JPH0493761A - Thin-pipe electrophoretic apparatus - Google Patents
Thin-pipe electrophoretic apparatusInfo
- Publication number
- JPH0493761A JPH0493761A JP2210382A JP21038290A JPH0493761A JP H0493761 A JPH0493761 A JP H0493761A JP 2210382 A JP2210382 A JP 2210382A JP 21038290 A JP21038290 A JP 21038290A JP H0493761 A JPH0493761 A JP H0493761A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- electrolyte
- electrolytic solution
- capillary
- thin pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000003792 electrolyte Substances 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 15
- 238000005251 capillar electrophoresis Methods 0.000 claims description 5
- 238000005868 electrolysis reaction Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 7
- 238000005406 washing Methods 0.000 abstract 2
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 238000010276 construction Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 13
- 238000004140 cleaning Methods 0.000 description 4
- 238000005515 capillary zone electrophoresis Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 230000002572 peristaltic effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は細管電気泳動装置に係り、特に、細管内への一
定試料の導入、細管内の電解液の置換。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a capillary electrophoresis device, and in particular to the introduction of a certain sample into a capillary and the replacement of an electrolyte within the capillary.
細管内洗浄、更には、電解液槽中の液の交換に関する。It also relates to cleaning inside the capillary and replacing the liquid in the electrolyte tank.
細管電気泳動、特に、毛細管を用いたキャピラリーゾー
ン電気泳動法(CZE)は、nQ=pQの極微量試料を
対象とし、現在、最も高い分離能力をもつ分析手段とし
て注目されている。今後、タンパク、ペプチド等の生体
成分の分析に応用が期待されている。しかし、CZEの
装置化において、再現性良いnρ〜PΩの試料導入が、
大きな技術的課題であり、従来の方法については、アナ
リテイ力ルケミストリ−60,(1988年)第642
ページから第648ページにおいて論じられている方法
は、以下の2つに大別できる。Capillary zone electrophoresis (CZE), which uses capillary tubes, targets extremely small samples where nQ=pQ, and is currently attracting attention as an analytical means with the highest separation ability. In the future, it is expected that this method will be applied to the analysis of biological components such as proteins and peptides. However, in the development of CZE equipment, sample introduction of nρ to PΩ with good reproducibility is
This is a major technical challenge, and conventional methods are described in Analytical Chemistry 60, (1988) No. 642.
The methods discussed on page 648 can be roughly divided into the following two types.
(1)電気泳動法
(2)水圧法(又は、落差法)
(1)の方法では、試料ビンの中に細管及び電極を挿入
し、電極間に高電圧を印加することによって生ずる電気
泳動で試料導入が行われる。しかし、この方法では、常
に数mΩ以上の試料が必要となり、又、試料中の各成分
のもつ電荷の正、負及び電荷量により、各成分の導入量
が左右されると云う問題点がある。(1) Electrophoresis method (2) Hydraulic method (or head method) In method (1), electrophoresis is generated by inserting a capillary tube and electrodes into a sample bottle and applying a high voltage between the electrodes. Sample introduction takes place. However, this method always requires a sample with a resistance of several mΩ or more, and there is also the problem that the amount of each component introduced depends on whether the charge is positive or negative and the amount of charge each component in the sample has. .
(2)の方法では、細管のみを試料ビンに挿入後、試料
ビンを一定の高さに持ち上げ、その結果生ずる水圧差(
又は、落差)を利用して試料導入が行われる。この方法
では、上記(1)の問題点も無く。In method (2), after inserting only the thin tube into the sample bottle, the sample bottle is lifted to a certain height, and the resulting water pressure difference (
Alternatively, sample introduction is performed using a head). This method does not have the above problem (1).
試料導入の再現性においても、上記公知例によれば、(
1)の方法より優れている。Regarding the reproducibility of sample introduction, according to the above-mentioned known example, (
This method is superior to method 1).
上記水圧差を利用した従来技術では、試料ビンそのもの
を上下移動させる必要がある。従って、再現性良く試料
導入を行う為には、試料ビンを水平位置に保ちながら、
一定スピードでかつスムーズに試料ビンを上下移動させ
る必要があり、複雑な装置構成とならざるを得なかった
。又、細管内の電解液の置換及び細管的洗浄を行う際に
は、上記水圧法では不充分であり、シリンジポンプによ
る真空吸引などの別学段に頼らざるを得なかった。In the conventional technology using the above water pressure difference, it is necessary to move the sample bottle itself up and down. Therefore, in order to introduce the sample with good reproducibility, it is necessary to keep the sample bottle in a horizontal position.
It was necessary to move the sample bottle up and down smoothly at a constant speed, which necessitated a complicated device configuration. Furthermore, when replacing the electrolyte in the capillary and cleaning the capillary, the above-mentioned water pressure method is insufficient, and it is necessary to rely on other methods such as vacuum suction using a syringe pump.
本発明の目的は、簡単な装置構成で、水圧差を利用した
試料導入、細管内の電解液の置換、及び細管内の洗浄を
行うことにある。An object of the present invention is to introduce a sample using a water pressure difference, replace an electrolytic solution in a capillary, and clean the inside of a capillary with a simple device configuration.
上記目的を達成させる為に、試料導入口と反対側の細管
端が挿入されている電解液槽に、吸引及び吐出可能なシ
リンジポンプ、又は、ペリスタポンプを接続し、この電
解液の液面レベルを容易に調整できるようにしたもので
ある。この結果、試料ビンそのものを上下移動させるこ
となく、水圧差を利用した試料導入が可能となる。更に
、上記電解液槽を大気開放型及び密閉型にする電磁弁と
上記ポンプを連動させることにより、細管内の電解液の
置換及び細管内の洗浄、更には、電解液槽内の液の置換
も容易にしたものである。In order to achieve the above purpose, a syringe pump or peristaltic pump capable of suction and discharge is connected to the electrolyte tank into which the capillary end opposite the sample introduction port is inserted, and the liquid level of the electrolyte is adjusted. This allows for easy adjustment. As a result, the sample can be introduced using the water pressure difference without moving the sample bottle itself up and down. Furthermore, by interlocking the electrolytic valve with the electrolytic valve that makes the electrolyte tank open to the atmosphere and the closed type, the electrolyte in the capillary can be replaced, the capillary can be cleaned, and the solution in the electrolyte can be replaced. It also made it easier.
前記吸引及び吐出可能なポンプは、ポンプと接続されて
いる電解液槽の液面レベルを容易に調節できる。又、こ
の電解液槽を開放型及び密閉型にできる電磁弁と上記ポ
ンプを連動させる事により電解液槽内の気圧をも調節可
能となる。The pump capable of sucking and discharging can easily adjust the liquid level of the electrolyte tank connected to the pump. Furthermore, by interlocking the pump with a solenoid valve that can make the electrolyte tank open or closed, the air pressure inside the electrolyte tank can be adjusted.
以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.
細管を用いた電気泳動では、微量の試料導入された細管
1を電解液槽2及び6にその両端を挿入し、電極4a及
び4bに高電圧発生器7を用いて1〜30KVの高電圧
を印加して行われる。試料中の各成分は、それぞれの移
動速度で細管内を移動し、分離され、検出器5で検知さ
れる。検知された信号は、データ処理装置8でデータ処
理され、クロマトグラムレポートとして出力される。In electrophoresis using a capillary, both ends of the capillary tube 1 into which a small amount of sample has been introduced are inserted into electrolyte baths 2 and 6, and a high voltage of 1 to 30 KV is applied to the electrodes 4a and 4b using a high voltage generator 7. This is done by applying an electric current. Each component in the sample moves within the capillary at its own moving speed, is separated, and detected by the detector 5. The detected signals are processed by a data processing device 8 and output as a chromatogram report.
微量試料の導入にあたっては、電磁弁13を閉じて、電
解液槽6を密閉型とした後、電解液槽2に挿入されてい
る細管の一端を試料ビンへ移動させる。次に、電磁弁1
3を開け、チューブ12を介して電解液槽6を大気開放
型とした後、チューブ9及びコネクター101介して、
シリンジポンプ11で電解液を一定速度で吸引し、液面
レベルをhだけ下げる。一定時間(1)経過後、シリン
ジポンプ11で電解液を一定速度で吐出し、液面レベル
を元に戻す。ここで、液面レベルをhだけ一定速度で上
下移動させるのに要する時間をtTとするならば、この
時、細管1に導入される試料量Qは次式で表わされる。To introduce a small amount of sample, the solenoid valve 13 is closed to make the electrolyte tank 6 a closed type, and then one end of the thin tube inserted into the electrolyte tank 2 is moved to the sample bottle. Next, solenoid valve 1
3 and open the electrolytic solution tank 6 to the atmosphere through the tube 12, and then connect it through the tube 9 and the connector 101.
The syringe pump 11 sucks the electrolyte at a constant rate to lower the liquid level by h. After a certain period of time (1) has elapsed, the syringe pump 11 discharges the electrolytic solution at a certain speed to return the liquid level to the original level. Here, if the time required to move the liquid level up and down by h at a constant speed is tT, then the sample amount Q introduced into the thin tube 1 at this time is expressed by the following equation.
Q=Ah(t+tr)
Aは細管の内径(r)と長さ(L)、電解液の粘性(η
)と密度(ρ)、及び、重力加速度(g)により決まる
定数である。従って、シリンジの吸引及び吐出速度を一
定とするならば、hとtを調整することにより、水圧差
を利用した一定試料が可能となる。Q=Ah(t+tr) A is the inner diameter (r) and length (L) of the capillary, and the viscosity of the electrolyte (η
), density (ρ), and gravitational acceleration (g). Therefore, if the suction and discharge speeds of the syringe are kept constant, by adjusting h and t, it is possible to obtain a constant sample using the water pressure difference.
一方、電磁弁13を閉じて、電解液槽6を密封型とした
ままで、シリンジポンプ11で一定量吸引し、電解液槽
内を減圧状態のもとで、試料を細管内に吸引する。一定
時間後に、電磁弁13を開け、かつ、シリンジポンプ1
1で液面レベルを元に戻すことにより、上記水圧差を利
用したものより、より迅速な試料導入を行うこともでき
る。又、同様の操作を細管端を電解液槽2に入れた状態
で行うならば、細管内への電解液の導入、細管内の洗剰
も可能となる。On the other hand, with the solenoid valve 13 closed and the electrolytic solution tank 6 kept in a sealed state, a certain amount is suctioned with the syringe pump 11, and the sample is sucked into the thin tube while the inside of the electrolytic solution tank is in a reduced pressure state. After a certain period of time, open the solenoid valve 13 and turn off the syringe pump 1.
By restoring the liquid level to the original level in step 1, it is also possible to introduce the sample more quickly than by using the water pressure difference described above. Furthermore, if the same operation is performed with the end of the capillary tube placed in the electrolyte bath 2, it becomes possible to introduce the electrolyte into the capillary tube and to wash the interior of the capillary tube.
第2図は、第1図と基本的には同じ原理に基づいたより
複雑な装置構成図である。電解液の吸引及び吐出は、シ
リンジポンプの代りに、例えば、ペリスタポンプ11を
用いて行う。3方切替バルブ14a及び14bを実線の
ようにし、電磁弁16aを開き、かつ、電磁弁16bを
閉じた状態で、電解液の吸引及び吐出を行えば、第1図
で説明したと同様の試料導入、細管への電解液導入、そ
して、細管的洗浄を行うことができる。また、この装置
では、電解液槽中の液の置換も可能である。先ず、バル
ブ14bを点線の方向に切替え、電解液槽6の液を吸引
し、ドレインに排出する。FIG. 2 is a more complicated device configuration diagram based on basically the same principle as FIG. 1. The electrolytic solution is sucked and discharged using, for example, a peristaltic pump 11 instead of a syringe pump. If the electrolyte is sucked and discharged with the three-way switching valves 14a and 14b as shown by the solid lines, the solenoid valve 16a is open, and the solenoid valve 16b is closed, a sample similar to that described in FIG. 1 can be obtained. introduction, electrolyte introduction into the capillary, and tubular cleaning. In addition, this device also allows replacement of the liquid in the electrolyte tank. First, the valve 14b is switched in the direction of the dotted line to suck the liquid in the electrolyte tank 6 and discharge it to the drain.
その後、バルブ14bを実線方向に切替え、電磁弁16
a、又は、16bの一方を開き、ポンプ11により、電
解液17a、又は、17bを電解液槽6に満たす。同様
に、電解液槽2の液の置換も、3方バルブ14aを点線
の方向に切替えを行うことができる。After that, the valve 14b is switched to the solid line direction, and the solenoid valve 16
A or 16b is opened, and the electrolyte tank 6 is filled with the electrolyte solution 17a or 17b using the pump 11. Similarly, the liquid in the electrolyte tank 2 can be replaced by switching the three-way valve 14a in the direction indicated by the dotted line.
3方切替バルブ、及び、電磁弁の切替えを、ポンプコン
トローラ18を介して、ポンプと連動して制御するなら
ば、上記操作を全て自動化することも可能となる。If switching of the three-way switching valve and the electromagnetic valve is controlled via the pump controller 18 in conjunction with the pump, it is also possible to automate all of the above operations.
本発明によれば、水圧差による細管への試料導入を、試
料ビンを水平位置に固定しながら上下移動させることな
く、単に、細管のもう一端が挿入されている電解液槽の
液面レベルの@節で行える。According to the present invention, the introduction of the sample into the capillary due to the water pressure difference is achieved by simply adjusting the liquid level of the electrolyte tank into which the other end of the capillary is inserted, without having to move the sample bottle up and down while fixing the sample bottle in a horizontal position. This can be done with the @ clause.
また、この液面レベルの調節に用いられる吸引及び吐出
可能なポンプと電解液槽を大気開放型、又は、密閉型に
する電磁弁とを連動させることにより、細管への電解液
の導入、細管内の電解液の置換、及び、細管内の洗浄も
同時に行える。In addition, by interlocking a pump that can suck and discharge used to adjust the liquid level with a solenoid valve that opens the electrolyte tank to the atmosphere or closes it, it is possible to introduce the electrolyte into the thin tube, Replacement of the electrolyte inside the tube and cleaning of the inside of the tube can be performed at the same time.
第1図は本発明の基本的な一実施例を示す装置の構成図
、第2図は操作の自動化を目的とした装置の構成図であ
る。
6・電解液槽、11・・・シリンジポンプ/ペリスタポ
ンプ、13.16a、16b−電磁弁、14a。
14b・3方切替えバルブ、18・・ポンプコントロー
フ。
代理人 弁理士 小ノ11勝男(
第1図FIG. 1 is a block diagram of a device showing a basic embodiment of the present invention, and FIG. 2 is a block diagram of a device aimed at automating operations. 6. Electrolyte tank, 11... Syringe pump/peristaltic pump, 13. 16a, 16b-Solenoid valve, 14a. 14b・3-way switching valve, 18・・Pump control valve. Agent: Patent attorney Katsuo Kono 11 (Figure 1)
Claims (1)
る電解液槽間に高電圧を印加し、管の一端から導入され
た試料の分離分析を行う細管電気泳動装置において、試
料導入口と反対側の細管端が挿入されている電解液槽に
吸引及び吐出可能なポンプを接続したことを特徴とする
細管電気泳動装置。 2、前記ポンプでポンプが接続されている電解液槽の液
面レベルを調節することにより、細管が挿入されている
電解液槽及び試料ビン間の水圧差を利用した試料導入を
行うことを特徴とする請求項第1項記載の細管電気泳動
装置。 3、前記電解液槽を大気開放及び密閉型にできる電磁弁
と前記ポンプを連動させることにより細管内への電解液
の導入、細管内の電解液の置換、細管内の洗浄、更には
、電解液槽中の液の交換を容易に行えることを特徴とす
る請求項第1項記載の細管電気泳動装置。[Claims] 1. Capillary electrophoresis in which a capillary is filled with an electrolyte and a high voltage is applied between the electrolyte baths into which both ends of the capillary are inserted to separate and analyze a sample introduced from one end of the tube. 1. A capillary electrophoresis device, characterized in that a pump capable of suction and discharge is connected to an electrolytic solution tank into which the end of the capillary tube on the opposite side of the sample introduction port is inserted. 2. The sample is introduced using the water pressure difference between the electrolyte tank in which the thin tube is inserted and the sample bottle by adjusting the liquid level of the electrolyte tank to which the pump is connected using the pump. The capillary electrophoresis device according to claim 1, wherein: 3. By interlocking the pump with a solenoid valve that allows the electrolyte tank to be opened to the atmosphere or closed, the electrolyte can be introduced into the tube, the electrolyte in the tube can be replaced, the tube can be cleaned, and electrolysis can be carried out. 2. The capillary electrophoresis device according to claim 1, wherein the liquid in the liquid tank can be easily exchanged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2210382A JPH0493761A (en) | 1990-08-10 | 1990-08-10 | Thin-pipe electrophoretic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2210382A JPH0493761A (en) | 1990-08-10 | 1990-08-10 | Thin-pipe electrophoretic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0493761A true JPH0493761A (en) | 1992-03-26 |
Family
ID=16588417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2210382A Pending JPH0493761A (en) | 1990-08-10 | 1990-08-10 | Thin-pipe electrophoretic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0493761A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021260951A1 (en) * | 2020-06-26 | 2021-12-30 |
-
1990
- 1990-08-10 JP JP2210382A patent/JPH0493761A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021260951A1 (en) * | 2020-06-26 | 2021-12-30 | ||
WO2021260951A1 (en) * | 2020-06-26 | 2021-12-30 | 株式会社日立ハイテク | Electrophoresis device |
GB2610753A (en) * | 2020-06-26 | 2023-03-15 | Hitachi High Tech Corp | Electrophoresis device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2383912C (en) | Automated parallel capillary electrophoresis system with hydrodynamic sample injection | |
US3346479A (en) | Preparative separation by a combination of gel separation and electrophoresis | |
JP3199781B2 (en) | Apparatus for detecting a band having a predetermined operating direction in a separation medium | |
JPH09318522A (en) | Particle detector and partcle analyzer | |
JPH0493761A (en) | Thin-pipe electrophoretic apparatus | |
JPH05192171A (en) | Microinjection method and its apparatus | |
US7261801B2 (en) | Method for analyzing a sample from a process with on-line capillary electrophoresis apparatus and capillary electrophoresis apparatus | |
Kitagawa et al. | Manipulation of a single cell with microcapillary tubing based on its electrophoretic mobility | |
Ueda et al. | Investigation of the possibility of geometrical electrophoresis | |
JP2004020224A (en) | Free flow electrophoretic device | |
WO2019241399A1 (en) | Liquid handling devices and methods in capillary electrophoresis | |
US4673295A (en) | Method and an apparatus for performing routine analyses such as polarographic or spectrophotometric analysis | |
JPS56119842A (en) | Sample leading-in device of electrophoretic device | |
KR0177013B1 (en) | Electrophoresis apparatus | |
CN109406608A (en) | The method and application of Dynamic coating are carried out to capillary using humoral sample solution to be measured | |
Smith et al. | A modified cell for moving-boundary electrophoresis | |
JPS59135359A (en) | Electrophoretic apparatus | |
CN105738540A (en) | Negative pressure type quartz capillary monolithic column manufacturing device and use method thereof | |
JPH01263552A (en) | Removal of air bubble in analyser | |
JP3181688B2 (en) | Washing device for electrophoresis sample application | |
JPH06198137A (en) | Recovery part for object to be inspected of fractional collecting electrophoresis device and recovery method for the same | |
DE19821543A1 (en) | Dialysis machine, that prevents traumatization of blood components | |
JPH0326881Y2 (en) | ||
JPH04198850A (en) | Analysis of sample | |
JPS6483144A (en) | Sample injection system of electrophoretic tank |