JPH0493781A - Three-dimensional integrating fluxmeter - Google Patents

Three-dimensional integrating fluxmeter

Info

Publication number
JPH0493781A
JPH0493781A JP2212319A JP21231990A JPH0493781A JP H0493781 A JPH0493781 A JP H0493781A JP 2212319 A JP2212319 A JP 2212319A JP 21231990 A JP21231990 A JP 21231990A JP H0493781 A JPH0493781 A JP H0493781A
Authority
JP
Japan
Prior art keywords
axis
magnetic field
time
magnetic
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2212319A
Other languages
Japanese (ja)
Inventor
Yoshinori Sugai
吉則 菅井
Yasushi Nakabayashi
中林 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2212319A priority Critical patent/JPH0493781A/en
Publication of JPH0493781A publication Critical patent/JPH0493781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To reduce consumption of current and to lessen an error in computation by a method wherein detecting means disposed three-dimensionally are driven in a time-sharing manner for each measuring period. CONSTITUTION:An operation control means 7 controls an X-axis detecting means 1, a Y-axis detecting means 1 and a Z-axis detecting means 3 and an X-axis amplifying means 2, a Y-axis amplifying means 4 and a Z-axis amplifying means 6 on the basis of a signal of a timing generation means 12. Next, a multiplexer 8 selects output signals of the amplifying means 2, 4 and 6 according to a control signal 18 of the control means 7 and an A/D conversion means 9 converts them into digital values. An arithmetic means 13 converts the digital signals into magnetic field strengths and computes an actual magnetic field strength from the components of the magnetic field strengths on the axes X,Y and Z. Moreover, the computed magnetic filed strength, a computed magnetic field strength from data measured after the time of some measuring period, and an integrated value encompassed with the time of the measuring period, are subjected to computation, and the result of the computation is added to the content of an integrated value storage means 14 and stored. The content of this storage means 14 and the content of a time counting means 15 counting the entire measuring time from the start of measurement are displayed in a display device 17 through the intermediary of a display control means 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 非電離放射線というカテゴリで統括される電波や磁界の
生物に与える影響について研究が進められている。本発
明は特に磁界に関して、磁界の方向に関係なく磁界強度
を測定し、磁界強度の積分値を測定する三次元積分磁束
計に関する。
[Detailed Description of the Invention] [Industrial Application Field] Research is underway on the effects of radio waves and magnetic fields, which are classified under the category of non-ionizing radiation, on living things. In particular, the present invention relates to a three-dimensional integrating magnetometer that measures the magnetic field intensity regardless of the direction of the magnetic field and measures the integral value of the magnetic field intensity.

[従来の技術] 一般的に、強磁性体から発せられる磁束の測定にはフラ
ックスゲート(飽和鉄芯型)と称される磁束計が使用さ
れてきた。しかし、測定環境における瞬間的な磁束を計
測するだけのものであった。
[Prior Art] Generally, a magnetometer called a flux gate (saturated iron core type) has been used to measure the magnetic flux emitted from a ferromagnetic material. However, it only measured instantaneous magnetic flux in the measurement environment.

[背景] 磁界は地磁気あるいは永久磁石や電磁石を用いた各種電
気装置などによって身の回りにあまねく存在している。
[Background] Magnetic fields are all around us due to the earth's magnetism or various electrical devices that use permanent magnets or electromagnets.

しかし、これらは通常磁界の強さが極めて小さいか、ま
たは磁界が一部の空間に局在しており、環境および人体
に及ぼす影響は少なかった。
However, in these cases, the magnetic field strength is usually extremely small or the magnetic field is localized in a certain area, and the effect on the environment and the human body is small.

しかるに最近、科学技術の発達により強い磁界に直接人
体がさらされる機会が増えてきた。これらの磁界の発生
源としては、希土類磁石などの強力な磁石、あるいは超
電導磁石である。この磁気力を利用した車両輸送システ
ム、角磁気共鳴吸収測定装置などの機器分析装置、核磁
気共鳴吸収を利用し人間の頭部の細胞などの状態を輪切
りにして観測することのできるNMR−CT、あるいは
LHD等大型核融合実験装置などがあり、使用磁界は1
〜5T(テスラ)にも及び、その周辺での漏れ磁界も無
視できないほど大きい値となっている。
However, recently, due to the development of science and technology, opportunities for the human body to be directly exposed to strong magnetic fields have increased. The source of these magnetic fields is a strong magnet such as a rare earth magnet or a superconducting magnet. A vehicle transportation system that uses this magnetic force, an analytical device such as an angular magnetic resonance absorption measuring device, and an NMR-CT that uses nuclear magnetic resonance absorption to observe the state of cells in the human head in slices. , or large-scale nuclear fusion experimental equipment such as LHD, the magnetic field used is 1
It reaches up to ~5T (Tesla), and the leakage magnetic field around it is too large to be ignored.

磁気が環境あるいは人体に与える影響についてはまだ詳
細には究明されていない。しかし、非常に強い磁界は環
境あるいは人体に悪影響を及ぼすであろうとする報告や
、適度の磁界を浴びるのは健康によいという報告がある
。例えば、英国放射線防護委員会の助言として、 静磁場:2.STを越えないこと。
The effects of magnetism on the environment or the human body have not yet been investigated in detail. However, there are reports that extremely strong magnetic fields may have a negative effect on the environment or the human body, and that exposure to moderate magnetic fields is good for health. For example, as advised by the British Radiological Protection Board, static magnetic fields: 2. Do not exceed ST.

時間変化磁場: 変化時間10ms以上の場合は20 
T/S−rmsを越えないこと。
Time-varying magnetic field: 20 if the changing time is 10ms or more
Do not exceed T/S-rms.

変化時間I Qms未満の場合は (dB/d t)”  t<4゜ 高周波:全身での吸収率を0.4−・kg−l以下。If the change time is less than IQms (dB/dt)”t<4゜ High frequency: Absorption rate in the whole body is 0.4-·kg-l or less.

作業者の被爆: 長期−全身0.02T、手腕0、 2
T。
Workers' radiation exposure: Long term - whole body 0.02T, arms 0, 2
T.

15分以内−全身0.2T、手 腕2T。Within 15 minutes - whole body 0.2T, hands Arm 2T.

とし、また米国食品医薬品局(FDA)の指針として、 静磁場: 身体の全部または一部の被爆は2丁を越えな
い。
Also, according to the guidelines of the US Food and Drug Administration (FDA), static magnetic fields: Exposure of all or part of the body to no more than 2 guns.

時間変化磁場: 身体の全部または一部の被爆は3 T
 / sを越えない。
Time-varying magnetic field: 3 T for exposure of all or part of the body
Do not exceed /s.

高周波の電磁場: 比吸収率は平均で0.4W/kg、
局所で2W / k gを越えない。
High-frequency electromagnetic field: Specific absorption rate is 0.4 W/kg on average,
Do not exceed 2 W/kg locally.

作業者の被爆(米国エネルギー省の暫定試案):8時間
労働日−全身0.01T、手0.IT1時間以下の暴露
:全身0.IT、手lT10分以下の暴露:全身0.5
T、手2Tとしている。
Exposure of workers (U.S. Department of Energy tentative proposal): 8-hour workday - 0.01T for the whole body, 0.01T for the hands. IT1 hour or less exposure: whole body 0. IT, hand IT exposure for 10 minutes or less: whole body 0.5
T, hand 2T.

かかる現状においては例えば人体に強い磁界を浴びるの
はなるべく避け、比較的弱い磁界であっても長時間磁界
にさらされるのは避けるというのが賢明と言わざるを得
ない。しかしかかる注意をしても種々の強さの磁界に種
々の条件でさらされる機会は多く、延べで、どれ程の磁
界にさらされたかを知ることは重要であり、特に磁界環
境で仕事に従事する人にとっては是非とも必要なことで
ある。ところが、磁界の強さに応じて磁気にさらされた
時間の積算を行う簡便な装置は、いまだ開発されていな
い。
Under the current circumstances, it must be said that it is wise to avoid exposing the human body to strong magnetic fields as much as possible, and to avoid being exposed to magnetic fields for long periods even if the field is relatively weak. However, even if you take such precautions, there are many opportunities to be exposed to magnetic fields of various strengths under various conditions, and it is important to know how much magnetic field you have been exposed to in total, especially if you work in a magnetic field environment. This is absolutely necessary for those who do. However, a simple device that integrates the time of exposure to magnetism according to the strength of the magnetic field has not yet been developed.

したがって、本発明の目的は、簡便な積分磁束計を提供
することにある。
Therefore, an object of the present invention is to provide a simple integrating magnetometer.

[発明が解決しようとする課題] 従来のように、フラックスゲートと称される磁束計では
、瞬間的な磁束しか測定できないため、長期間の総磁束
が測定できないという課題があり、更に、総磁束を測定
しようとした場合には、連続的な測定を行わなければな
らないため、測定電流が大きくなり省電力化を実現でき
ないという課題があった。
[Problems to be solved by the invention] Conventional flux meters called fluxgates can only measure instantaneous magnetic flux, so there is a problem that the total magnetic flux cannot be measured over a long period of time. When trying to measure , continuous measurement is required, which results in a large measurement current, making it impossible to achieve power savings.

[問題を解決するための手段] 上記課題を解決するために、この発明は三次元に配置さ
れた検出素子を用いて被爆した磁束量の積分値を計数す
る携帯型の磁束計において、測定周期のタイミングを決
めるタイミング発生手段と三次元に配置された検出素子
とそれぞれの検出出力を増幅する増幅手段の動作を制御
する動作制御手段を有する構成とし、かつ測定周期ごと
に測定する測定点を、直線近似する事により、消費電流
の低減化を図り、かつ測定後の演算誤差を少なくするよ
うにした。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a portable magnetometer that uses three-dimensionally arranged detection elements to count the integral value of the amount of exposed magnetic flux. The method has a configuration including a timing generation means for determining the timing of the detection elements arranged three-dimensionally and an operation control means for controlling the operation of the amplification means for amplifying the respective detection outputs, and measurement points to be measured at each measurement period. By using linear approximation, we aim to reduce current consumption and reduce calculation errors after measurement.

[作用] 上記のように構成された被爆した磁束量の積分値を計数
する携帯型の磁束計においては、測定周期ごとに三次元
に配置した検出素子を時分割駆動して消費電流の低減化
を図ることにより、組み込まれた電池での動作時間の長
寿命化が成されることになる。
[Function] In the portable magnetometer configured as described above that counts the integral value of the amount of exposed magnetic flux, the detection elements arranged three-dimensionally are time-divisionally driven for each measurement period to reduce current consumption. By doing so, the operating time of the built-in battery can be extended.

[実施例] 以下、本発明の実施例を、図面に基すいて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の実施例を示すブロック図である。X
軸検出手段1はX軸方向の磁束を検出する、X軸増幅手
段2は前記X軸検出手段1の信号を増幅する。X軸検出
手段3はY軸方向の磁束を検出する。Y軸増幅手段4は
前記X軸検出手段3の信号を増幅する。X軸検出手段5
はz軸の磁束を検出する。Z軸増幅手段6は前記X軸検
出手段5の信号を増幅する、動作制御手段7はタイミン
グ発生手段12の信号から、前記X軸検出手段1、X軸
検出手段3及びZ@検出手段5と前記X軸増幅手段2、
Y軸増幅手段4、及びZ軸増幅手段6を制御する。マル
チプレクサ8は前記動作制御手段7の制御信号18によ
り、前記3つの増幅手段2.4.6の出力信号を選択す
る。A/D変換手段9は前記動作制御手段7の制御信号
22により、前記マルチプレクサ8から出力された、前
記3つの増幅手段2.4.6のアナログ信号を、デジタ
ル値に変換する。
FIG. 1 is a block diagram showing an embodiment of the present invention. X
The axis detection means 1 detects the magnetic flux in the X-axis direction, and the X-axis amplification means 2 amplifies the signal from the X-axis detection means 1. The X-axis detection means 3 detects magnetic flux in the Y-axis direction. The Y-axis amplification means 4 amplifies the signal from the X-axis detection means 3. X-axis detection means 5
detects the magnetic flux in the z-axis. The Z-axis amplifying means 6 amplifies the signal of the X-axis detecting means 5, and the operation control means 7 amplifies the signal of the X-axis detecting means 1, the X-axis detecting means 3, and the Z@ detecting means 5 from the signal of the timing generating means 12. the X-axis amplification means 2;
The Y-axis amplification means 4 and the Z-axis amplification means 6 are controlled. The multiplexer 8 selects the output signals of the three amplification means 2, 4, 6 according to the control signal 18 of the operation control means 7. The A/D conversion means 9 converts the analog signals of the three amplification means 2, 4 and 6 outputted from the multiplexer 8 into digital values according to the control signal 22 of the operation control means 7.

第2図に前記動作制御手段7の出力する制御信号18.
19.20.21.22のタイムチャートを示している
FIG. 2 shows a control signal 18 outputted from the operation control means 7.
The time chart for 19.20.21.22 is shown.

前記動作制御手段7の出力する制御信号は、発振回路1
0の出力信号を分周回路11で分周し、分周回路11の
出力信号から測定周期のタイミングを生成するタイミン
グ発生手段12の出力信号と、前記分周回路11の出力
信号とから生成される。
The control signal output from the operation control means 7 is transmitted to the oscillation circuit 1.
0 output signal is divided by the frequency dividing circuit 11 and generated from the output signal of the timing generating means 12 which generates the timing of the measurement period from the output signal of the frequency dividing circuit 11 and the output signal of the frequency dividing circuit 11. Ru.

演算手段13は、前記A/D変換手段9のデジタル信号
を磁界強度に変換し、x、y、z軸の磁界強度成分から
実際の磁界強度を演算する。
The calculating means 13 converts the digital signal from the A/D converting means 9 into magnetic field strength, and calculates the actual magnetic field strength from the magnetic field strength components of the x, y, and z axes.

第3図に磁界強度を3軸(X、 Y、  Z)に分解し
た図を示している。第3図により磁界強度(磁束密度)
Bは、 B=((Bx”+By”+Bz”)(1式)%式% 更に前記演算手段13は、前記1式で演算された磁界強
度B1と、ある測定周期の時間後に測定されたデータか
ら、前記演算手段13により演算された磁界強度B2と
、測定周期の時間で囲まれた積分値の演算を行い積算値
記憶手段14の内容に加算して再度格納する。
Figure 3 shows a diagram in which the magnetic field strength is broken down into three axes (X, Y, Z). Magnetic field strength (magnetic flux density) according to Figure 3
B is: B=((Bx"+By"+Bz")(1 formula)% formula% Furthermore, the calculation means 13 calculates the magnetic field strength B1 calculated by the above formula 1 and data measured after a certain measurement period. Then, the magnetic field strength B2 calculated by the calculation means 13 and the integral value surrounded by the time of the measurement period are calculated, added to the contents of the integrated value storage means 14, and stored again.

第4図に積算方法の1例を示す、前記積算値記憶手段1
4には、磁束量であるBhが格納されていて、磁束量B
hは、 Bh−Σ[((Bn+Bn+1 )xhl /2](2
式) 2式において Bh  =磁束量 Bn  −ある測定点における磁界強度Bn+1=Bn
からある測定時間後の磁界強度h  =測定時間 である。
FIG. 4 shows an example of the integration method, the integration value storage means 1
4 stores the magnetic flux amount Bh, and the magnetic flux amount B
h is Bh-Σ[((Bn+Bn+1)xhl/2](2
Formula) In formula 2, Bh = magnetic flux amount Bn - magnetic field strength at a certain measurement point Bn+1 = Bn
The magnetic field strength after a certain measurement time h = measurement time.

前記積算値記憶手段14の内容、及び前記分周回路11
の出力信号を計数し、計測開始からの全計測時間を計数
する時間計数手段15の内容を。
The contents of the integrated value storage means 14 and the frequency dividing circuit 11
The contents of the time counting means 15 which counts the output signals of and counts the total measurement time from the start of measurement.

表示制御手段16を介して表示装置17に表示する。It is displayed on the display device 17 via the display control means 16.

第5図に検出手段、及び増幅手段の本発明における一回
路実施例を示す、前記検出手段1は、磁気検出素子23
と電流制御用抵抗R1とトランジスタTriが直列に接
続されて構成される。前記磁気検出素子23の2本の出
力端子は、増幅用の抵抗R2,R3を介してアンプ24
に入力する。
FIG. 5 shows an embodiment of the detection means and amplification means according to the present invention.
, a current control resistor R1, and a transistor Tri are connected in series. The two output terminals of the magnetic detection element 23 are connected to an amplifier 24 via amplifying resistors R2 and R3.
Enter.

前記アンプ24の+側入力端子は、抵抗R4を介して接
地され、−個入力端子は抵抗R5を介して負帰還される
。この回路構成により、2本の入力電圧の差をとり増幅
する差動増幅回路となる。出力電圧VOutは、 Vout=R5(Vinl−Vin2)/R4(3式) で表され、R5/R4が増幅率となる。トランジスタT
r2は、前記アンプ24の電源端子と接地の間に接続さ
れる。前記トランジスタTr1.Tr2のゲート端子は
、前記動作制御手段7の出力する前記制御信号19によ
り制御され、測定時前記制御信号19は”H”を出力し
、ON状態として前記X軸検出手段1と前記X軸増幅手
段2を動作状態とする。また、前記制御信号19の出力
を”L”とする事により非動作状態として、動作電流を
カットする。前記X軸検出手段3、前記Y軸増幅手段4
、前記X軸検出手段5、前記Z軸増幅手段6も同様の構
成である。
The + input terminal of the amplifier 24 is grounded via a resistor R4, and the - input terminals are negatively fed back via a resistor R5. This circuit configuration provides a differential amplifier circuit that takes and amplifies the difference between two input voltages. The output voltage VOut is expressed as Vout=R5(Vinl-Vin2)/R4 (Equation 3), where R5/R4 is the amplification factor. transistor T
r2 is connected between the power terminal of the amplifier 24 and ground. The transistor Tr1. The gate terminal of Tr2 is controlled by the control signal 19 outputted from the operation control means 7, and during measurement, the control signal 19 outputs "H" and is in an ON state, thereby controlling the X-axis detection means 1 and the X-axis amplification. The means 2 is brought into operation. Further, by setting the output of the control signal 19 to "L", the device is brought into a non-operating state and the operating current is cut. The X-axis detection means 3 and the Y-axis amplification means 4
, the X-axis detection means 5, and the Z-axis amplification means 6 have similar configurations.

次に、第6図に示すマイクロコンピュータにより制御さ
れる本発明の1実施例のブロック図に付いて説明する。
Next, a block diagram of an embodiment of the present invention controlled by a microcomputer shown in FIG. 6 will be explained.

第6図に示したように、論理演算処理回路27を中心に
プログラムメモリ (ROM)28.データメモリ(R
AM)29などでマイクロコンピュータが構成される。
As shown in FIG. 6, a program memory (ROM) 28. Data memory (R
AM) 29 etc. constitute a microcomputer.

前記論理演算処理回路27は、ALU、演算用レジスタ
、インストラクションデコーダ等で構成され、周辺回路
はデータバス及びアドレスバス32.33で接続される
The logical operation processing circuit 27 is composed of an ALU, an operation register, an instruction decoder, etc., and is connected to peripheral circuits by a data bus and address buses 32 and 33.

前記ROM28は、処理手順をインストラクションに置
き換えたソフトウェアを格納するプログラムメモリであ
る。
The ROM 28 is a program memory that stores software in which processing procedures are replaced with instructions.

前記RAM29は、データメモリであり、各種情報の一
時的格納に用いられる。
The RAM 29 is a data memory and is used to temporarily store various information.

システムクロック発生回路25は、前記発振回路10の
出力を受けて、前記論理演算処理回路27の動作に必要
なシステムクロックを生成する。
The system clock generation circuit 25 receives the output of the oscillation circuit 10 and generates a system clock necessary for the operation of the logic operation processing circuit 27.

割込制御回路26は、前記発振回路10の出力を分周す
る前記分周回路11の出力を受けて、前記論理演算処理
回路27の動作開始の起動信号を生成するとともに割り
込みの内容は、前記データバス32を介して読みとられ
る。
The interrupt control circuit 26 receives the output of the frequency dividing circuit 11 that divides the output of the oscillation circuit 10, and generates an activation signal for starting the operation of the logical operation processing circuit 27, and the contents of the interrupt are as follows. It is read out via data bus 32.

前記分周回路11の出力信号から測定周期のタイミング
を生成するタイミング発生手段12の出力信号と前記分
周回路11の出力信号とから生成され、前記動作制御手
段7において、前記分周回路11の出力信号とから検出
手段30及び増刷手段310制御信号を生成する。前記
検出手段30は、第1図における前記各x、 y、  
X軸検出手段1.3.5をまとめて総称したものであり
、同様に前記増幅手段31は、第1図における前記各X
Y、  Z軸増幅手段2.4.6をまとめて総称したも
のである。前記増幅手段31の出力は、前記マルチプレ
クサ8で選択され、前記A/D変換手段9でデジタル信
号に変換され前記データバス32を介して前記論理演算
処理回路27に読み込まれる。前記表示制御手段16は
、前記データバス32を介して供給される情報を、前記
表示装置17に供給する。
The output signal of the frequency dividing circuit 11 is generated from the output signal of the timing generating means 12 which generates the timing of the measurement cycle from the output signal of the frequency dividing circuit 11 and the output signal of the frequency dividing circuit 11. A control signal for the detection means 30 and the reprint means 310 is generated from the output signal. The detection means 30 detects each of the x, y, and
The X-axis detection means 1.3.5 are collectively referred to as the X-axis detection means 1.3.5, and similarly, the amplification means 31 is
This is a general term for the Y and Z axis amplification means 2.4.6. The output of the amplification means 31 is selected by the multiplexer 8, converted into a digital signal by the A/D conversion means 9, and read into the logic operation processing circuit 27 via the data bus 32. The display control means 16 supplies information supplied via the data bus 32 to the display device 17.

第6図のマイクロコンピュータにより制御される場合の
動作手順を第7図の本発明の動作手順を示すフローチャ
ートに従って説明する。
The operating procedure when controlled by the microcomputer shown in FIG. 6 will be explained with reference to the flowchart shown in FIG. 7 showing the operating procedure of the present invention.

前記割込制御回路26から前記論理演算処理回路27に
対して、割り込みが発生すると処理71において前記動
作制御手段7に対してX軸の駆動を選択すると、第1図
における前記制御信号19を出力し前記X軸検出手段1
、前記X軸増幅手段2が駆動する。前記マルチプレクサ
8は前記X軸増幅手段2の出力信号を選択する。処理7
2で前記増幅手段の動作が安定するまでの一定時間のW
AITを行い、処理32において前記A/D変換手段9
を動作させ、前記データバス32を介して変換されたデ
ータを前記論理演算処理回路に読み込み、いったん前記
RAM2Bに格納する。処理74において前記動作制御
手段7に対してY軸の駆動を選択すると、第1回におけ
る前記制御信号20を出力し前記Y軸検出手段3、前記
Y増幅副手段4が駆動する。前記マルチプレクサ8は前
記Y軸増幅手段4の出力信号を選択する。処理75で前
記増幅手段の動作が安定するまでの一定時間のWATT
を行い、処理76において前記A/D変換手段9を動作
させ、前記データバス32を介して変換されたデータを
前記論理演算処理回路27に読み込み、いったん前記R
AM2Bに格納する。処理77において前記動作制御手
段7に対してZ軸の駆動を選択すると、第1図における
前記制御信号21を出力し前記X軸検出手段5、前記Z
軸増副手段6が駆動する。前記マルチプレクサ8は前記
Z軸増副手段6の出力信号を選択する。
When an interrupt occurs from the interrupt control circuit 26 to the logical operation processing circuit 27, when X-axis drive is selected for the operation control means 7 in process 71, the control signal 19 shown in FIG. 1 is output. The X-axis detection means 1
, the X-axis amplifying means 2 is driven. The multiplexer 8 selects the output signal of the X-axis amplification means 2. Processing 7
2 for a certain period of time until the operation of the amplifying means becomes stable.
AIT is performed, and in process 32, the A/D conversion means 9
is operated, the converted data is read into the logical operation processing circuit via the data bus 32, and is temporarily stored in the RAM 2B. When Y-axis drive is selected for the operation control means 7 in process 74, the first control signal 20 is output, and the Y-axis detection means 3 and the Y-amplification sub-means 4 are driven. The multiplexer 8 selects the output signal of the Y-axis amplification means 4. WATT for a certain period of time until the operation of the amplification means stabilizes in process 75.
In step 76, the A/D conversion means 9 is operated, the converted data is read into the logic operation processing circuit 27 via the data bus 32, and once the R
Store in AM2B. When Z-axis drive is selected for the operation control means 7 in process 77, the control signal 21 shown in FIG. 1 is output, and the X-axis detection means 5 and the Z-axis
The shaft increasing means 6 is driven. The multiplexer 8 selects the output signal of the Z-axis amplification means 6.

処理78で前記増刷手段の動作が安定するまでの一定時
間のWAITを行い、処理79において前記A/D変換
手段9を動作させ、前記データバス32を介して変換さ
れたデータを前記論理演算処理回路27に読み込み、い
ったん前記RAM28に格納する。処理80において、
前記x、y、z軸方向のおけるデジタル信号化されたデ
ータを磁界強度に変換し、((Bx2+Byz +Bz
z )の演算を行う。処理81において、処理8oで演
算された磁界強度Bnと前回測定したBn−1と測定周
期の時間の積分値である、+ (Bn−1+Bn)Xh
l /2  の演算を行う。処理82において、前記処
理81で演算された結果を前記積算値記憶手段14に加
算し、再び格納する。処理83において前記時間計数手
段15に測定周期の時間を加算して、再び格納し、処理
84において前記表示装置17に対する表示の処理を行
って、処理85のHALT状態に戻る。
In process 78, a WAIT period is performed for a certain period of time until the operation of the reprinting means stabilizes, and in process 79, the A/D conversion means 9 is operated, and the data converted via the data bus 32 is subjected to the logical operation processing. The data is read into the circuit 27 and temporarily stored in the RAM 28. In process 80,
The digital signal data in the x, y, and z axis directions is converted into magnetic field strength, and ((Bx2+Byz +Bz
z). In process 81, + (Bn-1+Bn)Xh, which is the integral value of the magnetic field strength Bn calculated in process 8o, the previously measured Bn-1, and the measurement period
Perform the calculation of l /2. In process 82, the result calculated in process 81 is added to the integrated value storage means 14 and stored again. In process 83, the time of the measurement cycle is added to the time counting means 15 and stored again. In process 84, the display process is performed on the display device 17, and the process returns to the HALT state in process 85.

[発明の効果] 本発明は、以上説明したように被爆した磁束量の積分値
を計数する携帯型の磁束計において、測定周期のタイミ
ングを決めるタイミング発生手段と三次元に配置された
検出手段とそれぞれの検出出力を増幅する増幅手段の動
作を制御する動作制御手段を有する構成を用いる事によ
り、消費電流の低減化が図れ、組み込まれた電池での動
作時間の長寿命化が成され、かつ磁界強度の変化量に対
する演算誤差を少なくできるという効果がある。
[Effects of the Invention] As explained above, the present invention provides a portable magnetometer that counts the integral value of the amount of exposed magnetic flux, which includes a timing generation means for determining the timing of the measurement cycle and a three-dimensionally arranged detection means. By using a configuration that includes an operation control means that controls the operation of the amplification means that amplifies each detection output, it is possible to reduce current consumption, extend the operating time of the built-in battery, and This has the effect of reducing calculation errors with respect to the amount of change in magnetic field strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示すブロック図、第2図は
動作制御手段7の出力する制御信号のタイムチャート、
第3図は、磁界強度を3軸(X。 Y、  Z軸)に分解した図、第4図は、積算方法の1
例を示す図、第5図は検出手段、増幅手段の本発明にお
ける1回路実施例、第6図はマイクロコンピュータによ
り制御される本発明の実施例を示すプソロク図、第7図
は本発明の動作手順を示すフローチャートである。 1−X軸検出手段    2 X軸増幅手段3−Y軸検
出手段   4− Y軸増幅手段Z軸検出手段   6
  Z軸増幅手段動作制御手段   8 マルチプレク
サA/D変換手段 発振回路    11−分周回路 タイミング発生手段 演算手段    14 積算値記憶手段時間計数手段 表示制御手段  17−表示装置 19.20.21.22−制御信号 検出素子    24 アンプ システムクロック発生回路 割り込み制御回路 論理演算処理回路 ROM      29−RAM 検出手段    31 増幅手段 データバス   33−アドレスバス 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助 遵飄閉す倍営泥乞多軸(刈Y乙寺由))つ訴頓漬メ(7
′)ガ禾の−iJ妃が千面 第4已 蔵出(予゛肩ジ、〉旨中りギヒRΣの不治ち日月1こ丁
う1′)゛る一回2尺途1図 第5圀 第 (、:)肥
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a time chart of control signals output from the operation control means 7,
Figure 3 shows magnetic field strength broken down into three axes (X, Y, and Z axes), and Figure 4 shows integration method 1.
FIG. 5 is a circuit diagram showing an embodiment of the present invention of the detection means and amplification means, FIG. 6 is a PSO logic diagram showing an embodiment of the present invention controlled by a microcomputer, and FIG. 7 is a diagram showing an embodiment of the present invention. It is a flowchart showing an operation procedure. 1-X-axis detection means 2-X-axis amplification means 3-Y-axis detection means 4-Y-axis amplification means Z-axis detection means 6
Z-axis amplification means operation control means 8 Multiplexer A/D conversion means oscillation circuit 11- Frequency division circuit timing generation means calculation means 14 Integrated value storage means Time counting means Display control means 17- Display device 19.20.21.22-Control Signal detection element 24 Amplifier system clock generation circuit Interrupt control circuit Logical operation processing circuit ROM 29-RAM Detection means 31 Amplification means data bus 33-Address bus Applicant Seiko Electronics Co., Ltd. Agent Patent attorney Takayuki Hayashi Baiei Dokou Tajiku (Kari Y Otodera Yu)) Tsutsutonzukeme (7
') Princess Ga-iJ's 1,000-face 4th book (Preliminary shoulder-ji, 〉Item Nakarigihi RΣ's incurable date 1 month 1 month 1') 1 time 2 shaku steps 1 figure 5 Kunidai (,:)

Claims (5)

【特許請求の範囲】[Claims] (1)磁界強度の積分値を測定する三次元積分磁束計に
おいて、 (a)X軸、Y軸、Z軸方向の三次元に配置された3個
の磁気検出素子と、 (b)前記3個の磁気検出素子それぞれの検出信号を増
幅する3個の増幅手段と、 (c)前記磁気検出素子と前記増幅手段の動作を制御す
る動作制御手段と、 (d)前記動作制御手段の制御信号に応じて、前記3個
の増幅手段の出力信号を選択するマルチプレクサと、 (e)前記マルチプレクサの出力するアナログ信号をデ
ジタル信号に変換するA/D変換手段と、(f)測定周
期を発生するタイミング発生手段(g)前記3軸方向の
デジタル信号から第1の磁界強度のベクトル計算し、前
記タイミング発生手段の測定間隔である時間後に前記3
軸方向のデジタル信号から第2の磁界強度のベクトル計
算し、前記タイミング発生手段の測定間隔である時間と
、第1、第2の磁束強度で囲まれた積分値を演算する演
算手段と、 (h)前記時間と磁束強度の積分値の総和を記憶する積
算値記憶手段と、 (i)前記積算値記憶手段の内容を表示する表示装置と
から成ることを特徴とする三次元積算磁束計。
(1) In a three-dimensional integrating magnetometer that measures the integral value of magnetic field strength, (a) three magnetic detection elements arranged three-dimensionally in the X-axis, Y-axis, and Z-axis directions; (b) the above three (c) an operation control means for controlling the operations of the magnetic detection elements and the amplification means; (d) a control signal for the operation control means; (e) A/D conversion means for converting the analog signal output from the multiplexer into a digital signal; and (f) generating a measurement period. Timing generating means (g) calculates a vector of the first magnetic field strength from the digital signals in the three axis directions, and calculates the first magnetic field strength vector after a time that is a measurement interval of the timing generating means.
calculation means for calculating a vector of the second magnetic field strength from the digital signal in the axial direction and calculating an integral value surrounded by the time that is the measurement interval of the timing generation means and the first and second magnetic flux intensities; A three-dimensional integrated magnetic flux meter comprising h) integrated value storage means for storing the sum of the integrated values of the time and magnetic flux intensity; and (i) a display device for displaying the contents of the integrated value storage means.
(2)前記磁気検出素子がホール素子である請求項1記
載の三次元積算磁束計。
(2) The three-dimensional integrating magnetometer according to claim 1, wherein the magnetic detection element is a Hall element.
(3)前記磁気検出素子が磁気抵抗素子である請求項1
記載の三次元積算磁束計。
(3) Claim 1, wherein the magnetic detection element is a magnetoresistive element.
The three-dimensional integrated flux meter described.
(4)前記動作制御手段が前記3個の検出素子とそれぞ
れに対応する増幅手段とを時分割駆動することを特徴と
する請求項1記載の三次元積算磁束計。
(4) The three-dimensional integrated flux meter according to claim 1, wherein the operation control means time-divisionally drives the three detection elements and their corresponding amplification means.
(5)前記動作制御手段が、非測定時、前記3個の検出
素子とそれぞれに対応する増幅手段とを電流遮断する請
求項1記載の三次元積算磁束計。
(5) The three-dimensional integrated flux meter according to claim 1, wherein the operation control means cuts off current between the three detection elements and their corresponding amplification means when not measuring.
JP2212319A 1990-08-10 1990-08-10 Three-dimensional integrating fluxmeter Pending JPH0493781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212319A JPH0493781A (en) 1990-08-10 1990-08-10 Three-dimensional integrating fluxmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212319A JPH0493781A (en) 1990-08-10 1990-08-10 Three-dimensional integrating fluxmeter

Publications (1)

Publication Number Publication Date
JPH0493781A true JPH0493781A (en) 1992-03-26

Family

ID=16620579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212319A Pending JPH0493781A (en) 1990-08-10 1990-08-10 Three-dimensional integrating fluxmeter

Country Status (1)

Country Link
JP (1) JPH0493781A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890847A2 (en) * 1997-07-12 1999-01-13 Mannesmann VDO Aktiengesellschaft Apparatus for determining the earth magnetic field, in particular in a vehicle navigation system
JP2007078422A (en) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd Excitation coil driving circuit for magnetic sensor
JP2008305395A (en) * 2008-05-15 2008-12-18 Psa Corp Ltd Magnetic sensor for automatic vehicle guidance system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890847A2 (en) * 1997-07-12 1999-01-13 Mannesmann VDO Aktiengesellschaft Apparatus for determining the earth magnetic field, in particular in a vehicle navigation system
EP0890847A3 (en) * 1997-07-12 2001-08-22 Mannesmann VDO Aktiengesellschaft Apparatus for determining the earth magnetic field, in particular in a vehicle navigation system
JP2007078422A (en) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd Excitation coil driving circuit for magnetic sensor
JP2008305395A (en) * 2008-05-15 2008-12-18 Psa Corp Ltd Magnetic sensor for automatic vehicle guidance system

Similar Documents

Publication Publication Date Title
US6879160B2 (en) Magnetic resonance scanner with electromagnetic position and orientation tracking device
JP4871281B2 (en) Magnetic dosimeter
EP0108421A2 (en) Nuclear magnetic resonance diagnostic apparatus
JPH0493782A (en) Three-dimensional integrating fluxmeter
JPH0493781A (en) Three-dimensional integrating fluxmeter
Burger The theoretical output of a ring core fluxgate sensor
JPH05288818A (en) Three-dimensional integral magnetic fluxmeter
JPS63229039A (en) Magnetic resonance imaging apparatus
JPH04109184A (en) Three-dimensional integrated flux meter
Petrucha et al. Cross-field effect in a triaxial AMR magnetometer with vector and individual compensation of a measured magnetic field
USH1968H1 (en) Hyperpolarized MR imaging using pulse sequence with progressively increasing flip angle
JPS60193448A (en) Nuclear magnetic resonance tomography apparatus
JPH05300896A (en) Magnetic resonance imaging apparatus
CN115200610A (en) Simple AMU magnetic calibration device and method without turntable
Harada et al. A new magnetometer using a small ring core and MOS-FETs
Shi et al. Two-and three-dimensional numerical analysis of gradient and parasitic gradient fields of a three-channel surface gradient coil for magnetic resonance imaging
EP1650576A1 (en) Magnetic resonance scanner with electromagnetic position and orientation tracking device
JPH0326791B2 (en)
USRE37325E1 (en) Slice orientation selection arrangement
Streng Measurements and shimming for a low-field magnetic resonance imaging system
JPS62266042A (en) Magnetic resonance imaging apparatus
Rüter et al. Nuclear orientation of 106 Rh in iron
JPS61289970A (en) Measuring instrument
AU2005289378B2 (en) Magnetic field dosimeter
BRACKEN Electric and magnetic fields in a magnetic resonance imaging facility: measurements and exposure assessment procedures