JPH0493574A - Soft drink supplying machine - Google Patents

Soft drink supplying machine

Info

Publication number
JPH0493574A
JPH0493574A JP21235690A JP21235690A JPH0493574A JP H0493574 A JPH0493574 A JP H0493574A JP 21235690 A JP21235690 A JP 21235690A JP 21235690 A JP21235690 A JP 21235690A JP H0493574 A JPH0493574 A JP H0493574A
Authority
JP
Japan
Prior art keywords
tank
cooler
cooling
storage
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21235690A
Other languages
Japanese (ja)
Inventor
Takahiro Kita
北 貴裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP21235690A priority Critical patent/JPH0493574A/en
Publication of JPH0493574A publication Critical patent/JPH0493574A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To supply soft drink having stable quality by a method wherein a first operating efficiency C of a compressor calculated in response to an inputted amount of heat for a tank during storing of liquid and the amount of heat absorbed by the first cooling device and a second operating rate F of the compressor calculated in response to the amount of heat having entered the storing device and the amount of heat absorbed by the second cooling device when the first and second cooling devices are cooled together are set to have a relation of C>=F. CONSTITUTION:For example, the volume of a tank 6 is 5l and the volume of a storing device 18 is 2l. A thermal insulation material 7 is foamed styrol, a thermal insulation material 21 is foamed urethane. The thermal insulation materials have superior thermal insulation properties. As a result, the amount of heat having entered the tank 6 is 7.6Kcal/h and the amount of heat having entered the storing device 18 is 2.7Kcal/h. Operating rates C and F of each of compressors 27 are calculated, wherein C=7.6(Kcal/ h)/74(Kcal/h)=10.2(%), and F=2.7(Kcal/h)/27(Kcal/h)-10.0(%) are attained. Accordingly, a relation of C>F is attained and no over-cooling of the tank 6 is generated, no icing of liquid occurs and the liquid is kept at a predetermined temperature. Accordingly, a temperature control over two cooling devices 8 and 19 only with a valve 35 is properly performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、一定温度に冷却保存されるコーヒー茶、ジュ
ースその他の濃縮飲料を所定温度の水で希釈し供給され
る飲料供給機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a beverage dispensing machine that dilutes coffee tea, juice, and other concentrated beverages that are cooled and stored at a constant temperature with water at a predetermined temperature.

従来の技術 従来から濃縮飲料の入った容器を容器ごと冷却し、冷却
された濃縮飲料を冷却された飲料水と混合し消費者に供
給する装置は公知であり、例えば特開昭59−2096
00号公報に示されている。
2. Description of the Related Art A device for cooling a container containing a concentrated beverage, mixing the cooled concentrated beverage with chilled drinking water, and supplying the mixture to a consumer is known, for example, as disclosed in Japanese Patent Laid-Open No. 59-2096.
It is shown in Publication No. 00.

また飲料自動販売機においては、濃縮飲料のだめの室と
炭酸水のだめの室とがそれぞれ冷却され、それぞれが異
なる冷却温度範囲に制御できる冷却ループの制御回路が
公知であシ、例えば特開昭61−1199f54号公報
に示されている。そこで一つずつ順に説明する。第1従
来例の特開昭59−209600号公報記載の装置は、
外部の冷却水を利用して、濃縮飲料容器を保管する区画
室の冷却および濃縮飲料と混合する飲料水の冷却の両方
を行ない、装置に冷却システムを設けていない。このた
め冷却水と飲料水の水源がある場所ならどこでも使用す
ることを可能とするものである。−力筒2従来例の特開
昭61〜1 j9964号公報記載の制御回路は、少な
くとも二つの冷却範囲のための冷却ループの制御回路で
あり、特に、センサによって検出された冷却要求に関係
して冷却ループの一つが優先的に接続されながら、一つ
の凝縮機の冷却ループに弁装置を介して選択的に切り替
えられる二つの蒸発器の中の一つにより、貯蔵炭酸水と
濃縮飲料のための室とがそれぞれ冷却されるものである
。センサからの冷却要求信号の優先制御については、ま
ず冷却システムはセンサの内のどれが冷却要求信号を発
信しても作動するよう構成される。次に炭酸水貯蔵容器
の中の氷厚の薄い方を検出するセンサES1、氷厚の厚
い方を検出するセンサES2、および濃縮飲料の貯蔵室
温度を検出するセンサTRを備え、第1優先の冷却要求
をセンサES1とし、第2優先の冷却要求をセンサTR
とし、第3優先の冷却要求をセンサES2としたため、
センサからの冷却要求信号の優先性が、炭酸水と濃縮飲
料のそれぞれの冷却温度範囲の間で交互に表われること
を特徴とするものである。この結果、切り替え弁装置に
より優先度の高い冷却要求信号側の蒸発器が選択され冷
却されることとなり、冷却システム作動中はどちらかの
蒸発器−つだけが冷却ループ中に接続されることとなる
In addition, in beverage vending machines, there is a known cooling loop control circuit in which a concentrated beverage reservoir chamber and a carbonated water reservoir chamber are respectively cooled and each can be controlled to a different cooling temperature range. -1199f54. Therefore, we will explain them one by one. The first conventional device described in Japanese Patent Application Laid-Open No. 59-209600 is as follows:
External cooling water is utilized to both cool the compartment storing the concentrated beverage containers and to cool the drinking water that is mixed with the concentrated beverage, and the device is not equipped with a cooling system. This allows it to be used wherever there is a source of cooling water and drinking water. - Power tube 2 The conventional control circuit described in JP-A-61-1-J9964 is a control circuit of a cooling loop for at least two cooling ranges, and is particularly related to the cooling demand detected by a sensor. For storing carbonated water and concentrated beverages, one of the two evaporators is selectively switched via a valve device to one condenser cooling loop, while one of the cooling loops is preferentially connected. The two chambers are each cooled. Regarding the priority control of cooling request signals from the sensors, the cooling system is first configured to operate regardless of which of the sensors issues the cooling request signal. Next, a sensor ES1 for detecting the thinner ice in the carbonated water storage container, a sensor ES2 for detecting the thicker ice, and a sensor TR for detecting the temperature of the concentrated beverage storage chamber are provided. The cooling request is set to sensor ES1, and the second priority cooling request is set to sensor TR.
Since the third priority cooling request is set to sensor ES2,
It is characterized in that the priority of the cooling request signal from the sensor alternates between respective cooling temperature ranges for carbonated water and concentrated beverages. As a result, the switching valve device selects and cools the evaporator on the cooling request signal side with a higher priority, and only one of the evaporators is connected in the cooling loop while the cooling system is operating. Become.

発明が解決しようとする課題 しかしながら上記のような第1従来例の構成では、外部
から本装置に冷却水配管をする必要があり、水配管とそ
の管路の間ずっと断熱する設備の導入コストが高くつく
ものであった。
Problems to be Solved by the Invention However, in the configuration of the first conventional example as described above, it is necessary to connect cooling water piping to the device from the outside, which increases the cost of installing equipment that insulates the water piping and its pipes. It was expensive.

さらに第2の従来例の構成では、炭酸水貯蔵室と濃縮飲
料貯蔵室のどちらか一方しか冷却制御されず、一つのセ
ンサからの冷却要求信号が満足されるまでは他方の貯蔵
室は全く冷却されないこととなり、最悪な場合は貯蔵室
が温まシ飲料を腐らせたり品質の悪い飲料を提供するこ
とも起こり得た。例えば外気温が高い時にひんばんに飲
料を販売する起こり得る条件下で、濃縮飲料貯蔵室の温
度が上がり炭酸水貯蔵室の炭酸水の消費が多く氷厚が極
めて薄くなるかなくなったような場合、薄い氷厚を検知
するEStセンサの働きで第1優先に炭酸水貯蔵室が冷
却され、濃縮飲料貯蔵室の冷却は後まわしとなる。この
時濃縮飲料は温度上昇し酸化したシ腐ったりして飲料の
品質を悪化させることとなる。さらに炭酸水貯蔵室の冷
却不足に:り炭酸が溶は込みにくく味の悪い飲料を提供
することも起こシ得る結果となる。
Furthermore, in the configuration of the second conventional example, only one of the carbonated water storage chamber and the concentrated beverage storage chamber is controlled to be cooled, and the other storage chamber is not cooled at all until the cooling request signal from one sensor is satisfied. In the worst case scenario, the storage room could cause the warm drinks to spoil or provide poor quality drinks. For example, under the conditions that may occur when beverages are sold frequently when the outside temperature is high, the temperature in the concentrated beverage storage room rises and the consumption of carbonated water in the carbonated water storage room is high, and the ice thickness becomes extremely thin or disappears. The carbonated water storage compartment is cooled first due to the action of the ESt sensor that detects the thin ice thickness, and cooling of the concentrated beverage storage compartment is postponed. At this time, the temperature of the concentrated beverage increases, causing oxidation and spoilage, which deteriorates the quality of the beverage. Furthermore, due to insufficient cooling of the carbonated water storage chamber, it is difficult for the carbonic acid to dissolve in the carbonated water storage chamber, resulting in the provision of a drink with a bad taste.

本発明は上記課題に鑑み、外部から冷却水を必要とせず
、また濃縮飲料と希釈用液体とを同時に冷却できるよう
にし冷却要求があるのに冷却されない状態を無くし、さ
らに濃縮飲料側の冷媒制御により濃縮飲料の温度をより
一定化して品質の安定した飲料を供給できる1バルブ制
御の簡素な構成の飲料供給機を提供しようとするもので
ある。
In view of the above problems, the present invention eliminates the need for external cooling water, allows the concentrated beverage and diluting liquid to be cooled at the same time, eliminates the situation where the beverage is not cooled even when a cooling request is made, and furthermore controls the refrigerant on the concentrated beverage side. The present invention aims to provide a beverage dispensing machine with a simple configuration and one-valve control, which can further stabilize the temperature of concentrated beverages and supply beverages of stable quality.

課題を解決するための手段 上記課題を解決するため本発明の飲料供給機は、液体を
収容するタンクに設けた第1の冷却器と、濃縮飲料を収
納する収納庫に設けた第2の冷却器と、タンクの温度を
検知する第1の温度検知手段または収納庫の温度を検知
する第2の温度検知手段の作動に応答して動作する圧縮
機と、前記第2の温度検知手段の作動に応答して前記第
2の冷却器への冷媒路を開くバルブと、前記第1の冷却
器と前記バルブ及び第2の冷却器とが並列に接続された
冷媒路とを有し、前記タンクの侵入熱量Aを第1の冷却
器による吸熱量Bで割ったIで求められる圧縮機の第1
の運転率Cと、前記収納庫の侵入熱量りを第2の冷却器
による吸熱量りで割ったIで求められる圧縮機の第2の
運転率Fとが、C≧Fとなるよう構成されたものである
Means for Solving the Problems In order to solve the above problems, the beverage dispensing machine of the present invention includes a first cooler provided in a tank for storing a liquid, and a second cooler provided in a storage for storing a concentrated beverage. a compressor that operates in response to the operation of the first temperature detection means for detecting the temperature of the tank or the second temperature detection means for detecting the temperature of the storage; and the operation of the second temperature detection means. and a refrigerant path in which the first cooler, the valve, and the second cooler are connected in parallel, the valve opening a refrigerant path to the second cooler in response to The first heat of the compressor is determined by I, which is the amount of heat entered into A by the amount of heat absorbed by the first cooler, B.
The operating rate C of the compressor and the second operating rate F of the compressor, which is obtained by dividing the amount of heat intrusion into the storage by the amount of heat absorbed by the second cooler, are configured so that C≧F. It is something.

作  用 かかる構成によシ、タンクに収容された液体も濃縮飲料
も圧縮機によシ冷却されるため外部からの冷却水の接続
が不要となる。またタンクと収納庫とを並列の冷媒路と
し同時の冷却要求があった場合でも両方共確実に冷却さ
れる。さらに収納庫側はバルブによる冷媒制御を行なう
ことにより濃縮飲料の温度がよシ一定に保たれ濃縮飲料
の劣化を最小にとどめ品質の安定した飲料が供給される
With such a configuration, both the liquid and the concentrated beverage contained in the tank are cooled by the compressor, so there is no need to connect external cooling water. In addition, the tank and the storage are provided in parallel refrigerant paths so that both can be reliably cooled even if simultaneous cooling requests are made. Furthermore, by controlling the refrigerant with a valve on the storage side, the temperature of the concentrated beverage is maintained at a constant level, minimizing deterioration of the concentrated beverage and supplying a beverage of stable quality.

またタンクと収納庫の冷却を1パルプ制御し簡素な冷却
システムとなる。また収納庫側の冷却要求に対しては、
タンク側も冷却されることとなるが、収納庫側の圧縮機
運転率Fをタンク側よシ小さくすることにより、すなわ
ち収納庫側の冷却スピードを早くまたはタンク側の冷却
スピードを遅くすることによシ、タンク側の液体の過冷
却が防止されることとなる。
In addition, cooling of the tank and storage is controlled by one pulp, resulting in a simple cooling system. In addition, in response to cooling requests on the storage side,
The tank side will also be cooled, but by making the compressor operation rate F on the storage side smaller than that on the tank side, in other words, the cooling speed on the storage side can be made faster or the cooling speed on the tank side can be made slower. As a result, supercooling of the liquid on the tank side is prevented.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例における飲料供給機の断面図
、第2図は同機の冷却システム図、第3図は同機の電気
回路図、第4図は同機の外観斜視図を示すものである。
Fig. 1 is a sectional view of a beverage dispensing machine according to an embodiment of the present invention, Fig. 2 is a cooling system diagram of the machine, Fig. 3 is an electric circuit diagram of the machine, and Fig. 4 is an external perspective view of the machine. It is.

図において、1は飲料供給機本体である。2は操作部で
あわ、電源スィッチ3、電源ランプ4.抽出スイッチ6
を有している。
In the figure, 1 is the main body of the beverage supply machine. 2 is the operation section, power switch 3, power lamp 4. Extraction switch 6
have.

6は発泡スチロール等で作成された第1の断熱材7でお
おわれた容量約6リツターの冷水のタンクであシ、外壁
周囲に第1の冷却器8を巻きつけ、第1の冷却器8の直
上外壁にサーモスタットなどで構成した第1の温度検知
手段9の検知部9aを設けである。10は背面に設けら
れた注水口であり、水道と直結するものである。11は
前記注水口1oとタンク6とを連通ずる注水パイプであ
り、その間に水量制御を行う注水バルブ12を設けてい
る。13はタンクeと冷水の出口である供給口14を連
通ずる給水パイプである。タンクらの下部には排水口1
5と連通するドレンパイプ16を設けている。1了は細
潰飲料の容器であり、内部に濃縮コーヒー、濃縮茶、濃
縮ジュース等の濃縮飲料を収容する例えば特開昭59−
209600号公報に示されるレンガ状無菌パッケージ
のようなものでも良い。18は容量約2リツターの収納
庫であり、外壁に第2の冷却器19が取り付けられ、第
2の冷却器19の直下外壁にサーモスタットなどで構成
した第2の温度検知手段2oの検知部20aを設け、そ
の周辺を発泡ウレタンフオーム等で形成された第2の断
熱材2D/Eでおおわれ内部に容器17を収納し、上部
は断熱蓋22が載置されている。23は液体ポンプで、
入口側チューブ24を介して容器17へ接続され電気信
号によシ濃縮飲料を引き呂し、ポンプ出口26は26の
混合ノイズに開口している。混合ノイズ26は、混合出
口が下方に設けられ、ポンプ出口26と供給口14とを
含み液体が漏れないよう組立てられている。2了は圧縮
機で、凝縮器28.ファンモータ29と共にタンク0の
下部に設置され、第1の冷却器8及び第2の冷却器19
よ構成る冷却システムを構成している。30は飲料供給
制御を行なう制御回路であり、濃縮飲料と水との混合比
Aを設定する第1スイツチ31と、希釈飲料液の消費単
位量Bを設定する第2スイツチ32を具備している。
6 is a cold water tank with a capacity of about 6 liters covered with a first insulating material 7 made of styrofoam or the like, a first cooler 8 is wrapped around the outer wall, and the tank is directly above the first cooler 8. A detection section 9a of a first temperature detection means 9 constituted by a thermostat or the like is provided on the outer wall. Reference numeral 10 is a water inlet provided on the back, and is directly connected to the water supply. Reference numeral 11 denotes a water injection pipe that communicates the water injection port 1o with the tank 6, and a water injection valve 12 for controlling the amount of water is provided therebetween. 13 is a water supply pipe that communicates the tank e with the supply port 14 which is the outlet of cold water. There is a drain port 1 at the bottom of the tank.
A drain pipe 16 communicating with the drain pipe 5 is provided. 1 Ryo is a container for crushing beverages, and contains concentrated beverages such as concentrated coffee, concentrated tea, and concentrated juice.
A brick-shaped sterile package shown in Japanese Patent No. 209600 may also be used. 18 is a storage with a capacity of about 2 liters, a second cooler 19 is attached to the outer wall, and a detection part 20a of a second temperature detection means 2o constituted by a thermostat etc. is installed on the outer wall directly below the second cooler 19. The periphery thereof is covered with a second heat insulating material 2D/E made of urethane foam or the like, and a container 17 is housed inside, and a heat insulating lid 22 is placed on the top. 23 is a liquid pump,
The pump outlet 26 is connected to the container 17 via the inlet tube 24 to draw the concentrated beverage by means of an electrical signal, and the pump outlet 26 is open to the mixing noise of 26. The mixing nozzle 26 has a mixing outlet provided at the bottom, and includes a pump outlet 26 and a supply port 14, and is assembled to prevent liquid from leaking. 2. The compressor is the condenser 28. A first cooler 8 and a second cooler 19 are installed at the bottom of the tank 0 together with a fan motor 29.
It consists of a cooling system. 30 is a control circuit for controlling the supply of beverages, and includes a first switch 31 for setting the mixing ratio A of concentrated beverage and water, and a second switch 32 for setting the consumption unit amount B of diluted beverage liquid. .

次に本機の電気回路図について説明する。33は商用電
源、3は電源スィッチであシ、電流ヒユーズ34を介し
て各電気部品の基幹に設けである。
Next, we will explain the electrical circuit diagram of this machine. 33 is a commercial power source, and 3 is a power switch, which is connected to the backbone of each electrical component via a current fuse 34.

電流ヒユーズ34を介して電源ライン間に、電源ランプ
4が接続され、第2の温度検知手段2oを介してバルブ
35とリレー36とが並列に接続され、第1の温度検知
手段9とリレー36の接点36aとを並列に介して圧縮
機27とファンモータ29とが並列に接続されると共に
、電源トランス3了の一次側が接続されている。電源ト
ランス37の二次側には、マイクロコンピュータ38お
よび周辺回路から構成された制御回路30を接続してい
る。
A power lamp 4 is connected between the power lines via a current fuse 34, a bulb 35 and a relay 36 are connected in parallel via a second temperature detection means 2o, and a first temperature detection means 9 and a relay 36 are connected in parallel. The compressor 27 and the fan motor 29 are connected in parallel through the contact 36a of the compressor 27, and the primary side of the power transformer 3 is also connected thereto. A control circuit 30 composed of a microcomputer 38 and peripheral circuits is connected to the secondary side of the power transformer 37.

前記制御回路30には、入力として抽出スイッチ5.濃
縮飲料液と水との混合比Aを設定する第1スイッチ31
.希釈飲料液の消費単位量Bを設定する第2スイツチ3
2を有しておシ、出力として注水バルブ12と液体ポン
プ23を有している。
The control circuit 30 has an extraction switch 5. as an input. A first switch 31 for setting the mixing ratio A of concentrated beverage liquid and water
.. Second switch 3 for setting consumption unit amount B of diluted beverage liquid
2, and has a water injection valve 12 and a liquid pump 23 as outputs.

次に本機の冷却システムについて説明する。27は圧縮
機で、ファンモータ29で風冷される凝縮器28に接続
され、凝縮器28の後に第1の絞υ装置39を介して第
1の冷却器8と冷媒を開閉するバルブ35及び第2の絞
υ装置を介して第2の冷却器19とが冷媒路4D/Eで
並列に接続されている。第1の冷却器8および第2の冷
却器19の出口側は合わさって気液分離を行なう受液器
42の下部に接続され、受液器42の上部からは圧縮機
27の吸入口に接続されている。
Next, we will explain the cooling system of this machine. A compressor 27 is connected to a condenser 28 which is air-cooled by a fan motor 29, and after the condenser 28, a valve 35 is connected to the first cooler 8 via a first throttle device 39 to open and close the refrigerant. A second cooler 19 is connected in parallel with a refrigerant path 4D/E via a second throttle υ device. The outlet sides of the first cooler 8 and the second cooler 19 are connected together to the lower part of a liquid receiver 42 that performs gas-liquid separation, and the upper part of the liquid receiver 42 is connected to the suction port of the compressor 27. has been done.

上記のように構成された飲料供給機について、以下その
動作を説明する。
The operation of the beverage dispensing machine configured as described above will be described below.

本機は既にタンク6には水が満たされ電源スィッチ3も
オンになっているものとして説明する。
The explanation will be given assuming that the tank 6 of this machine is already filled with water and the power switch 3 is turned on.

この時電源ランプ4は点灯している。At this time, the power lamp 4 is lit.

第1のパターンとして液体を収容したタンク6も濃縮飲
料を収納した収納庫18もそれぞれ所定温度未満の時、
第1の温度検知手段9も第2の温度検知手段2oも「開
」となシ、リレー接点3θaも「開」となり、圧縮機2
7は停止しバルブ36は閉じたままとなυタンク6も収
納庫18も冷却されない。制御回路3oは電源スィッチ
3が入っている間中トランス37に通電されているので
入出力の各要素をマイクロコンピュータ38の手順に従
って検知、大切を行ない作動させている。
In the first pattern, when both the tank 6 containing the liquid and the storage 18 containing the concentrated beverage are below a predetermined temperature,
Both the first temperature detection means 9 and the second temperature detection means 2o are "open", and the relay contact 3θa is also "open", and the compressor 2
7 is stopped, the valve 36 remains closed, and neither the υ tank 6 nor the storage 18 is cooled. Since the transformer 37 of the control circuit 3o is energized while the power switch 3 is turned on, each input/output element is detected and operated according to the procedure of the microcomputer 38.

第2のパターンとしてタンク6も収納庫18もそれぞれ
所定温度以上の時、第1の温度検知手段9も第2の温度
検知手段2oも「閉」となシ、圧縮機27は運転しバル
ブ35は開くので、第1の冷却器8も第2の冷却器19
も並列に冷媒が流れ、それぞれ第1の絞υ装置39と第
2の絞り装置40によね適切に冷媒が絞られて両冷却器
8.19が冷却された結果、タンク6も収納庫18も冷
却される。
As a second pattern, when both the tank 6 and the storage 18 are at a predetermined temperature or higher, neither the first temperature detection means 9 nor the second temperature detection means 2o is "closed", the compressor 27 is operated, and the valve 35 is closed. opens, so the first cooler 8 also opens the second cooler 19.
The refrigerant flows in parallel with each other, and the refrigerant is appropriately throttled by the first throttling device 39 and the second throttling device 40, cooling both coolers 8 and 19. As a result, both the tank 6 and the storage 18 are cooled. cooled down.

第3のパターンとしてタンク6の温度が第1の所定温度
以上で収納庫18が第2の所定温度未満の時、第1の温
度検知手段9は「閉」となり第2の温度検知手段20は
「開」のため、圧縮機2アは運転しバルブ36は閉じた
ままとなる。その結果第1の冷却器8だけに冷媒が流れ
タンク6だけが冷却されタンクe内の液体の温度は第1
の所定温度例えば6℃±3℃に温度制御される。第2の
冷却器19には冷媒が流れないため冷却システム中の冷
媒流1のアンバランスによる圧縮機27への液冷媒もど
りは受液器42が液だめと々り上部のガス状冷媒だけを
圧縮機27にもどし、冷却システムのバランヌと圧縮機
27の故障防止を行なっている。
As a third pattern, when the temperature of the tank 6 is higher than the first predetermined temperature and the storage 18 is lower than the second predetermined temperature, the first temperature detection means 9 is "closed" and the second temperature detection means 20 is Since it is "open", the compressor 2a operates and the valve 36 remains closed. As a result, the refrigerant flows only to the first cooler 8, and only the tank 6 is cooled, so that the temperature of the liquid in the tank e is the same as that of the first cooler.
The temperature is controlled to a predetermined temperature of, for example, 6°C±3°C. Since the refrigerant does not flow into the second cooler 19, the liquid refrigerant returns to the compressor 27 due to an imbalance in the refrigerant flow 1 in the cooling system. The compressor 27 is returned to the compressor 27 to prevent the balanne of the cooling system and the compressor 27 from malfunctioning.

第4のパターンとしてタンク6の温度が第1の所定温度
未満で収納庫18は第2の所定温度以上の時、第1の温
度検知手段9は「開」となるが第2の温度検知手段20
は「閉」となり、リレー接点36aが「閉」となるため
、圧縮機2了は運転しバルブ36も開くので、第2の冷
却器19は冷却される。収納r1118が第2の所定温
度未満になれば第2の温度検知手段20は「開」となり
圧縮機27は停止しバルブ35は閉じ、冷却を停止する
。その結果収納庫18の濃縮飲料の温度は第2の所定温
度例えば4℃±2℃に温度制御される。
As a fourth pattern, when the temperature of the tank 6 is lower than the first predetermined temperature and the storage 18 is higher than the second predetermined temperature, the first temperature detection means 9 is "open", but the second temperature detection means 20
is "closed" and the relay contact 36a is "closed", so the compressor 2 is operated and the valve 36 is also opened, so that the second cooler 19 is cooled. When the storage r1118 becomes less than the second predetermined temperature, the second temperature detection means 20 is "open", the compressor 27 is stopped, the valve 35 is closed, and cooling is stopped. As a result, the temperature of the concentrated beverage in the storage 18 is controlled to a second predetermined temperature, for example, 4°C±2°C.

しかし圧縮機2了が運転しバルブ35が開いている間は
タンクeが第1の所定温度未満に冷却されているにもか
かわらず、第1の冷却器8へ冷媒が循環しタンクe内の
液体を過冷却する可能性が生じる。飲料をとシ出してい
る間は、濃縮飲料が単に減りながら冷却されるのに対し
タンク6内の水は注水バルブ12から常温の水が補給さ
れるためタンクe内は温度が上昇ぎみになりながら冷却
されるためタンク6の過冷却はほとんどない。最悪は例
えば外気温の高い夏場の夜間の飲料供給のない運転時が
タンクeの過冷却の可能性が最も高い。
However, while the compressor 2 is in operation and the valve 35 is open, the refrigerant is circulated to the first cooler 8 and the temperature inside the tank e is The possibility of supercooling the liquid arises. While the beverage is being brewed, the concentrated beverage is simply being cooled while decreasing, whereas the water in the tank 6 is replenished with room-temperature water from the water injection valve 12, so the temperature in the tank e is about to rise. Since the tank 6 is cooled while cooling, there is almost no overcooling of the tank 6. In the worst case scenario, for example, in the summer when the outside temperature is high, there is a high possibility that tank e will be overcooled during nighttime operation when no beverage is being supplied.

そこで次に過冷却の可能性について説明する。Therefore, the possibility of supercooling will be explained next.

液体を収容したタンク6への侵入熱量Aと圧縮機27運
転中の第1の冷却器8の吸熱量Bが、それぞれの表面積
、冷媒流量、断熱式等の計算から求められる。また濃縮
飲料を収納した収納庫18への侵入熱量りと圧縮機2了
及びバルブ36運転中の第2の冷却器19の吸熱量Eも
上記同様計算から求められる。これらの値からタンク6
を安定温度に保つための圧縮機27の第1の運転率Cと
、収納庫18を安定温度に保つための圧縮機27及びバ
ルブ35の第2運転率Fとが下記式にて求めた。その結
果、タンク6の侵入熱量Aは7.6W/hとなシ、゛収
納庫18の侵入熱量pは2.7−/h となった。それ
ぞれの圧縮機27の運転率C,Fを求めると下記のよう
になった。
The amount of heat A that enters the tank 6 containing the liquid and the amount of heat absorbed by the first cooler 8 while the compressor 27 is in operation are determined from calculations of the respective surface areas, refrigerant flow rates, adiabatic equations, and the like. In addition, the amount of heat entering into the storage 18 containing the concentrated beverage and the amount of heat absorbed by the second cooler 19 while the compressor 2 and the valve 36 are in operation are also obtained from the same calculations as described above. From these values tank 6
The first operating rate C of the compressor 27 for keeping the storage chamber 18 at a stable temperature, and the second operating rate F of the compressor 27 and valve 35 for keeping the storage 18 at a stable temperature were determined using the following formula. As a result, the amount of heat A entering the tank 6 was 7.6 W/h, and the amount of heat P entering the storage 18 was 2.7-/h. The operating rates C and F of each compressor 27 were determined as follows.

ここで、第1の運転率Cと第2の運転率Fとが、C≧F の関係になれば過冷却を生じない。つまり収納庫18の
吸熱量に対するバルブ36を開いた圧縮機27の運転時
間(Fに相当)が、タンクeの吸熱量に対する圧縮機2
7の運転時間(Cに相当)に対して、同等か或いは時間
が短かければ飲料供給が全くない状態で長時間安定運転
されてもタンクらの過冷却が起こらず液体が氷結したり
することが防げる。
Here, if the first operation rate C and the second operation rate F have a relationship of C≧F, supercooling will not occur. In other words, the operating time (corresponding to F) of the compressor 27 with the valve 36 open for the amount of heat absorbed by the storage 18 is the amount of time the compressor 27 operates for the amount of heat absorbed by the tank e.
If the operating time is equal to or shorter than the operating time in item 7 (corresponding to C), even if the tank is operated stably for a long time without any beverage supply, overcooling of the tanks will not occur and the liquid will freeze. can be prevented.

そこで本実施例では、収納庫の容量24に対しタンクの
容量を51とし、より大きな容量とするとともに、第1
の断熱材7を発泡ヌチロールとし、第2の断熱材21を
発泡ウレタンフオームとし、第2の断熱材21には断熱
性能の良い材料を用い従ってC>Fとなυタンク6の過
冷却は生じず、液体の氷結は起こらず所定の一定温度に
保たれる。
Therefore, in this embodiment, the capacity of the tank is set to 51 compared to the capacity of the storage, which is 24.
The heat insulating material 7 is made of foamed nutirol, the second heat insulating material 21 is made of foamed urethane foam, and the second heat insulating material 21 is made of a material with good heat insulation performance. First, the liquid does not freeze and is maintained at a predetermined constant temperature.

従ってバルブ35だけによる2つの冷却fM8t19の
温度制御が適切に行なわれ冷却システムが簡素が何ら不
具合のないものである。
Therefore, the temperature of the two cooling fM8t19 can be appropriately controlled only by the valve 35, and the cooling system is simple but without any problems.

次に飲料供給動作について説明する。まず基本的動作は
、抽出スイッチ6を人為的にオンされることによυ、注
水バルブと液体ポンプ23とにそれぞれに決められた所
定時間だけ制御回路30から信号が8力される。このこ
とは本体1の混合ノズル2eの下へカップを置き抽出ス
イッチ5を押すと、容器17内の濃縮飲料が液体ポンプ
23の所定時間動作により混合ノズル26内に所定1弓
き土されると共に、注水バルブ12の所定時間動作によ
りタンク6内の冷却された水が所定量だけ混合ノズル2
6内に流下されることになり、所定混合率の飲料が所定
量だけカップに注ぎ込まれることとなる。
Next, the beverage supply operation will be explained. First, in the basic operation, when the extraction switch 6 is turned on manually, eight signals are applied from the control circuit 30 to the water injection valve and the liquid pump 23 for a predetermined time determined respectively. This means that when a cup is placed under the mixing nozzle 2e of the main body 1 and the extraction switch 5 is pressed, the concentrated beverage in the container 17 is poured into the mixing nozzle 26 for a predetermined amount of time by the operation of the liquid pump 23 for a predetermined period of time. , a predetermined amount of cooled water in the tank 6 is supplied to the mixing nozzle 2 by operating the water injection valve 12 for a predetermined time.
6, and a predetermined amount of beverage with a predetermined mixing ratio is poured into the cup.

以上のように本実施例によれば、タンク6に収容された
液体も濃縮飲料も圧縮機27により冷却されるため外部
からの冷却水の接続を・必要とせず設置費用が軽減でき
る。またタンク6の第1の冷却器8と収納庫18の第2
の冷却器19とを並列の冷媒路41とし、同時の冷却要
求に対しタンクeも収納庫18も冷却されるようにした
ので冷却要求に対し冷却されない冷却器を生じることな
く確実に冷却される。さらに収納IIf18側はバルブ
35による冷媒の開閉制御を第2の温度検知手段20に
連動して行なうようにしたので、濃縮飲料の温度が高精
度に一定に保たれ、濃縮飲料の劣化を最小限にとどめ、
より品質の安定した飲料を供給することが出来る。また
タンク6と収納庫18との適切な温度制御がバルブ35
だけで切換えでき簡素な冷却システムを実現できた。さ
らに第1の断熱材7を発泡スチロールとし、第2の断熱
材21を発泡ウレタンフオームとすることにより、どの
様な条件においてもタンク6の過冷却は生じず、液体の
氷結は起こらず所定の一定温度に保たれる。バルブ35
が閉じた時には第2の冷却器19には冷媒が流れないた
め、冷却システム中の冷媒流量のアンバランスによる圧
縮機27への液冷媒もどりは受液器42が液だめとなり
上部のガス状冷謀だけを圧縮機27にもどし、冷却シス
テムのバランヌを良くし、冷却性能を良くシ、圧縮機2
7の故障防止が行なえる。
As described above, according to this embodiment, since both the liquid and the concentrated beverage contained in the tank 6 are cooled by the compressor 27, there is no need to connect cooling water from the outside, and installation costs can be reduced. In addition, the first cooler 8 of the tank 6 and the second cooler 8 of the storage 18
The refrigerant path 41 is arranged in parallel with the cooler 19, so that both the tank e and the storage 18 are cooled in response to simultaneous cooling requests, so that cooling is ensured without causing any cooler to not be cooled in response to the cooling request. . Furthermore, since the refrigerant opening/closing control by the valve 35 on the storage IIf 18 side is performed in conjunction with the second temperature detection means 20, the temperature of the concentrated beverage is kept constant with high precision, and deterioration of the concentrated beverage is minimized. Keep it to
It is possible to supply beverages with more stable quality. In addition, appropriate temperature control between the tank 6 and the storage chamber 18 is performed using the valve 35.
We were able to create a simple cooling system that could be switched with just one switch. Furthermore, by using polystyrene foam as the first heat insulating material 7 and urethane foam as the second heat insulating material 21, the tank 6 will not be overcooled under any conditions, and the liquid will not freeze and will remain at a predetermined constant level. maintained at temperature. valve 35
When the refrigerant is closed, no refrigerant flows into the second cooler 19, so if the liquid refrigerant returns to the compressor 27 due to an imbalance in the refrigerant flow rate in the cooling system, the liquid receiver 42 becomes a liquid reservoir and the upper gaseous refrigerant is By returning only the control to the compressor 27, improving the balance of the cooling system and improving the cooling performance, the compressor 2
7 malfunctions can be prevented.

飲料供給時は、抽出スイッチ6の−押しで、所定量の所
定混合率の飲料が供給できる。
When supplying beverages, by pressing - on the extraction switch 6, a predetermined amount of beverage at a predetermined mixing ratio can be supplied.

発明の効果 以上のように本発明は、液体を収容するタンクに設けた
第1の冷却器と、濃縮飲料を収納する収納庫に設けた第
2の冷却器と、タンクの温度を検知する第1の温度検知
手段または収納庫の温度を検知する第2の温度検知手段
の作動に応答して動作する圧縮機と、前記第2の温度検
知手段の作動に応答して前記第2の冷却器の冷媒路を開
くバルブと、前記第1の冷却器と前記バルブ及び第2の
冷却器とが並列に接続された冷媒路とを有し、前記タン
クの侵入熱量Aを第1の冷却器による吸熱量Bで割った
百で求められる圧縮機の第1の運転率Cと、前記収納庫
の侵入熱量りを第2の冷却器り による吸熱量りで割ったIで求められる圧縮機の第2の
運転率Fとが、C≧Fとなるよう構成されたものである
Effects of the Invention As described above, the present invention has a first cooler installed in a tank that stores liquid, a second cooler installed in a storage that stores concentrated beverages, and a second cooler that detects the temperature of the tank. a compressor that operates in response to the operation of the first temperature detection means or a second temperature detection means that detects the temperature of the storage; and the second cooler that operates in response to the operation of the second temperature detection means. and a refrigerant path in which the first cooler, the valve, and the second cooler are connected in parallel, and the amount of heat A entering the tank is controlled by the first cooler. The first operation rate C of the compressor is calculated as 100 divided by the heat absorption amount B, and the second operation rate of the compressor is calculated as I, which is the amount of heat absorbed by the storage compartment divided by the amount of heat absorbed by the second cooler. The operating rate F is configured such that C≧F.

従ってタンクに収容された液体も濃縮飲料も圧縮機によ
り冷却されるため外部からの冷却水を接続せず設置費用
が軽減できる。またタンクの第1の冷却器と収納庫の第
2の冷却器とを並列の冷媒路とし、同時の冷却要求があ
った場合でもタンクも収納庫も冷却されない冷却器を生
じることなく確実に冷却される。さらに収納庫側はバル
ブによる冷媒の開閉制御を第2の温度検知手段に連動し
て行なうようにしたので、濃縮飲料の温度が高精度に一
定に保たれ、濃縮飲料の劣化を最小限にとどめ、より品
賀の安定した飲料を供給することが出来る。またタンク
と収納庫との適切な温度制御がバルブだけで切換えでき
、簡素な冷却システムを実現できる。また収納庫側の冷
却要求に対しては、タンク側も冷却されることとなるが
、収納庫側の圧縮機運転率Fをタンク側:り小さくする
ことにより、すなわち収納庫側の冷却7ピードを早く、
またはタンク側の冷却7ピードを遅くすることにより、
タンク側の液体の過冷却を防止できる。
Therefore, since both the liquid and the concentrated beverage contained in the tank are cooled by the compressor, there is no need to connect external cooling water, reducing installation costs. In addition, the first cooler of the tank and the second cooler of the storage are arranged in parallel refrigerant paths, so that even if there are simultaneous cooling requests, neither the tank nor the storage will be cooled without leaving the cooler uncooled. be done. Furthermore, since the refrigerant opening/closing control using a valve on the storage side is linked to the second temperature detection means, the temperature of the concentrated beverage is kept constant with high precision, minimizing deterioration of the concentrated beverage. , it is possible to supply more stable drinks from Shinaga. In addition, appropriate temperature control between the tank and the storage can be switched with just a valve, making it possible to realize a simple cooling system. In addition, in response to a cooling request from the storage side, the tank side will also be cooled, but by making the compressor operation rate F on the storage side smaller than that on the tank side, that is, the 7-speed cooling on the storage side quickly,
Or by slowing down the cooling 7-speed on the tank side,
This can prevent overcooling of the liquid on the tank side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の飲料供給機の断面図、第2
図は飲料供給機の冷却シヌテム図、第3図は同飲料供給
機の電気回路図、第4図は同機の外観斜視図である。 6・・・・・・タンク、7・・・・・・第1の断熱材、
8・・・・・・第1の冷却器、9,9a・・・・・・第
1の温度検知手段、18・・・・・・収納庫、19・・
・・・第2の冷却器、20゜20a・・・・・第2の温
度検知手段、21 ・ 第2の断熱材、27・・・・・
・圧縮機、36・・・・・バルブ、41・・・・・冷媒
路。 第 図
Fig. 1 is a sectional view of a beverage dispensing machine according to an embodiment of the present invention;
The figure is a cooling system diagram of the beverage dispenser, FIG. 3 is an electric circuit diagram of the beverage dispenser, and FIG. 4 is an external perspective view of the beverage dispenser. 6...Tank, 7...First insulation material,
8...First cooler, 9,9a...First temperature detection means, 18...Storage, 19...
...Second cooler, 20°20a...Second temperature detection means, 21 - Second heat insulating material, 27...
・Compressor, 36... Valve, 41... Refrigerant path. Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)液体を収容し供給口を備えたタンクと、タンクの
外壁に設けた第1の冷却器と、濃縮飲料を収納する収納
庫と、収納庫の外壁に設けた第2の冷却器と、タンクの
温度を検知する第1の温度検知手段と、収納庫の温度を
検知する第2の温度検知手段と、第1の温度検知手段ま
たは第2の温度検知手段の作動に応答して動作する圧縮
機と、第2の温度検知手段の作動に応答して前記第2の
冷却器への冷媒路を開くバルブと、前記第1の冷却器と
前記バルブ及び第2の冷却器とが並列に接続された冷媒
路とを有し、液体収容時の前記タンクへの侵入熱量Aと
前記圧縮機運転中の第1の冷却器の吸熱量BとからA/
Bで求められる圧縮機の第1の運転率Cと、前記収納庫
への侵入熱量Dと前記バルブが開き圧縮機が運転し第1
の冷却器および第2の冷却器が共に冷却される時の第2
の冷却器の吸熱量EとからD/Eで求められる圧縮機の
第2の運転率Fとが、C≧Fとなるよう構成される飲料
供給機。
(1) A tank containing a liquid and equipped with a supply port, a first cooler provided on the outer wall of the tank, a storage for storing the concentrated beverage, and a second cooler provided on the outer wall of the storage. , a first temperature detection means for detecting the temperature of the tank, a second temperature detection means for detecting the temperature of the storage, and an operation in response to the operation of the first temperature detection means or the second temperature detection means. a compressor that opens a refrigerant path to the second cooler in response to operation of a second temperature sensing means, and the first cooler, the valve, and the second cooler are arranged in parallel. A/
The first operation rate C of the compressor determined by B, the amount of heat D entering the storage, and the first
the second cooler when the cooler and the second cooler are both cooled.
A beverage dispensing machine configured such that the second operating rate F of the compressor obtained from D/E from the heat absorption amount E of the cooler satisfies C≧F.
(2)タンクの外壁周囲に設けた第1の断熱材と、収納
庫の外壁周囲に設けた第1の断熱材より断熱性能の良い
第2の断熱材とより構成される請求項(1)記載の飲料
供給機。
(2) Claim (1) consisting of a first heat insulating material provided around the outer wall of the tank and a second heat insulating material having better heat insulation performance than the first heat insulating material provided around the outer wall of the storage. Beverage dispensing machine as described.
JP21235690A 1990-08-09 1990-08-09 Soft drink supplying machine Pending JPH0493574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21235690A JPH0493574A (en) 1990-08-09 1990-08-09 Soft drink supplying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21235690A JPH0493574A (en) 1990-08-09 1990-08-09 Soft drink supplying machine

Publications (1)

Publication Number Publication Date
JPH0493574A true JPH0493574A (en) 1992-03-26

Family

ID=16621189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21235690A Pending JPH0493574A (en) 1990-08-09 1990-08-09 Soft drink supplying machine

Country Status (1)

Country Link
JP (1) JPH0493574A (en)

Similar Documents

Publication Publication Date Title
US5564601A (en) Beverage dispensing machine with improved liquid chiller
CA1277290C (en) High efficiency method and apparatus for making and dispensing cold carbonated water
US5339986A (en) Method of dispensing beverage
US6324850B1 (en) Beverage dispense system
WO2010034330A1 (en) A beverage cooler, a refrigerator comprising such a beverage cooler and a method for cooling beverage
US20070163290A1 (en) Supercooling apparatus, refrigerator, and control method thereof
US6981387B1 (en) Apparatus for delivering carbonated liquid at a temperature near or below the freezing point of water
US4655050A (en) Circuit configuration for controlling refrigeration circuits for at least 2 refrigeration areas
US7814763B2 (en) Refrigeration appliance with a water dispenser
KR20190109103A (en) Device For Cooling Beverage
JP3807958B2 (en) Dispenser for soft drinks such as beer
JP5458730B2 (en) Beverage supply equipment
US4272968A (en) Convertible dispenser
JPH0493574A (en) Soft drink supplying machine
KR20110124858A (en) Beverage cooling device
JP2002022333A (en) Refrigerator
JPH0493573A (en) Soft drink supplying machine
JP4004907B2 (en) Beer dispenser
JP3600807B2 (en) Dispenser for soft drinks such as beer
EP1580503B1 (en) Temperature control apparatus for use in a carbonator of a refrigerator
JP2001325656A (en) Cup type automatic vending machine
JP3440133B2 (en) Dispensing head with cooling function
KR100555216B1 (en) draught beer selling apparatus
CN219199645U (en) Refrigerator with a refrigerator body
JPH1029698A (en) Beverage dispenser