JPH0494055A - Thin type cell - Google Patents

Thin type cell

Info

Publication number
JPH0494055A
JPH0494055A JP2211795A JP21179590A JPH0494055A JP H0494055 A JPH0494055 A JP H0494055A JP 2211795 A JP2211795 A JP 2211795A JP 21179590 A JP21179590 A JP 21179590A JP H0494055 A JPH0494055 A JP H0494055A
Authority
JP
Japan
Prior art keywords
heat treatment
stainless steel
dew point
heat
thin battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2211795A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Shuichi Ido
秀一 井土
Kazuo Noma
野間 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2211795A priority Critical patent/JPH0494055A/en
Publication of JPH0494055A publication Critical patent/JPH0494055A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To offer a thin type cell excellent in energy density and moisture resistance while having big sealing adhesive force and softness by using a metal subjected to heat treatment in a range of a specific dew point for a collector concurrently serving as a sheath material. CONSTITUTION:Sheets of stainless steel (1, 2) as collectors concurrently serving as sheaths are cleaned with acetone, then heat treatment is performed at a dew point of heat treatment -10 deg.C to 50 deg.C. A positive electrode compound 3 and a negative electrode lithium foil 4 are placed on the heat treated two sheets of stainless steel to be laminated through a separator 5, polyolefin adhesive resin having a carboxyl radical is arranged between the stainless steel sheets in the sealing part, and the sealing part 6 is heat-sealed to obtain a thin type cell. Reaction is hard to progress at a heat treatment temperature not exceeding 100 deg.C, while stainless steel deteriorates at a heat treatment temperature exceeding 500 deg.C so that heat treatment at 100 deg.C to 500 deg.C is desirable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄形電池の封口に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to the sealing of thin batteries.

従来技術とその問題点 近年、リチウムを負極活物質とするリチウム電池におい
て、厚みが1IIII11以下の薄形電池が商品化され
、小形化、薄形化が進む電子機器の分野で注目を集めて
いる。
Conventional technology and its problems In recent years, thin lithium batteries with a thickness of 1III11 or less, which use lithium as the negative electrode active material, have been commercialized and are attracting attention in the field of electronic devices, which are becoming smaller and thinner. .

しかし、現在商品化されている薄形電池は、その封口部
の接着力に劣る。これは接着剤と金属の接着面積が少な
く、単位面積当りの結合の数が少ないためである。封口
部に曲げ等の応力が加わらないようにするべく、厚い金
属を用いて封口部を保護している。従って、現行の薄形
電池は、エネルギー密度が低下し、耐透湿性、封口接着
力、柔軟性に劣るという問題点を有していた。
However, the thin batteries currently on the market have poor adhesive strength at their sealing parts. This is because the bonding area between the adhesive and the metal is small, and the number of bonds per unit area is small. In order to prevent stress such as bending from being applied to the sealing part, thick metal is used to protect the sealing part. Therefore, current thin batteries have problems in that they have low energy density and are poor in moisture permeability, sealing adhesive strength, and flexibility.

発明の目的 本発明は上記従来の問題点に鑑みなされたものであり、
エネルギー密度及び耐透湿性に優れた、封口接着力の大
きい、柔軟性のある薄形電池を提供することを目的とす
るものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
The object of the present invention is to provide a thin, flexible battery that has excellent energy density and moisture permeability, has high sealing adhesive strength, and has excellent sealing adhesive strength.

発明の構成 本発明は上記従来の問題点を解決するべく、集電体兼外
装材である2枚の金属を封口剤を介して接着した薄形電
池において、熱処理された金属を用いたことを特徴とす
る薄形電池である。
Structure of the Invention In order to solve the above-mentioned conventional problems, the present invention utilizes heat-treated metal in a thin battery in which two metal sheets serving as a current collector and exterior material are bonded together via a sealant. This is a thin battery with special characteristics.

尚、金属がステンレス鋼である前記の薄形電池である。The thin battery mentioned above is made of stainless steel.

尚、熱処理の露点が一10℃以上である前記の薄形電池
である。
The thin battery described above has a dew point of 110° C. or higher during heat treatment.

尚、封口材がカルボキシル基を有するポリオレフィン系
の接着性樹脂である前記の薄形電池である。
Note that this is the above-mentioned thin battery in which the sealing material is a polyolefin-based adhesive resin having a carboxyl group.

尚、熱処理の露点が一10℃以上で50℃以下である前
記の薄形電池である。
The thin battery described above has a heat treatment dew point of 110° C. or more and 50° C. or less.

本発明者らは鋭意検討を行なった結果、大気中にて金属
を熱処理することによって接着力が増加することを見い
だした。特に金属がステンレス鋼の場合に接着力の増加
が顕著であった。
As a result of extensive research, the inventors of the present invention have found that adhesive strength can be increased by heat-treating metal in the atmosphere. In particular, when the metal was stainless steel, the increase in adhesive strength was remarkable.

この接着力の増加の理由は明らかではないが、次に挙げ
る2点が考えられる。
Although the reason for this increase in adhesive strength is not clear, the following two points can be considered.

(1)熱処理によって表面の金属が酸化され、スステン
レス調表面の凹凸が大きくなり、アンカー効果などが現
われたため。
(1) The metal on the surface was oxidized by heat treatment, and the unevenness of the stainless steel surface became larger, resulting in an anchor effect.

(2)形成された金属酸化物と水蒸気が反応して表面に
水酸基を多く形成したために、単位面積当りのカルボキ
シル基と表面水酸基との結合が増えたため。
(2) Because the formed metal oxide and water vapor reacted to form many hydroxyl groups on the surface, the number of bonds between carboxyl groups and surface hydroxyl groups per unit area increased.

上記理由の中で可能性が高い理由は(2)であ。Among the above reasons, the most likely reason is (2).

なぜなら、熱処理時の露点を一30°Cに下げて試験を
行なったところ、逆に接着力が低下するという知見が得
られたためである。このことから、露点が低く水蒸気が
少ない雰囲気では、水酸基が供給されにくく、表面水酸
基の形成が抑制されて接着力が増加しにくいものと考え
られる。
This is because when a test was conducted by lowering the dew point during heat treatment to -30°C, it was found that the adhesive strength was reduced on the contrary. From this, it is considered that in an atmosphere with a low dew point and little water vapor, hydroxyl groups are difficult to be supplied, the formation of surface hydroxyl groups is suppressed, and the adhesive strength is difficult to increase.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

接着力を評価するための試験片として、厚み50μmの
ステンレス鋼を幅25mm長さ1001に裁断したもの
を準備した。準備したステンレス鋼をアセトンで超音波
洗浄し、脱脂を行なった。次に熱処理は露点を制御でき
る電気炉を用イて、200°Cで3時間行なった。この
時の電気炉内の露点を一30°Cから100°Cまで変
化させて、そのときの接着力の変化を見た。この試験結
果を第1表に示した。比較例としてアセトンで洗浄した
だけで熱処理せずに接着したときの接着力を同時に示し
た。この場合の接着力は、2枚のステンレス鋼の間にカ
ルボキシル基を有するポリオレフィン系の接着性樹脂を
配して、その上下から加熱してヒートシールした試験片
のT型剥離試験から求めたものである。
As a test piece for evaluating adhesive strength, a piece of stainless steel having a thickness of 50 μm and cut into a piece having a width of 25 mm and a length of 100 mm was prepared. The prepared stainless steel was ultrasonically cleaned with acetone and degreased. Next, heat treatment was carried out at 200° C. for 3 hours using an electric furnace with a controllable dew point. At this time, the dew point in the electric furnace was varied from -30°C to 100°C, and changes in adhesive strength were observed. The test results are shown in Table 1. As a comparative example, the adhesion strength when bonded only after cleaning with acetone and without heat treatment is also shown. The adhesive strength in this case was determined from a T-peel test using a test piece that was heat-sealed by placing a carboxyl group-containing polyolefin adhesive resin between two pieces of stainless steel and heating it from above and below. It is.

T型剥離試験は、2枚のステンレス鋼の他端を互いに反
対方向に引っ張り、剥離するときの接着力を求めるもの
である。
The T-peel test involves pulling the other ends of two pieces of stainless steel in opposite directions and determining the adhesive strength when they are peeled off.

以下余白 第   1   表 第1表よりの結果より、露点−10℃以上での熱処理は
、従来の熱処理・無よりも大きな接着力が得られた。
From the results shown in Table 1, heat treatment at a dew point of -10° C. or higher resulted in greater adhesive strength than conventional heat treatment or no heat treatment.

一方、露点15″Cの大気中で熱処理温度を変えて熱処
理を行なったところ、熱処理温度100℃以下では、5
時間以上の熱処理を行なってもほとんど酸化反応が進ま
ず接着力の増加はほとんど認められなかった。逆に熱処
理温度500℃以上では10分足らずの間に酸化反応が
進みすぎたためと思われるステンレス鋼の変質が認めら
れた。
On the other hand, when heat treatment was carried out at different heat treatment temperatures in the atmosphere with a dew point of 15''C, it was found that when the heat treatment temperature was 100℃ or less,
Even if the heat treatment was performed for more than 1 hour, the oxidation reaction hardly progressed and almost no increase in adhesive strength was observed. On the other hand, when the heat treatment temperature was 500° C. or higher, deterioration of the stainless steel was observed in less than 10 minutes, probably because the oxidation reaction progressed too much.

次に、熱処理をしたステンレス鋼を実際の薄形電池に使
用した場合の特性を評価するために、薄形電池を試作し
透湿試験を行なった。試作した電池の断面図を第1図に
示した。ステンレス鋼は熱処理温度と時間を200℃、
3時間として、露点を−10,10,30,50,75
゜100″Cに変化させて熱処理したものを使用した。
Next, in order to evaluate the characteristics when heat-treated stainless steel is used in an actual thin battery, a thin battery was prototyped and a moisture permeability test was conducted. A cross-sectional view of the prototype battery is shown in Figure 1. For stainless steel, the heat treatment temperature and time are 200℃,
3 hours, dew point -10, 10, 30, 50, 75
The material was heat treated at 100"C.

以下に薄形電池の組立について述べる。まず、集電体兼
外装であるステンレス鋼(1゜2)を用意し、アセトン
で洗浄した後、上記熱処理条件で熱処理する。次にそれ
ぞれの条件で熱処理した2枚のステンレス鋼に、各々正
極合剤(3)と負極リチウム箔(4)を載置し、セパレ
ータ(5)を介して積層し、封口部のステンレス鋼の間
にカルボキシル基を有するポリオレフィン系接着性樹脂
を配し、その封口部(6)をヒートシールすることによ
り薄形電池が得られる。
The assembly of the thin battery will be described below. First, a stainless steel (1°2) serving as a current collector and exterior is prepared, washed with acetone, and then heat treated under the above heat treatment conditions. Next, a positive electrode mixture (3) and a negative electrode lithium foil (4) are placed on two sheets of stainless steel that have been heat-treated under the respective conditions, and are laminated with a separator (5) in between. A thin battery is obtained by disposing a polyolefin adhesive resin having a carboxyl group therebetween and heat sealing the sealing portion (6).

試作した薄形電池の耐透湿試験は、温度40°C1湿度
90%の恒温恒温炉の中に10日間保存して、保存後の
放電容量の変化を測定して比較した。
The moisture permeation resistance test of the prototype thin battery was performed by storing it in a constant temperature oven at 40° C. and 90% humidity for 10 days, and measuring and comparing the change in discharge capacity after storage.

試験結果を第2図に示した。ステンレス鋼の熱処理時の
露点が50”Cよりも高い場合には、なんらかの原因で
水分が電池内に浸透し、放電容量を劣化させることが判
った。
The test results are shown in Figure 2. It has been found that if the dew point of stainless steel during heat treatment is higher than 50''C, moisture will penetrate into the battery for some reason, degrading the discharge capacity.

これらのことから、熱処理時の露点は−10から50°
Cが適当であるといえる。
From these reasons, the dew point during heat treatment is -10 to 50°.
It can be said that C is appropriate.

一方、熱処理温度に関しては100”C以下では反応が
進みにくく、また500°C以上では反応が進みすぎ制
御がしにくくステンレス鋼が変質してしまうため100
℃から500°Cで熱処理することが望ましいが、熱処
理時間の制御をうまく行えれば、500°C以上の高温
でも処理が可能であるため前記範囲に限定するものでは
ない。
On the other hand, regarding the heat treatment temperature, if the temperature is below 100"C, the reaction will not proceed smoothly, and if it is above 500"C, the reaction will proceed too much and will be difficult to control, resulting in deterioration of the stainless steel.
Although it is preferable to perform the heat treatment at a temperature of 500°C to 500°C, the temperature is not limited to the above range because the treatment can be performed at a high temperature of 500°C or higher if the heat treatment time is well controlled.

なお、本実施例では熱処理を恒温恒温炉で行なったが熱
処理方法はこれだけに限定されるものではなく、露点を
コントロールした空気をステンレス鋼に吹き付けたり、
露点をコントロールした室内で開放型の炉の中をステン
レス鋼を通したり、さらには封口部以外をマスキングし
て熱処理してもよい。
Note that in this example, the heat treatment was performed in a constant-temperature furnace, but the heat treatment method is not limited to this, and may include blowing air with a controlled dew point onto the stainless steel,
Heat treatment may be performed by passing the stainless steel through an open furnace in a room with a controlled dew point, or by masking the parts other than the sealed part.

発明の効果 上述した如く、本発明はエネルギー密度及び耐透湿性に
優れた、封口接着力の大きい、柔軟性のある薄形電池を
提供することが出来るので、その工業的価値は極めて大
である。
Effects of the Invention As described above, the present invention can provide a flexible thin battery with excellent energy density and moisture permeation resistance, strong sealing adhesive strength, and therefore has extremely great industrial value. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄形電池の断面図、第2図は露点と放
電容量の関係を示したものである。
FIG. 1 is a sectional view of the thin battery of the present invention, and FIG. 2 shows the relationship between dew point and discharge capacity.

Claims (5)

【特許請求の範囲】[Claims] (1)集電体兼外装材である2枚の金属を封口剤を介し
て接着した薄形電池において、熱処理された金属を用い
たことを特徴とする薄形電池。
(1) A thin battery in which two metal sheets serving as current collectors and exterior materials are bonded together via a sealant, characterized in that heat-treated metal is used.
(2)金属がステンレス鋼である請求項1記載の薄形電
池。
(2) The thin battery according to claim 1, wherein the metal is stainless steel.
(3)熱処理の露点が−10℃以上である請求項1記載
の薄形電池。
(3) The thin battery according to claim 1, wherein the dew point of the heat treatment is -10°C or higher.
(4)封口材がカルボキシル基を有するポリオレフィン
系の接着性樹脂である請求項1記載の薄形電池。
(4) The thin battery according to claim 1, wherein the sealing material is a polyolefin adhesive resin having a carboxyl group.
(5)熱処理の露点が−10℃以上で50℃以下である
請求項3記載の薄形電池。
(5) The thin battery according to claim 3, wherein the dew point of the heat treatment is -10°C or higher and 50°C or lower.
JP2211795A 1990-08-09 1990-08-09 Thin type cell Pending JPH0494055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2211795A JPH0494055A (en) 1990-08-09 1990-08-09 Thin type cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2211795A JPH0494055A (en) 1990-08-09 1990-08-09 Thin type cell

Publications (1)

Publication Number Publication Date
JPH0494055A true JPH0494055A (en) 1992-03-26

Family

ID=16611735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2211795A Pending JPH0494055A (en) 1990-08-09 1990-08-09 Thin type cell

Country Status (1)

Country Link
JP (1) JPH0494055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388908B1 (en) * 2000-10-16 2003-06-25 삼성에스디아이 주식회사 Lithium secondary battery
CN109585904A (en) * 2017-09-29 2019-04-05 辉能科技股份有限公司 Bendable lithium battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388908B1 (en) * 2000-10-16 2003-06-25 삼성에스디아이 주식회사 Lithium secondary battery
CN109585904A (en) * 2017-09-29 2019-04-05 辉能科技股份有限公司 Bendable lithium battery

Similar Documents

Publication Publication Date Title
KR100274477B1 (en) Rechargeable battery structure and method of making same
JP3164586B2 (en) Low-resistance rechargeable lithium-ion battery
KR20080105853A (en) Rechargeable battery including a anode or cathode coated a ceramic layer
WO2016080143A1 (en) Double-sided tape for electrode constituent body immobilization, and secondary battery
KR20100084635A (en) Primer for battery electrode
WO2006080126A1 (en) Lithium cell and method for manufacture thereof
JP2004022543A (en) Galvanic battery
JPS58197655A (en) Battery
JPH0494055A (en) Thin type cell
JP2000513491A (en) Improvement of conductivity at collector electrode interface in stacked lithium ion rechargeable batteries
JPH02158057A (en) Electrode substrate for bipolar lead-storage battery
RU2737952C1 (en) Flexible battery
JP3544106B2 (en) Thin non-aqueous electrolyte battery
JP2017143062A (en) Adhesive film for sealing power storage device metal terminal
JPS6059705B2 (en) flat battery
JP3152770B2 (en) Manufacturing method of thin lead-acid battery
JPH03285257A (en) Manufacture of thin battery
JPS5983340A (en) Flat battery
JPH01107449A (en) Manufacture of flat type battery
JPH042042A (en) Thin form battery
Mikhaylik et al. Protected electrode structures and methods
WO2023157391A1 (en) Outer package material for all-solid-state secondary batteries, and all-solid-state secondary battery
AU686042B2 (en) Rechargeable battery structure and method of making same
JPH0313964Y2 (en)
JPS6185765A (en) Sealed battery