JPH04109184A - Three-dimensional integrated flux meter - Google Patents

Three-dimensional integrated flux meter

Info

Publication number
JPH04109184A
JPH04109184A JP2229486A JP22948690A JPH04109184A JP H04109184 A JPH04109184 A JP H04109184A JP 2229486 A JP2229486 A JP 2229486A JP 22948690 A JP22948690 A JP 22948690A JP H04109184 A JPH04109184 A JP H04109184A
Authority
JP
Japan
Prior art keywords
amplification factor
magnetic field
axis
field strength
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2229486A
Other languages
Japanese (ja)
Inventor
Yasushi Nakabayashi
中林 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2229486A priority Critical patent/JPH04109184A/en
Publication of JPH04109184A publication Critical patent/JPH04109184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To expand the measurement region and improve measurement precision by judging whether the measured value of either one axis is a preset value or above or below among the measured values detected three-dimensionally, and changing the amplification factor. CONSTITUTION:Detection signals of X-Z axis detecting means 1, 3, 5 are amplified by X-Z axis amplifying means 2, 4, 6 via control signals 22-24 at the amplification factor determined by an amplification factor switching means 12, they are selected by a multiplexer 8 according to the control signal 21, they are applied with A/D conversion 9 and inputted to an arithmetic means 10 to determine the magnetic field strength in three axes, and it is temporarily stored in a measured value storing means 11. An amplification factor judging means 12 judges whether the magnetic field strength is larger than the first set value or smaller than the second set value, the result is sent to an amplification factor switching means 13, and the present amplification factor is changed to the optimum amplification factor or maintained as it is. An accumulated value storing means 14 accumulates the magnetic field strength in three axes and the time of the measurement period, and the contents are added and stored.

Description

【発明の詳細な説明】 [産業上の利用分野] 非電離放射線というカテゴリで統括される電波や磁界の
生物に与える影響について研究が進められている0本発
明は特に磁界に関して、磁界の方向に関係なく磁界強度
を測定し、磁界強度の積分値を測定する三次元積分磁束
計に関する。
[Detailed Description of the Invention] [Field of Industrial Application] Research is progressing on the effects of radio waves and magnetic fields, which are categorized under the category of non-ionizing radiation, on living things. This invention relates to a three-dimensional integral magnetometer that measures magnetic field strength regardless of the relationship between the magnetic field strength and the integral value of the magnetic field strength.

[従来の技術] 一般的に、強磁性体から発せられる磁束の測定にはフラ
ンクスゲート(飽和鉄芯型)と称される磁束針が使用さ
れてきた。しかし、測定環境における瞬間的な磁束を計
測するだけのものであった。
[Prior Art] Generally, a magnetic flux needle called a Franks gate (saturated iron core type) has been used to measure the magnetic flux emitted from a ferromagnetic material. However, it only measured instantaneous magnetic flux in the measurement environment.

[背景] 磁界は地磁気あるいは永久磁石や電磁石を用いた各種電
気装置などによって身の回りにあまねく存在している。
[Background] Magnetic fields are all around us due to the earth's magnetism or various electrical devices that use permanent magnets or electromagnets.

しかし、これらは通常磁界の強さが極めて小さいか、ま
たは磁界が一部の空間に局在しており、環境および人体
に及ぼす影響は少なかった。
However, in these cases, the magnetic field strength is usually extremely small or the magnetic field is localized in a certain area, and the effect on the environment and the human body is small.

しかるに最近、科学技術の発達により強い磁界に直接人
体がさらされる機会が増えてきた。これらの磁界の発生
源としては、希土類磁石などの強力な磁石、あるいは超
電導磁石である。この磁気力を利用した車両輸送システ
ム、角磁気共鳴吸収測定装置などの機器分析装置、核磁
気共鳴吸収を利用し人間の頭部の細胞などの状態を輪切
りにして観測することのできるNMR−CT、あるいは
Ll(D等大型核融合実験装置などがあり、使用磁界は
1〜5T(テスラ)にも及び、その周辺での漏れ磁界も
無視できないほど大きい値となっている。
However, recently, due to the development of science and technology, opportunities for the human body to be directly exposed to strong magnetic fields have increased. The source of these magnetic fields is a strong magnet such as a rare earth magnet or a superconducting magnet. A vehicle transportation system that uses this magnetic force, an analytical device such as an angular magnetic resonance absorption measuring device, and an NMR-CT that uses nuclear magnetic resonance absorption to observe the state of cells in the human head in slices. There are large-scale nuclear fusion experimental devices such as , Ll (D), etc., and the magnetic field used ranges from 1 to 5 T (Tesla), and the leakage magnetic field in the vicinity is too large to be ignored.

磁気が環境あるいは人体に与える影響についてはまだ詳
細には究明されていない、しかし、非常に強い磁界は環
境あるいは人体に悪影響を及ぼすであろうとする報告や
、適度の磁界を浴びるのは健康によいという報告がある
0例えば、英国放射線防護委員会の助言として、 静磁場1.57を越えないこと。
The effects of magnetism on the environment or the human body have not yet been investigated in detail, but there are reports that extremely strong magnetic fields may have a negative effect on the environment or the human body, and that exposure to moderate magnetic fields is good for health. For example, as advised by the British Radiological Protection Board, do not exceed a static magnetic field of 1.57.

時間変化磁場: 変化時間10ms以上の場合は20 
SIT/S−rms SOを越えないこと、変化時間1
0ms未満の場合 は(dB/dt) 52250 t<4゜高周波:全身
での吸収率を0.4511kg 52−ISO以下。
Time-varying magnetic field: 20 if the changing time is 10ms or more
Do not exceed SIT/S-rms SO, change time 1
If it is less than 0 ms (dB/dt) 52250 t<4° High frequency: Absorption rate in the whole body is 0.4511 kg 52-ISO or less.

作業者の被爆: 長期−全身0.02T、手腕0.2T
Workers' radiation exposure: Long term - 0.02T for the whole body, 0.2T for the hands and arms.
.

15分以内−全身0.2T、手 112T。Within 15 minutes - whole body 0.2T, hands 112T.

とし、また米国食品医薬品間(FDA)の指針として、 静磁場: 身体の全部または一部の被爆は2Tを越えな
い。
In addition, as a guideline of the US Food and Drug Administration (FDA), static magnetic fields: Exposure to all or part of the body should not exceed 2T.

時間変化磁場: 身体の全部または一部の被爆は3T/
3を越えない。
Time-varying magnetic field: 3T/3T for exposure of all or part of the body
Do not exceed 3.

高周波の電磁場: 比吸収率は平均で0.4W/kg、
局所で2W/kgを越えない。
High-frequency electromagnetic field: Specific absorption rate is 0.4 W/kg on average,
Do not exceed 2W/kg locally.

作業者の被爆(米国エネルギー省の暫定試東):8時間
労働日−全身0.01T、手0.IT1時間以下の暴露
:全身0.IT、手lT10分以下の暴露:全身0.5
T、手2Tとしている。
Exposure of workers (U.S. Department of Energy interim test): 8-hour workday - 0.01T for the whole body, 0.01T for the hands. IT1 hour or less exposure: whole body 0. IT, hand IT exposure for 10 minutes or less: whole body 0.5
T, hand 2T.

かかる現状においては例えば人体に強い磁界を浴びるの
はなるべく避け、比較的弱い磁界であっても長時間磁界
にさらされるのは避けるというのが賢明と言わざるを得
ない、しかしかかる注意をしても種々の強さの磁界に種
々の条件でさらされる機会は多く、延べで、どれ程の磁
界にさらされたかを知ることは重要であり、特に磁界環
境で仕事に従事する人にとっては是非とも必要なことで
ある。ところが、磁界の強さに応じて磁気にさらされた
時間の積算を行う簡便な装置は、いまだ開発されていな
い。
Under such circumstances, it must be said that it is wise to avoid exposing the human body to strong magnetic fields as much as possible, and to avoid being exposed to magnetic fields for long periods of time even if the field is relatively weak. There are many opportunities for people to be exposed to magnetic fields of various strengths under various conditions, and it is important to know how much magnetic field they have been exposed to in total, especially for those who work in a magnetic field environment. It's necessary. However, a simple device that integrates the time of exposure to magnetism according to the strength of the magnetic field has not yet been developed.

したがって、本発明の目的は、簡便な積分磁束計を提供
することにある。
Therefore, an object of the present invention is to provide a simple integrating magnetometer.

[発明が解決しようとする課!!] 本発明によれば、磁気検出手段と時間計数手段の組み合
せにより、上記の要求を満たす三次元積分磁束計を構成
するとともに、前記磁気検出手段のいずれか1軸でも計
測値が設定した計測値以上もしくは以下に成ったかを判
別する手段を設けることにより、計測領域の拡大を図る
ものである。
[The problem that the invention tries to solve! ! ] According to the present invention, a three-dimensional integrating magnetometer that satisfies the above requirements is configured by combining the magnetic detection means and the time counting means, and the measured value can be set even on any one axis of the magnetic detection means. By providing a means for determining whether the value is above or below, the measurement area is expanded.

[課題を解決するための手段] 上記課題を解決するために、本発明は三次元に配置され
た検出手段を用いて被爆した磁束量の積分値を計数する
携帯型の磁束計において、三次元に配置された検出手段
とそれぞれの検出出力を増幅する増幅手段を少なくとも
2段階以上の増幅率を変更出来る構成とし、前記磁気検
出手段のいずれか1軸でも計測値が設定した計測値以上
もしくは以下に成ったかを判別する増幅率判別手段と増
幅率切換手段とを設け、計測領域の拡大を図れるように
した。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a portable magnetometer that counts the integral value of the amount of magnetic flux exposed using three-dimensionally arranged detection means. The detection means arranged in the magnetic detection means and the amplification means for amplifying the respective detection outputs are configured so that the amplification factor can be changed in at least two steps or more, so that the measured value on any one axis of the magnetic detection means is greater than or equal to the set measurement value. Amplification factor determining means and amplification factor switching means are provided to determine whether the measurement area has become larger, thereby making it possible to expand the measurement range.

[作用] 上記のように構成された被爆した磁束量の積分値を計数
する携帯型の磁束計においては、測定毎に三次元に配置
した検出手段のいずれか1軸でも計測値が設定した計測
値以上もしくは以下に成ったかを判別し、増幅率を切換
えることにより、計測領域の拡大、及び計測の精度の向
上が図れることに成る。
[Function] In the portable magnetometer configured as described above that counts the integral value of the amount of exposed magnetic flux, the measured value can be set in any one axis of the three-dimensionally arranged detection means for each measurement. By determining whether the value is above or below the value and switching the amplification factor, it is possible to expand the measurement area and improve measurement accuracy.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の実施例を示すブロック図である。Y
軸に配置されたX軸検出手段lの検出信号は、X軸増幅
手段2により増幅される。同様に、Y軸に配置されたY
軸検出手段3の検出信号は、Y軸増幅手段4により増幅
され、z軸に配置された2輪検出手段5の検出信号は、
Z軸増幅手段6により増幅される。前記各検出手段1.
3.5と前記各増幅手段2.4,6は、動作制御手段7
の制御信号22.23.24により制御されている。ま
た、前記各増幅手段2.4.6は、増幅率切換手段13
の出力する制御信号26により、増幅率が決められてい
る。前記各増幅手段2.4.6の出力信号は、前記動作
制御手段7の制御信号21に応じてマルチプレクサ8に
より選択される。そして、この信号は前記動作制御手段
7の制御信号25に応じて、アナログ値である前記各増
幅手段2.4.6の出力信号をデジタル値にA/D変換
手段9により変換される。演算手段10により前記A/
D変換手段9の出力を磁界強度に演算し、計測値記憶手
段11に一時格納する。増幅率判別手段12において磁
界強度が第一の設定値に比較して大きいか、もしくは第
二の設定値に比較して小さいかを判別し、前記増幅率切
換手段13に結果を送り増幅率の変更もしくは、維持を
行う。
FIG. 1 is a block diagram showing an embodiment of the present invention. Y
The detection signal of the X-axis detection means 1 arranged on the axis is amplified by the X-axis amplification means 2. Similarly, Y located on the Y axis
The detection signal of the axis detection means 3 is amplified by the Y-axis amplification means 4, and the detection signal of the two-wheel detection means 5 arranged on the z-axis is
It is amplified by the Z-axis amplification means 6. Each of the detection means 1.
3.5 and each amplification means 2.4, 6 are operated by an operation control means 7.
control signals 22, 23, and 24. Further, each amplification means 2.4.6 has an amplification factor switching means 13.
The amplification factor is determined by the control signal 26 outputted by. The output signal of each of the amplifying means 2.4.6 is selected by a multiplexer 8 depending on the control signal 21 of the operation control means 7. Then, in accordance with the control signal 25 of the operation control means 7, this signal is converted from the output signal of each of the amplification means 2.4.6, which is an analog value, to a digital value by the A/D conversion means 9. The calculation means 10 calculates the above A/
The output of the D conversion means 9 is calculated into magnetic field strength and temporarily stored in the measured value storage means 11. The amplification factor determining means 12 determines whether the magnetic field strength is larger than the first setting value or smaller than the second setting value, and sends the result to the amplification factor switching means 13 to change the amplification factor. Change or maintain.

第2W!Jに前記動作制御手段7の出力する制御信号2
1.22.23.24.25、及び増幅率切換え手段1
3の出力する制御信号26のタイムチャートを示してい
る。前記動作制御手段7の出力する制御信号は、発振回
路15の出力信号を分周回路16で分周し、前記分周回
路16の出力信号から測定周期のタイミングを生成する
タイミング発生手段17の出力信号と前記分周回路16
の出力信号とから生成される。
2nd W! A control signal 2 outputted from the operation control means 7 to J
1.22.23.24.25, and amplification factor switching means 1
3 shows a time chart of the control signal 26 outputted by No. 3. The control signal outputted by the operation control means 7 is the output of a timing generation means 17 which divides the output signal of the oscillation circuit 15 by a frequency dividing circuit 16 and generates the timing of the measurement cycle from the output signal of the frequency dividing circuit 16. Signal and the frequency divider circuit 16
is generated from the output signal of

演算手段10は、前述したように前記A/D変換手段9
により検出した電気信号を磁界強度に変換し、前記計測
値記憶手段11に一時格納すると共に、前記増幅率判別
手段12に最適な増幅率の判別を行う。
As mentioned above, the calculation means 10 is connected to the A/D conversion means 9.
The detected electric signal is converted into a magnetic field strength and temporarily stored in the measured value storage means 11, and the amplification factor determination means 12 determines the optimum amplification factor.

更にx、y、z軸の磁界強度成分から実際の磁界強度を
演算する。
Furthermore, the actual magnetic field strength is calculated from the magnetic field strength components of the x, y, and z axes.

第3図に磁界強度を3軸(X、Y、z軸)に分解した図
を示している。
FIG. 3 shows a diagram in which the magnetic field strength is broken down into three axes (X, Y, and z axes).

第4図より磁界強度(磁束密度)Bは、B−−r (B
x” ”+By” +Bz” )  (1式)で表され
、前記演算手段10は、前記計測値記憶手段11より3
軸の磁界強度を呼び出し、この演算を行う、更に演算さ
れた磁界強度Bと測定周期の時間との積の計算を行い、
積算値記憶手段14の内容に加算して再度格納する。第
4図に積算方法の1例を示し、前記積算値記憶手段14
には磁束量であるBhが格納されていて、磁束量Bhは
、Bh−Σ(磁束強度B*待時間)   (2式)前記
積算値記憶手段14の内容及び前記分周回路16の出力
信号を計数する計測開始からの全計測時間を計数する時
間計数手段18の内容を表示制御手段19を介して表示
装置20に表示する。
From Fig. 4, the magnetic field strength (magnetic flux density) B is B--r (B
x” ”+By” +Bz” ) (Equation 1), and the calculation means 10 receives 3
Recall the magnetic field strength of the axis, perform this calculation, further calculate the product of the calculated magnetic field strength B and the measurement period time,
It is added to the contents of the integrated value storage means 14 and stored again. FIG. 4 shows an example of the integration method, in which the integrated value storage means 14
Bh, which is the amount of magnetic flux, is stored in , and the amount of magnetic flux Bh is Bh - Σ (magnetic flux strength B * waiting time) (Formula 2) The contents of the integrated value storage means 14 and the output signal of the frequency dividing circuit 16 The contents of the time counting means 18, which counts the total measurement time from the start of the measurement, are displayed on the display device 20 via the display control means 19.

第5rfIJに検出手段及び増幅手段の本発明における
一回路実施例の基本構成を示す、検出手段lは、磁気検
出素子例えばホール素子27と電流制御用抵抗R1とト
ランジスタTriが直列に接続されて構成される。磁気
検出素子27の2木の出力端子は増幅用の抵抗R2、R
3を介してアンプ28に入力する。前記アンプ28の+
側入力端子は、抵抗R4を介して接地され、−例入力端
子は抵抗R5を介してアンプ28の出力が負帰還されて
いる。この回路構成により、2本の入力電圧の差をとり
増幅する作動増幅回路と成る。出力電圧V QUTは、
R2−R3、R4= R50)とき VOUT −R5(VINI −VIN2 ) /R3
(3式)で表現され、R5/R3が増幅率と成る。トラ
ンジスタTr2は、アンプ28の電源端子と接地の間に
接続される。トランジスタTrl 、Tr2のゲート端
子は、動作wi御平手段の出方する制御信号19により
制御され、測定時Mfm信号22は“H”を出力しON
状amとしてX軸検出手段1とX軸増幅手段2を動作状
態とする。また、前記制御信号22の出力を“L”とす
ることにより非動作状態として、動作電流をカントする
。Y軸検出手段3、Y軸増幅段4、Z軸検出手段5、Z
軸増幅手段6も同様の構成である。
The basic configuration of one circuit embodiment of the present invention of the detection means and the amplification means is shown in the fifth rfIJ. The detection means 1 is composed of a magnetic detection element such as a Hall element 27, a current control resistor R1, and a transistor Tri connected in series. be done. The two output terminals of the magnetic detection element 27 are resistors R2 and R for amplification.
3 to the amplifier 28. + of the amplifier 28
The side input terminal is grounded via a resistor R4, and the output of the amplifier 28 is negatively fed back to the negative input terminal via a resistor R5. This circuit configuration provides a differential amplifier circuit that takes and amplifies the difference between two input voltages. The output voltage VQUT is
R2-R3, R4=R50) when VOUT-R5(VINI-VIN2)/R3
It is expressed by (Equation 3), and R5/R3 becomes the amplification factor. Transistor Tr2 is connected between the power supply terminal of amplifier 28 and ground. The gate terminals of the transistors Trl and Tr2 are controlled by the control signal 19 output from the operation control means, and the Mfm signal 22 outputs "H" and is turned ON during measurement.
In state am, the X-axis detection means 1 and the X-axis amplification means 2 are brought into operation. Further, by setting the output of the control signal 22 to "L", the device is brought into a non-operating state and the operating current is canted. Y-axis detection means 3, Y-axis amplification stage 4, Z-axis detection means 5, Z
The axial amplification means 6 also has a similar configuration.

第6図に検出手段及び増幅手段の本発明における増幅率
切換えの一回路実施例を示す。第5図に示す基本構成と
異なる点は、抵抗R4と直列に抵抗R6を設け、前記抵
抗R6と並列にスイッチSWIを設けた点と、抵抗R5
と直列に抵抗R7を設け、前記抵抗R7と並列にスイッ
チSW2を設けた点とにある。
FIG. 6 shows an embodiment of a circuit for switching the amplification factor of the detection means and the amplification means according to the present invention. The difference from the basic configuration shown in FIG. 5 is that a resistor R6 is provided in series with the resistor R4, a switch SWI is provided in parallel with the resistor R6, and a resistor R5 is provided.
A resistor R7 is provided in series with the resistor R7, and a switch SW2 is provided in parallel with the resistor R7.

前記スイッチSWI 、 Sn2は、前記増幅率切換手
段13により出力する制御信号26により制御され、ス
イッチの開閉を行う、3式から増幅率は、スイッチが閉
じたとき、 125/R3 で表され、スイッチが開いたときにR6= R7とする
と (1?5+R7)  /R3 で表され、スイッチの開閉で増幅率が切換えられる。
The switches SWI and Sn2 are controlled by a control signal 26 output by the amplification factor switching means 13 to open and close the switches. From equation 3, the amplification factor is expressed as 125/R3 when the switch is closed. If R6=R7 when the switch is open, it is expressed as (1?5+R7)/R3, and the amplification factor is changed by opening and closing the switch.

次に、第7図に示すマイクロコンピュータにより制御さ
れる本発明の一実施例のブロック図について説明する。
Next, a block diagram of an embodiment of the present invention controlled by a microcomputer shown in FIG. 7 will be explained.

第7図に示したように、論理演算手段31を中心にプロ
グラムメモリ (ROM)32、データメモリ(RAM
)33などでマイクロコンビエータが構成される。論理
演算処理回路31は、ALU、演算用レジスタ、アドレ
ス制御用レジスタ、インストラフシランデコーダ等で構
成され、周辺回路とはデータバス36及びアドレスバス
37で接続される。
As shown in FIG. 7, a logic operation means 31, a program memory (ROM) 32, a data memory (RAM)
) 33 etc. constitute a micro combinator. The logical operation processing circuit 31 is composed of an ALU, an operation register, an address control register, an intra-frame decoder, etc., and is connected to peripheral circuits through a data bus 36 and an address bus 37.

ROM32は、処理手順をインストラクションに置き換
えたソフトウェアを格納するプログラムメモリである。
The ROM 32 is a program memory that stores software in which processing procedures are replaced with instructions.

RAM33は、データメモリであり、各種情報の一時的
格納に用いられる。
The RAM 33 is a data memory and is used to temporarily store various information.

システムクロンク発生回路28は、発振回路15の出力
を受けて、前記論理演算処理回路31の動作に必要なシ
ステムクロンクを生成する。
The system clock generation circuit 28 receives the output of the oscillation circuit 15 and generates a system clock necessary for the operation of the logic operation processing circuit 31.

割込vlIm回路30は、前記発振回路15の出力を分
周する分周回路16の出方を受けて、前記論理演算処理
回路31の動作開始の起動信号を生成するとともに割込
の内容は、データバス3Gを介して読み取られる。
The interrupt vlIm circuit 30 receives the output of the frequency divider circuit 16 that divides the output of the oscillation circuit 15, and generates an activation signal for starting the operation of the logic operation processing circuit 31, and the contents of the interrupt are as follows. Read via data bus 3G.

前記分周回路16の出力信号から測定周期のタイミング
を生成するタイミング発生手段17の出力信号と前記分
周回路16の出力信号とから生成され、動作制御手段7
において、前記分周回路16の出力信号とから検出手段
34及び増幅手段35の制御信号を生成する。検出手段
34は、第1図における各X、Y、Z軸検出手段1.3
.5をまとめて総称したものであり、同様に増幅手段3
5は、第1図における各x、y、z軸増幅手段2.4.
6をまとめて総称したものである。
It is generated from the output signal of the timing generating means 17 which generates the timing of the measurement period from the output signal of the frequency dividing circuit 16 and the output signal of the frequency dividing circuit 16, and is generated from the output signal of the frequency dividing circuit 16.
In this step, control signals for the detection means 34 and the amplification means 35 are generated from the output signal of the frequency dividing circuit 16. The detection means 34 includes each X, Y, and Z axis detection means 1.3 in FIG.
.. 5 collectively, and similarly the amplifying means 3
5 represents each x, y, and z axis amplification means 2.4 in FIG.
This is a general term for all 6.

前記増幅手段35は、増幅率切換手段13の情報に応じ
て増幅率が切換えられ、出力はマルチプレクサ8で選択
され、A/D変換手段9でデジタル信号に変換され前記
データバス36を介して論理演算処理回路31に読み込
まれる。前記増幅率切換手段13は、前記論理演算処理
回路31により判別された増幅率を前記データバス36
を介して書き込まれる。
The amplification factor of the amplification means 35 is switched according to information from the amplification factor switching means 13, and the output is selected by the multiplexer 8, converted into a digital signal by the A/D conversion means 9, and sent to the logic signal via the data bus 36. The data is read into the arithmetic processing circuit 31. The amplification factor switching means 13 transfers the amplification factor determined by the logical operation processing circuit 31 to the data bus 36.
written via.

また、表示制御手段19は、前記データバス36を介し
て供給される情報を表示装置20に供給し、表示する。
Further, the display control means 19 supplies information supplied via the data bus 36 to the display device 20 for display.

第7図のマイクロコンピュータにより制御される場合の
動作手順を第8図の本発明の動作手順を示すフローチャ
ートにしたがって説明する。
The operating procedure when controlled by the microcomputer shown in FIG. 7 will be explained with reference to the flowchart shown in FIG. 8 showing the operating procedure of the present invention.

割込制御回路30から論理演算処理回路31に対して、
割込が発生すると処理61において動作制御手段7に対
してX軸の駆動を選択すると、第1図における制御信号
22を出力しX軸検出手段1、X軸増幅手段2が駆動す
る。マルチプレクサ8は前記X軸増幅手段2の出力信号
を選択する。処理62で増幅手段の動作が安定するまで
の一定時間のWAITを行い、処理63においてA/D
変換手段9を動作させ、データバス36を介して変換さ
れたデータを論理演算手段に読み込み、処理64におい
て磁界強度BXの計算を行う、処理65において、増幅
率が“1” (磁界強度の強いときの増幅率の制御信号
26のレベル)であるか判別し、No(以下Nと略す)
のとき処理66に、YES (以下Yと略す)のとき処
理68に分岐する。処理66において、処理64で計算
された磁界強度BXが第一の設定値B1より大きいか判
別し、Y(大)のとき処理67で増幅率を“1”に設定
し処理61の最初に戻る。
From the interrupt control circuit 30 to the logic operation processing circuit 31,
When an interrupt occurs, X-axis drive is selected for the operation control means 7 in process 61, and the control signal 22 in FIG. 1 is output to drive the X-axis detection means 1 and the X-axis amplification means 2. A multiplexer 8 selects the output signal of the X-axis amplifying means 2. In process 62, WAIT is performed for a certain period of time until the operation of the amplification means becomes stable, and in process 63, the A/D
The converting means 9 is operated, the converted data is read into the logic operation means via the data bus 36, and the magnetic field strength BX is calculated in the process 64. In the process 65, the amplification factor is "1" (when the magnetic field strength is the level of the amplification factor control signal 26), and No (hereinafter abbreviated as N).
If YES (hereinafter abbreviated as Y), the process branches to process 68. In process 66, it is determined whether the magnetic field strength BX calculated in process 64 is larger than the first set value B1, and if Y (large), the amplification factor is set to "1" in process 67, and the process returns to the beginning of process 61. .

N(小)のとき処理70に分岐する。処理68において
、処理64で計算された磁界強度BXが第二の設定値B
1より小さいか判別し、Y(小)のとき処理69で増幅
率を“0”に設定し処理61の最初に戻る。N(大)の
とき処理70に分岐する。処理70において、−旦計測
値記憶手段11に格納される。
When N (small), the process branches to process 70. In process 68, the magnetic field strength BX calculated in process 64 is set to a second set value B.
It is determined whether it is smaller than 1, and if Y (small), the amplification factor is set to "0" in process 69 and the process returns to the beginning of process 61. When N (large), the process branches to process 70. In process 70, the measured value is stored in the measured value storage means 11.

次に、処理71において動作制御手段7に対してY軸の
駆動を選択すると、第1図における制御信号23を出力
しX軸検出手段3、Y軸増幅手段4が駆動する。マルチ
プレクサ8は前記Y軸増幅手段4の出力信号を選択する
。処理72で増幅手段の動作が安定するまでの一定時間
のWAITを行い、処理73においてA/D変換手段9
を動作させ、データバス36を介して変換されたデータ
を論理演算手段に読み込み、処理74において磁界強度
BYの計算を行う、 なお、第8図における■、■、■
、■は、フローチャートが2頁以上に跨るときの分岐の
接続を意味している。
Next, in process 71, when Y-axis drive is selected for the operation control means 7, the control signal 23 in FIG. 1 is output, and the X-axis detection means 3 and the Y-axis amplification means 4 are driven. A multiplexer 8 selects the output signal of the Y-axis amplification means 4. In process 72, a WAIT period is performed for a certain period of time until the operation of the amplification means becomes stable, and in process 73, the A/D conversion means 9
The converted data is read into the logic operation means via the data bus 36, and the magnetic field strength BY is calculated in process 74. Note that ■, ■, and ■ in FIG.
, ■ means branch connections when the flowchart spans two or more pages.

処理75において、増幅率が“1″であるか判別し、N
のとき処理76に、Yのとき処理77に分岐する。処理
76において、処理74で計算された磁界強度BYが第
一の設定値B1より大きいか判別し、Y(大)のとき処
理67に分岐し、N(小)のとき処理78に分岐する。
In process 75, it is determined whether the amplification factor is "1", and N
When YES, the process branches to process 76, and when Y, the process branches to process 77. In process 76, it is determined whether the magnetic field strength BY calculated in process 74 is larger than the first set value B1, and if Y (large), the process branches to process 67, and if N (small), the process branches to process 78.

処理77において、処理74で計算された磁界強度BY
が第二の設定値B1より小さいか判別し、Y(小)のと
き処理69に分岐し、N(大)のとき処理78に分岐す
る。処理78において、−旦計測値記憶手段11に格納
される。
In process 77, the magnetic field strength BY calculated in process 74 is
is smaller than the second set value B1, and if Y (small), the process branches to process 69, and if N (large), the process branches to process 78. In process 78, -1 is stored in the measured value storage means 11.

次に、処理79において動作制御手段7に対してZ軸の
駆動を選択すると、第1図における制御信号24を出力
しZ軸検出手段5、Z軸増幅手段6が駆動する。マルチ
プレクサ8は前記Z軸増幅手段6の出力信号を選択する
。処理80で増幅手段の動作が安定するまでの一定時間
のWAITを行い、処理81においてA/D変換手段9
を動作させ、データバス36を介して変換されたデータ
を論理演算手段に読み込み、処理82において磁界強度
BZの計算を行う。 処理83において、増幅率が“l
”であるか判別し、Nのとき処理84に、Yのとき処理
85に分岐する。処理84において、処理82で計算さ
れた磁界強度BZが第一の設定値B1より大きいか判別
し、Y(大)のとき処理67に分岐し、N(小)のとき
処理86に分岐する。処理77において、処理74で計
算された磁界強度BYが第二の設定値Blより小さいか
判別し、Y(小)のとき処理69に分岐し、N(大)の
とき処理86に分岐する。処理86において、−旦計測
値記憶手段11に格納される。
Next, in process 79, when Z-axis drive is selected for the operation control means 7, the control signal 24 shown in FIG. 1 is output, and the Z-axis detection means 5 and the Z-axis amplification means 6 are driven. A multiplexer 8 selects the output signal of the Z-axis amplifying means 6. In process 80, a WAIT period is performed for a certain period of time until the operation of the amplification means stabilizes, and in process 81, the A/D conversion means 9
is operated, the converted data is read into the logic operation means via the data bus 36, and the magnetic field strength BZ is calculated in process 82. In process 83, the amplification factor is
”, and if N, the process branches to process 84, and if Y, the process branches to process 85. In process 84, it is determined whether the magnetic field strength BZ calculated in process 82 is larger than the first set value B1, and Y (large), the process branches to process 67, and when N (small), the process branches to process 86. In process 77, it is determined whether the magnetic field strength BY calculated in process 74 is smaller than the second set value Bl, and Y (small), the process branches to process 69, and when N (large), the process branches to process 86. In process 86, -1 is stored in the measured value storage means 11.

処理87において、前記X、Y、Z軸方向における磁界
強度BX、BY、BZを計算値記憶手段11から読みだ
し、r (B x 322 So +B )l S22
 S。
In process 87, the magnetic field intensities BX, BY, and BZ in the X, Y, and Z axis directions are read out from the calculated value storage means 11, and r (B x 322 So +B )l S22
S.

+B z 522 So )の演算を行う、処理88に
おいて、処理87で演算された磁界強度Bに測定周期の
時間の積の演算を行う、処理89において、処理88で
演算された結果を積算知記憶手段14に加算し、再び格
納する。処理90において、時間計数手段18に測定周
期の時間を加算して、再び格納し、処理91において表
示装置19に対する表示の処理を行って、処理92のH
ALT状態に戻る。
+B z 522 So) is calculated.In process 88, the product of the magnetic field strength B calculated in process 87 and the time of the measurement period is calculated.In process 89, the result calculated in process 88 is stored in the integrated memory. It is added to means 14 and stored again. In process 90, the time of the measurement cycle is added to the time counting means 18 and stored again. In process 91, the display process on the display device 19 is performed, and in
Return to ALT state.

[発明の効果コ 本発明は、以上説明してように被爆した磁束量の積分値
を計数する携帯型の磁束計において、三次元に配置され
た検出手段とそれぞれの検出出力を増幅する増幅手段を
少なくとも2段階以上の増幅率を可変出来る構成とし、
前記磁気検出手段のいずれか1軸でも計測値が設定した
第一の計測値以上もしくは第二の計測値以下に成ったか
を判別する増幅率判別手段と増幅率切換手段とを設け、
計i* 領域の拡大を図れるようにした。
[Effects of the Invention] As explained above, the present invention provides a portable magnetometer that counts the integral value of the amount of magnetic flux exposed to radiation, in which detecting means arranged three-dimensionally and amplifying means for amplifying the respective detection outputs are used. has a configuration in which the amplification factor can be varied in at least two stages,
Provided with an amplification factor determining means and an amplification factor switching means for determining whether the measured value of any one axis of the magnetic detection means is equal to or higher than a set first measured value or lower than a set second measured value,
It has been made possible to expand the total i* area.

また、本実施例では、増幅率の切換えを2段階で説明し
たが、更に多段にすれば計測領域の拡大と共に計測精度
の向上も可能と成る。
Furthermore, in this embodiment, switching of the amplification factor has been explained in two stages, but if the switching is made in more stages, it becomes possible to expand the measurement area and improve measurement accuracy.

そして、第8図において、設定値との比較を各軸の計測
後に1軸ずつ行ったが、3軸計測後にまとめて比較して
も同様の効果が得られ、1軸ずつ増幅率を設定できるよ
うにすれば、なお計測精度の向上が可能と成る。
In Figure 8, the comparison with the set value was performed one axis at a time after measuring each axis, but the same effect can be obtained even if the three axes are measured and then compared all at once, and the amplification factor can be set for each axis. By doing so, it is possible to further improve measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図は動
作制御手段7の出力する制御信号のタイムチャート、第
3図は磁界強度を3軸(X、Y、Z軸)に分解した図、
第4図は積算方法の1例を示す図、第5図は検出手段、
増幅手段の本発明における一回路実施例の基本構成、第
6図は検出手段、増幅手段の本発明における増幅率切換
え可能な一回路実施例、第7図はマイクロコンピュータ
により制御される本発明の実施例を示すブロック図、第
8図は本発明の動作手順を示すフローチャートである。 1・・・X軸検出手段 3・・・Y軸検出手段 5・・・Z軸検出手段 7・・・動作制御手段 9・・・A/D変換手段 10・・・演算手段   11・・・計算値記憶手段2
・・・X軸増幅手段 4・・・Y軸増幅手段 6・・・Z軸増幅手段 8・・・マルチプレクサ 12・・・増幅率判別手段 13・・・増幅率切換手段 14・・・積′X値記憶手段 15・・・発振回路   I6・・・分周回路17・・
・タイミング発生手段 18・・・時間計数手段 19・・・表示制御手段 20・・・表示装置21、2
2.23.24.25.26・・・制御信号27・・・
検出素子   28・・・アンプ29・・・システムク
ロンク発生回路 30・・・割込制御回路 31・・・論理演算処理回路 32・・・ROM     33・・・RAM34・・
・検出手段   35・・・増幅手段36・・・データ
バス  37・・・アドレスバス磁界強度を3軸(X、
Y、 z軸)に分解した同第3図 以   上 出願人 セイコー電子工業株式会社 代理人 弁理士  林 敬 之 助 第4図 並5図 鼠6図 「]9い 創叱b)
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a time chart of control signals output from the operation control means 7, and Fig. 3 is a breakdown of magnetic field strength into three axes (X, Y, Z axes). diagram,
Fig. 4 is a diagram showing an example of the integration method, Fig. 5 is a detection means,
The basic configuration of one circuit embodiment of the amplification means according to the present invention, FIG. 6 shows an embodiment of a circuit capable of switching the amplification factor of the detection means and amplification means according to the present invention, and FIG. 7 shows a circuit embodiment of the present invention controlled by a microcomputer. FIG. 8 is a block diagram showing an embodiment and a flowchart showing the operating procedure of the present invention. 1...X-axis detection means 3...Y-axis detection means 5...Z-axis detection means 7...Operation control means 9...A/D conversion means 10...Calculation means 11... Calculated value storage means 2
. . . X-axis amplification means 4 . . Y-axis amplification means 6 . X value storage means 15... oscillation circuit I6... frequency dividing circuit 17...
- Timing generation means 18...Time counting means 19...Display control means 20...Display devices 21, 2
2.23.24.25.26...Control signal 27...
Detection element 28...Amplifier 29...System clock generation circuit 30...Interrupt control circuit 31...Logic operation processing circuit 32...ROM 33...RAM34...
・Detection means 35... Amplification means 36... Data bus 37... Address bus magnetic field strength on three axes (X,
Figures 3 and above, decomposed into Y and Z axes) Applicant Seiko Electronics Co., Ltd. Representative Patent Attorney Keisuke Hayashi Figures 4 and 5 Figures 6 and 9

Claims (4)

【特許請求の範囲】[Claims] (1)磁界強度の積分値を測定する三次元積分磁束計に
おいて、 (a)X軸、Y軸、Z軸方向の三次元に配置された3個
の磁気検出手段と、 (b)前記3個の磁気検出手段それぞれの検出信号を増
幅する増幅率を変更可能な3個の増幅手段と、 (c)前記磁気検出手段と前記増幅手段の動作を制御す
る動作制御手段と、 (d)前記動作制御手段の制御信号に応じて前記3個の
増幅手段の出力信号を選択するマルチプレクサと、 (e)前記マルチプレクサの出力するアナログ信号をデ
ジタル信号に変換するA/D変換手段と、(f)測定周
期を発生するタイミング発生手段と、(g)前記3軸方
向のデジタル信号から磁界強度を計算する演算手段と、 (h)前記演算手段の結果と第一の設定値及び第二の設
定値と比較する増幅率判別手段と、 (i)前記増幅率判別手段の結果に応じて増幅率を切換
える増幅率切換手段と、 (j)前記3軸の磁界強度のベクトル計算を行い、時間
と前記ベクトル計算された磁束強度との積の総和を記憶
する積算値記憶手段と、 (k)前記積算値記憶手段の内容を表示する表示装置と
から成ることを特徴とする三次元積算磁束計。
(1) In a three-dimensional integrating magnetometer that measures the integral value of magnetic field strength, (a) three magnetic detection means arranged three-dimensionally in the X-axis, Y-axis, and Z-axis directions; (b) the above three three amplifying means capable of changing the amplification factor for amplifying the detection signal of each of the magnetic detecting means; (c) operation control means for controlling the operation of the magnetic detecting means and the amplifying means; (d) the a multiplexer that selects the output signals of the three amplification means according to a control signal of the operation control means; (e) an A/D conversion means that converts the analog signal output from the multiplexer into a digital signal; (f) (g) a calculation means for calculating magnetic field strength from the digital signals in the three axis directions; (h) a result of the calculation means, a first setting value, and a second setting value; (i) amplification factor switching means that switches the amplification factor according to the result of the amplification factor discrimination means; (j) vector calculation of the magnetic field strength of the three axes, and A three-dimensional integrated magnetic flux meter comprising: integrated value storage means for storing the sum of products with vector-calculated magnetic flux strengths; and (k) a display device for displaying the contents of the integrated value storage means.
(2)前記磁気検出手段がホール素子である請求項1記
載の三次元積算磁束計。
(2) The three-dimensional integrating magnetometer according to claim 1, wherein the magnetic detection means is a Hall element.
(3)前記磁気検出手段が磁気抵抗素子である請求項1
記載の三次元積算磁束計。
(3) Claim 1, wherein the magnetic detection means is a magnetoresistive element.
The three-dimensional integrated flux meter described.
(4)前記動作制御手段が、非測定時、前記3個の検出
手段とそれぞれに対応する増幅手段とを電流遮断するこ
とを特徴とする請求項1記載の三次元積算磁束計。
(4) The three-dimensional integrated flux meter according to claim 1, wherein the operation control means cuts off current between the three detection means and their corresponding amplification means when not measuring.
JP2229486A 1990-08-29 1990-08-29 Three-dimensional integrated flux meter Pending JPH04109184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2229486A JPH04109184A (en) 1990-08-29 1990-08-29 Three-dimensional integrated flux meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229486A JPH04109184A (en) 1990-08-29 1990-08-29 Three-dimensional integrated flux meter

Publications (1)

Publication Number Publication Date
JPH04109184A true JPH04109184A (en) 1992-04-10

Family

ID=16892921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229486A Pending JPH04109184A (en) 1990-08-29 1990-08-29 Three-dimensional integrated flux meter

Country Status (1)

Country Link
JP (1) JPH04109184A (en)

Similar Documents

Publication Publication Date Title
JP4871281B2 (en) Magnetic dosimeter
Drljača et al. Design of planar magnetic concentrators for high sensitivity Hall devices
Raulet et al. The magnetic field diffusion equation including dynamic hysteresis: a linear formulation of the problem
Erne et al. The Berlin magnetically shielded room (BMSR), Section B: Performances
GB2243218B (en) Magnet system
JPH0493782A (en) Three-dimensional integrating fluxmeter
JPH04109184A (en) Three-dimensional integrated flux meter
JPH01218435A (en) Variable ratio magnetic resonance selective exciting method and apparatus for reducing rf power and specific absorption ratio
Wang et al. Optimal design of planar coils with reverse current distribution for atomic devices
JPH0493781A (en) Three-dimensional integrating fluxmeter
Kim et al. 3-D optimal shape design of ferromagnetic pole in MRI magnet of open permanent-magnet type
US5457383A (en) Low power consumption fluxmeter for determining magnetic field strength in three dimensions
JPH07246194A (en) Mr system
JP2000102518A (en) Magnetic resonance imaging instrument
Enokizono et al. Constitutive equation of magnetic materials and magnetic field analysis
Anderson A universal DC characterisation system for hard and soft magnetic materials
KR101902934B1 (en) System for measuring character of a magnet and eddy currentcompensation method using the same
Ogle et al. Design optimization method for a ferromagnetically self-shield MR magnet
JPS62222179A (en) Apparatus for measuring magnetic field
Marshall A gamma-level portable ring-core magnetometer
JPS60195418A (en) Electromagnetic flow meter
JPH04160380A (en) Digital squid flux meter
Przybył et al. Modeling of Magnetic Properties of Rare-Earth Hard Magnets. Energies 2022, 15, 7951
JPS60193448A (en) Nuclear magnetic resonance tomography apparatus
Cruz et al. Design of a fourth harmonic fluxgate magnetometer