107A 1990-08-09 1990-08-09 Low power consumption crystal oscillation circuit Expired - Fee Related JP3136600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02211107A JP3136600B2 (en) 1990-08-09 1990-08-09 Low power consumption crystal oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02211107A JP3136600B2 (en) 1990-08-09 1990-08-09 Low power consumption crystal oscillation circuit

Publications (2)

Publication Number Publication Date
JPH0494201A true JPH0494201A (en) 1992-03-26
JP3136600B2 JP3136600B2 (en) 2001-02-19

Family

ID=16600530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02211107A Expired - Fee Related JP3136600B2 (en) 1990-08-09 1990-08-09 Low power consumption crystal oscillation circuit

Country Status (1)

Country Link
JP (1) JP3136600B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042299B2 (en) 2003-04-15 2006-05-09 Fujitsu Limited Crystal oscillation circuit
JP2008099257A (en) * 2006-09-13 2008-04-24 Citizen Holdings Co Ltd Oscillation circuit
WO2016039688A1 (en) * 2014-09-08 2016-03-17 Agency For Science, Technology And Research Reference clock signal generators and methods for generating a reference clock signal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134615A (en) 2010-12-20 2012-07-12 Ricoh Co Ltd Oscillation device and clock generation device having oscillation device, semiconductor device and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042299B2 (en) 2003-04-15 2006-05-09 Fujitsu Limited Crystal oscillation circuit
JP2008099257A (en) * 2006-09-13 2008-04-24 Citizen Holdings Co Ltd Oscillation circuit
WO2016039688A1 (en) * 2014-09-08 2016-03-17 Agency For Science, Technology And Research Reference clock signal generators and methods for generating a reference clock signal
US10116286B2 (en) 2014-09-08 2018-10-30 Agency For Science, Technology And Research Reference clock signal generators and methods for generating a reference clock signal

Also Published As

Publication number Publication date
JP3136600B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
US5057702A (en) Duty radio control circuit apparatus
US5266842A (en) Charge pump circuit for a substrate voltage generator
US20070273485A1 (en) Systems and methods for low power clock generation
KR100963310B1 (en) Control circuit for dc/dc converter
US6456166B2 (en) Semiconductor integrated circuit and phase locked loop circuit
US6940985B2 (en) Shock sound prevention circuit
US7285943B2 (en) Method of forming a reference voltage and structure therefor
JP2716869B2 (en) Oscillation circuit
JPH06196976A (en) Signal generator
JPH0494201A (en) Low power consumption type crystal oscillation circuit
JP3553212B2 (en) Pulse width modulator and pulse width modulation type switching power supply
US8264266B2 (en) Clock with regulated duty cycle and frequency
JP3581002B2 (en) Pulse generating circuit with duty ratio limiting function and DC / DC converter
JP3638696B2 (en) VCO circuit driving method and VCO circuit
JPH10313235A (en) V/f conversion circuit
JP3721924B2 (en) Semiconductor integrated circuit
JPH06216644A (en) Crystal oscillation circuit
KR0146192B1 (en) Charging pump for driving high current
JP2978671B2 (en) Semiconductor memory device
JPH019269Y2 (en)
JPH0353705A (en) Semiconductor integrated circuit
JPH11339463A (en) Charge pumping circuit
JPH01136218A (en) Voltage generating circuit
JPH0818339A (en) Quartz oscillation circuit
RU1809936C (en) Crystal oscillator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees