JPH049272B2 - - Google Patents

Info

Publication number
JPH049272B2
JPH049272B2 JP57165266A JP16526682A JPH049272B2 JP H049272 B2 JPH049272 B2 JP H049272B2 JP 57165266 A JP57165266 A JP 57165266A JP 16526682 A JP16526682 A JP 16526682A JP H049272 B2 JPH049272 B2 JP H049272B2
Authority
JP
Japan
Prior art keywords
main body
working device
reactor
furnace
manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57165266A
Other languages
Japanese (ja)
Other versions
JPS5954960A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57165266A priority Critical patent/JPS5954960A/en
Publication of JPS5954960A publication Critical patent/JPS5954960A/en
Publication of JPH049272B2 publication Critical patent/JPH049272B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/003Remote inspection of vessels, e.g. pressure vessels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/26Arrangements for removing jammed or damaged fuel elements or control elements; Arrangements for moving broken parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Acoustics & Sound (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、沸騰水形原子炉の供用期間中に炉内
の肉眼検査、落下物回収および超音破探傷等の作
業を行なう炉内作業装置に係り、特に炉心支持板
より下方の作業を行なうのに好適な炉内作業装置
に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an in-reactor working device that performs operations such as visual inspection, fallen object recovery, and ultrasonic flaw detection inside a boiling water reactor during its service life. In particular, the present invention relates to an in-core working device suitable for performing work below the core support plate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、沸騰水形原子炉の供用期間中に誤つて炉
内に物を落とした場合には、オペレーシヨンフロ
ア上から簡単なハンドリングツールを用いて落下
物を把握回収する方法を採つている。
Conventionally, when something is accidentally dropped into the reactor during the service life of a boiling water reactor, a simple handling tool is used to grasp and recover the fallen object from the operating floor.

ところがこの方法では、炉心支持板より上方の
落下物については比較的容易に作業できるが、炉
心支持板より下方については、回収作業がオペレ
ーシヨンフロアから水面下25mということもあり
非常に困難である。
However, with this method, it is relatively easy to work on fallen objects above the core support plate, but it is extremely difficult to recover objects below the core support plate, as the work is sometimes 25 meters below the water surface from the operation floor. .

また原子炉の圧力容器下鏡板とスタツプチユー
ブの溶接部は、肉眼検査は比較的容易に行なうこ
とができるが、超音波探傷は傷めて困難である。
Furthermore, although it is relatively easy to visually inspect the welded joint between the lower head plate of a nuclear reactor pressure vessel and the stud tube, ultrasonic flaw detection is difficult because it may damage the welded joint.

〔発明の目的〕[Purpose of the invention]

本発明はかかる現況に鑑みなされたもので、炉
心支持板より上方の作業はもとより、炉心支持板
より下方の肉眼検査、落下物回収および超音波探
傷等の作業であつても遠隔操作で極めて容易に行
なうことができる炉内作業装置を提供することを
目的とする。
The present invention was developed in view of the current situation, and it is extremely easy to perform operations above the core support plate, as well as operations below the core support plate, such as visual inspection, fallen object collection, and ultrasonic flaw detection, by remote control. The purpose of the present invention is to provide an in-furnace working device that can perform the following tasks.

〔発明の概要〕[Summary of the invention]

本発明は、前記目的を達成する手段として、本
体の両側面に無端状に張設され本体から両側に突
出して駆動されるベルトと、本体の先端に設けら
れたマニピユレータと、このマニピユレータの先
端に取付けられ首振りおよび回動可能な遠隔操作
の光学ヘツドと、前記本体内に配された工業用
ITVカメラおよび前記各機器の駆動装置とを備
え、前記両ベルトを炉内機器に圧接させた状態で
駆動して自走可能としたことを特徴とする。
As a means for achieving the above object, the present invention provides a belt that is stretched endlessly on both sides of a main body and is driven so as to protrude from the main body on both sides, a manipulator provided at the tip of the main body, and a belt provided at the tip of the manipulator. a mounted, swingable and rotatable remotely controlled optical head;
It is characterized in that it is equipped with an ITV camera and a driving device for each of the above-mentioned devices, and is capable of self-propelled movement by driving both of the above-mentioned belts in pressure contact with the in-furnace devices.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図において符号1は原子炉圧力容器、1a
はその圧力容器下鏡板であり、この原子炉圧力容
器1内には筒状のシユラウド2が設けられてい
る。そして原子炉圧力容器1とシユラウドとで構
成される円環部分には、図示しないジエツトポン
プが配されるようになつている。
In Fig. 1, numeral 1 indicates the reactor pressure vessel, 1a
1 is a lower end plate of the pressure vessel, and a cylindrical shroud 2 is provided inside the reactor pressure vessel 1. A jet pump (not shown) is disposed in an annular portion formed by the reactor pressure vessel 1 and the shroud.

前記シユラウド2内には、第1図に示すように
上部格子板3と炉心支持板4に取付けた燃料支持
金具5とで上下端が支持された燃料集合体6が格
納され炉心を構成している。また前記燃料支持金
具5の下方位置には、第1図に示すように制御棒
案内管7および制御棒駆動機構ハウジング(以下
CRDハウジングと称す)8が順次設けられ、
CRDハウジング8は、第1図に示すように前記
圧力容器下鏡板1aに溶着された制御棒駆動機構
スタツプチユーブ(以下単にスタツプチユーブと
称す)9を介して原子炉圧力容器1外に引出され
ている。そして本実施例に係る炉内作業装置20
およびその装置案内管21は、第1図に示すよう
に最外周の燃料集合体6、燃料支持金具5、制御
棒(図示せず)、制御棒案内管7、およびサーマ
ルチユーブ(図示せず)を取除き、その取除かれ
てできた空間を利用して原子炉圧力容器1内に吊
り下げられるようになつている。なお、第1図に
おいて10はインコア案内管、11は差圧検出・
ほう酸水注入配管をそれぞれ示す。
As shown in FIG. 1, a fuel assembly 6 whose upper and lower ends are supported by an upper grid plate 3 and fuel support fittings 5 attached to a core support plate 4 is stored in the shroud 2, and constitutes the reactor core. There is. Further, below the fuel support fitting 5, as shown in FIG. 1, a control rod guide tube 7 and a control rod drive mechanism housing (hereinafter
(referred to as CRD housing) 8 are sequentially provided,
As shown in FIG. 1, the CRD housing 8 is drawn out of the reactor pressure vessel 1 via a control rod drive mechanism stump tube (hereinafter simply referred to as a stump tube) 9 welded to the pressure vessel lower end plate 1a. And the in-furnace working device 20 according to this embodiment
As shown in FIG. 1, the device guide tube 21 includes the outermost fuel assembly 6, fuel support fittings 5, control rods (not shown), control rod guide tubes 7, and thermal tubes (not shown). The reactor pressure vessel 1 can be suspended inside the reactor pressure vessel 1 by using the space created by the removal. In addition, in Fig. 1, 10 is an in-core guide tube, and 11 is a differential pressure detection/
The boric acid water injection piping is shown.

前記装置案内管21は、後に詳述する炉内作業
装置20の収納部および圧力容器下鏡板1a上に
炉内作業装置20を降ろす簡単な治具を備えてお
り、この装置案内管21は、第1図に示すように
原子炉圧力容器1内に吊り降ろした際に上部格子
板3および炉心支持板4等を通過し、CRDハウ
ジング8に固定されるようになつている。
The device guide tube 21 is equipped with a simple jig for lowering the in-furnace working device 20 onto the housing section of the in-furnace working device 20 and the pressure vessel lower end plate 1a, which will be described in detail later. As shown in FIG. 1, when it is suspended into the reactor pressure vessel 1, it passes through the upper grid plate 3, the core support plate 4, etc., and is fixed to the CRD housing 8.

一方炉内作業装置20は、第2図に示すように
ケーブル22を介して前記装置案内管21に接続
された後部本体23と、その前端に接続された前
部本体24とを備えており、前部本体24は、後
部本体23に対して直状位置から両側に90度ずつ
首振り駆動25可能となつている。前記両本体2
3,24の両側面部には、第2図に示すように両
端の駆動ローラ26,26間に無端状に張設され
たベルト27がそれぞれ配されており、これらの
ベルト27は、ループの外側、すなわち本体2
3,24の内部側からベルトガイドローラ28,
28でガイドされて二枚重ね状に回転駆動される
ようになつている。そして炉内作業装置20の作
業時には、第3図に示すようにリンク機構および
ばね機構(いずれも図示せず)等によりベルト2
7が本体23,24の両側に突出し、スタツプチ
ユーブ9に圧接して自由に走行できるようになつ
ている。
On the other hand, the in-furnace working device 20 includes a rear main body 23 connected to the device guide tube 21 via a cable 22, and a front main body 24 connected to the front end thereof, as shown in FIG. The front main body 24 can be oscillated 25 by 90 degrees to both sides from a straight position relative to the rear main body 23. Both main bodies 2
As shown in FIG. 2, endless belts 27 are disposed on both side surfaces of the loops 3 and 24, and are stretched endlessly between the drive rollers 26 and 26 at both ends. , that is, main body 2
3, 24 from the inside side of the belt guide roller 28,
They are guided by 28 and rotated in a two-layered manner. When the in-furnace working device 20 is working, a link mechanism and a spring mechanism (none of which are shown), etc.
7 protrudes from both sides of the main bodies 23 and 24, and is pressed against the stud tube 9 so that it can run freely.

前記後部本体23内には図示しない工業用
ITVカメラが内蔵され、また前部本体23内に
は、その先端に設けたマニピユレータ29の駆動
装置(図示せず)が内蔵されている。マニピユレ
ータ29は、第2図に示すように長さが200mm程
度の小型のものが用いられ、そのハンドリングの
手首には作業性をよくするため可撓性のある2自
由度のものが用いられている。そしてマニピユレ
ータ29は、全体として回動かつ首振り可能とな
つている。このマニピユレータ29のハンドリン
グの手首部には、第2図に示すように光学ヘツド
の回動と首振り駆動が可能な可撓性を有する遠隔
操作のフアイバスコープ30が設けられ、図中符
号31の視野範囲が得られるようになつている。
このフアイバスコープ30で得られた画像は、前
記後部本体23に内蔵された工業用ITVカメラ
に送られ、ここで電気信号に変換されるようにな
つている。
Inside the rear main body 23 there is an industrial
An ITV camera is built-in, and a driving device (not shown) for a manipulator 29 provided at the tip of the front body 23 is built-in. As shown in Figure 2, the manipulator 29 is a small one with a length of about 200 mm, and its handling wrist is flexible with two degrees of freedom to improve workability. There is. The manipulator 29 as a whole is rotatable and swingable. As shown in FIG. 2, a remote-controlled fiberscope 30 is provided at the handling wrist of the manipulator 29, and is designated by the reference numeral 31 in the figure. The field of view is now available.
The image obtained by this fiberscope 30 is sent to an industrial ITV camera built into the rear main body 23, where it is converted into an electrical signal.

次に本実施例の作用について説明する。 Next, the operation of this embodiment will be explained.

炉心支持板4より下方の作業箇所に炉内作業装
置20を接近させる場合には、第1図に示すよう
にまず最外周の燃料集合体6、燃料支持金具5、
制御棒(図示せず)、制御棒案内管7、およびサ
ーマルチユーブ(図示せず)を取除く。そしてそ
の取除かれた空間を利用して原子炉圧力容器1の
上方に設けたオペレーシヨンフロア(図示せず)
から炉内作業装置20が収納された装置案内管2
1を吊り下げ、上部格子板3および炉心支持板4
等を通過させてCRDハウジング8に固定する。
When bringing the in-core working device 20 close to a work area below the core support plate 4, first the outermost fuel assembly 6, fuel support fitting 5,
Remove the control rod (not shown), control rod guide tube 7, and thermal tube (not shown). An operation floor (not shown) was installed above the reactor pressure vessel 1 using the removed space.
A device guide pipe 2 in which an in-furnace working device 20 is housed.
1, upper lattice plate 3 and core support plate 4
etc., and fix it to the CRD housing 8.

次いで、装置案内管21内から炉内作業装置2
0を取り出し、圧力容器下鏡板1a上に吊り降ろ
す。この際、第3図に示すように装置案内管21
は最外周のCRDハウジング8の角に設置される
ので、隣接するCRDハウジング8がない側に炉
内作業装置20を吊り降ろすことができる。この
ため、吊り降ろす始具が隣接するCRDハウジン
グ8やスタツプチユーブ9に当たるようなことが
ない。また吊り降ろす位置は、最外周のスタツプ
チユーブ9の横であり、圧力容器下鏡板1aの傾
きが45度程度あるため、炉内作業装置20を複雑
な治具を用いることなく容易に吊り降ろすことが
できる。
Next, the in-furnace working device 2 is inserted from inside the device guide pipe 21.
0 is taken out and suspended onto the pressure vessel lower end plate 1a. At this time, as shown in FIG.
is installed at the corner of the outermost CRD housing 8, so the in-furnace working device 20 can be suspended on the side where there is no adjacent CRD housing 8. Therefore, there is no possibility that the starting tool for hanging down will hit the adjacent CRD housing 8 or the stud tube 9. In addition, the hanging position is next to the outermost stump tube 9, and the inclination of the pressure vessel lower end plate 1a is about 45 degrees, so the in-furnace working device 20 can be easily lifted down without using complicated jigs. can.

次いで、吊り降ろした炉内作業装置20の両本
体23,24のベルト27を両側に突出させ、第
3図に示すように両側のスタツプチユーブ9に圧
接させる。そしてこの状態でベルト27を駆動す
る。これにより、インコア案内管10のないスタ
ツプチユーブ9間を自由に走行させて作業を行な
うことができる。第3図における破線32は、炉
心の1/4を作業(落下物回収作業、超音波探傷作
業、肉眼検査作業等)する場合の走行経路の一例
を示す。この場合、前部本体24は後部本体23
に対して±90度首振り駆動25されるようになつ
ているので、スタツプチユーブ9を迂回して走行
でき、またマニピユレータ29は小型のものでも
全域を作業することができる。
Next, the belts 27 of both main bodies 23 and 24 of the suspended furnace working device 20 are made to protrude to both sides, and are brought into pressure contact with the stump tubes 9 on both sides as shown in FIG. In this state, the belt 27 is driven. Thereby, the work can be carried out by freely traveling between the stump tubes 9 where there is no in-core guide tube 10. A broken line 32 in FIG. 3 indicates an example of a travel route when working on 1/4 of the core (fallen object recovery work, ultrasonic flaw detection work, visual inspection work, etc.). In this case, the front body 24 is the rear body 23
Since it is designed to be oscillated by ±90 degrees 25 relative to the position, it is possible to travel around the stump tube 9, and even a small manipulator 29 can work over the entire area.

しかして、炉内作業装置20が自走可能となつ
ているので、炉心支持板4より下方の作業であつ
ても、遠隔操作により充分かつ迅速な作業が可能
である。また炉内作業装置20の前部本体24は
後部本体23に対して±90度首振り駆動25でき
るようになつているので、インコア案内管10の
ないスタツプチユーブ9間をうまく利用して装置
20を自走させることができる。このため、自走
範囲が広くなりマニピユレータ29は簡単なもの
で足りる。また自走するためのベルト27は、本
体23,24の内側からベルトガイドローラ28
によりガイドされているので、本体23,24の
内部空間を有効に利用して本体23,24の小型
化を図ることができる。
Since the in-core working device 20 is self-propelled, even work below the core support plate 4 can be performed sufficiently and quickly by remote control. Further, since the front body 24 of the in-furnace working device 20 can be oscillated 25 by ±90 degrees with respect to the rear body 23, the device 20 can be operated by making good use of the space between the stump tubes 9 where there is no in-core guide tube 10. It can be self-propelled. Therefore, the self-propelled range is widened, and a simple manipulator 29 is sufficient. Further, the belt 27 for self-propelling is moved from the inside of the main bodies 23 and 24 to a belt guide roller 28.
Since the inner space of the main bodies 23, 24 can be effectively utilized, the main bodies 23, 24 can be made smaller.

なお前記実施例では、炉内作業装置20をスタ
ツプチユーブ9を利用して自走させる場合につい
て説明したが、他の炉内機器を利用して自走させ
るようにしてもよい。またマニピユレータ29を
関接タイプのものにしてもよい。その他本発明の
要旨を変更しない範囲で幾多の変形、変更が可能
である。
In the above-mentioned embodiment, a case has been described in which the in-furnace working device 20 is self-propelled using the stump tube 9, but it may be made to be self-propelled using other in-furnace equipment. Further, the manipulator 29 may be of an articulating type. Many other modifications and changes can be made without departing from the gist of the invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、本体両側に設け
たベルトを炉内機器に圧接させて駆動することに
より自走可能とし、本体を炉内走行させその先端
のマニピユレータおよび光学ヘツドを用いて作業
するようにしたので、炉心支持板より下方の肉眼
検査、落下物回収、および超音波探傷等の作業を
遠隔操作で極めて容易にかつ充分に行なうことが
できる。このため原子炉の健全性を向上させるこ
とができるとともに、放射線被曝量を低減させる
ことができる。
As explained above, the present invention enables self-propulsion by driving belts provided on both sides of the main body in pressure contact with furnace equipment, and allows the main body to travel within the furnace and perform work using the manipulator and optical head at the tip of the main body. As a result, operations such as visual inspection of the area below the core support plate, collection of fallen objects, and ultrasonic flaw detection can be performed extremely easily and satisfactorily by remote control. Therefore, the health of the nuclear reactor can be improved, and the amount of radiation exposure can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体図、第2
図は炉内作業装置の一例を示す斜視図、第3図は
炉内作業装置を用いた作業の一例を示す説明図で
ある。 1…原子炉圧力容器、8…CRDハウジング、
9…スタツプチユーブ、10…インコア案内管、
20…炉内作業装置、21…装置案内管、23…
後部本体、24…前部本体、27…ベルト、29
…マニピユレータ、30…フアイバスコープ。
FIG. 1 is an overall view showing one embodiment of the present invention, and FIG.
The figure is a perspective view showing an example of an in-furnace working device, and FIG. 3 is an explanatory diagram showing an example of work using the in-furnace working device. 1...Reactor pressure vessel, 8...CRD housing,
9...Stup tube, 10...In-core guide tube,
20...Furnace working device, 21...Device guide tube, 23...
Rear body, 24... Front body, 27... Belt, 29
...Manipulator, 30...Fiberscope.

Claims (1)

【特許請求の範囲】 1 沸騰水形原子炉の炉内の肉眼検査、落下物回
収および超音波探傷等の作業を行なう炉内作業装
置において、本体の両側面に無端状に張設され本
体から両側に突出して駆動されるベルトと、本体
の先端に設けられたマニピユレータと、このマニ
ピユレータの先端に取付けられ首振りおよび回動
可能な遠隔操作の光学ヘツドと、前記本体内に配
された工業用ITVカメラおよび前記各機器の駆
動装置とを備え、前記両ベルトを炉内機器に圧接
させ駆動して自走可能としたことを特徴とする炉
内作業装置。 2 本体を、駆動装置が内蔵された前部体と、
ITVカメラが内蔵された後部体とから構成し、
かつ前部体と後部体とを直角状に折曲可能に連結
したことを特徴とする特許請求の範囲第1項記載
の炉内作業装置。
[Scope of Claims] 1. In an in-reactor working device that performs operations such as visual inspection, fallen object recovery, and ultrasonic flaw detection inside the reactor of a boiling water reactor, an in-reactor working device that extends endlessly on both sides of the main body and extends from the main body A belt that protrudes from both sides and is driven, a manipulator provided at the tip of the main body, a remotely controlled optical head that is attached to the tip of the manipulator and can swing and rotate, and an industrial head disposed within the main body. An in-furnace working device comprising an ITV camera and a driving device for each of the devices, and is capable of self-propelled by driving both of the belts in pressure contact with the in-furnace devices. 2. The main body, a front body with a built-in drive device,
Consists of a rear body with a built-in ITV camera,
The in-furnace working device according to claim 1, wherein the front body and the rear body are connected so as to be bendable at right angles.
JP57165266A 1982-09-22 1982-09-22 Equipment for working in furnace Granted JPS5954960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57165266A JPS5954960A (en) 1982-09-22 1982-09-22 Equipment for working in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57165266A JPS5954960A (en) 1982-09-22 1982-09-22 Equipment for working in furnace

Publications (2)

Publication Number Publication Date
JPS5954960A JPS5954960A (en) 1984-03-29
JPH049272B2 true JPH049272B2 (en) 1992-02-19

Family

ID=15809057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57165266A Granted JPS5954960A (en) 1982-09-22 1982-09-22 Equipment for working in furnace

Country Status (1)

Country Link
JP (1) JPS5954960A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589209U (en) * 1992-05-20 1993-12-07 有限会社藤プラスチック Paper strip applicator for peeling adhesive tape
DE19905970A1 (en) * 1999-02-12 2000-08-31 Siemens Ag Miniature endoscope and method for inspecting fuel assemblies

Also Published As

Publication number Publication date
JPS5954960A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
JP3261153B2 (en) Foreign matter detection and recovery device in tube bundle
JP3219745B2 (en) Apparatus and method for cleaning upper tube bundle of steam generator
US4893512A (en) Swinging-type automatic examination apparatus for piping
JP4112891B2 (en) In-reactor transfer device
JP3934422B2 (en) Underwater maintenance repair device and method
JPH0630855B2 (en) How to place a tool holding robot that works in an environment harmful to the human body
JPS6119955B2 (en)
JP2008151765A (en) Inspection apparatus for reactor vessel bottom penetrating tube (inspection apparatus for reactor bottom mounted instrumentation nozzle)
JP5113837B2 (en) Preventive maintenance / repair device and preventive maintenance / repair method
JPH049272B2 (en)
US6536283B1 (en) Assemblies and methods for inspecting piping of a nuclear reactor
JPH0363039B2 (en)
JP2856997B2 (en) Remote in-furnace operation device and operation method thereof
JP3250811B2 (en) Equipment for cleaning, inspection and repair of the upper tube bundle of the steam generator
JPH09159788A (en) Device and method for remote controlled work in nuclear reactor
JP3887442B2 (en) Furnace bottom working device and working method
JP2619020B2 (en) Reactor pressure vessel inspection equipment
JPH0382954A (en) Checking apparatus of narrow part
CN110689977B (en) Video inspection equipment and method suitable for steam generator tube plate
JPH0763884A (en) In-reactor remote work device
JP4616626B2 (en) Furnace bottom inspection device
JP4772400B2 (en) Inspection and repair method and inspection and repair device for nuclear reactor jet pump
JPH06308279A (en) Remote intra-reactor working device
KR101473448B1 (en) A detection device for welding flaw region inside of pipe having sensing quantity of ferrite
JPS6322259B2 (en)