JP4112891B2 - In-reactor transfer device - Google Patents

In-reactor transfer device Download PDF

Info

Publication number
JP4112891B2
JP4112891B2 JP2002118680A JP2002118680A JP4112891B2 JP 4112891 B2 JP4112891 B2 JP 4112891B2 JP 2002118680 A JP2002118680 A JP 2002118680A JP 2002118680 A JP2002118680 A JP 2002118680A JP 4112891 B2 JP4112891 B2 JP 4112891B2
Authority
JP
Japan
Prior art keywords
crawler module
reactor
row crawler
row
joint mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002118680A
Other languages
Japanese (ja)
Other versions
JP2003315486A (en
Inventor
光明 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002118680A priority Critical patent/JP4112891B2/en
Publication of JP2003315486A publication Critical patent/JP2003315486A/en
Application granted granted Critical
Publication of JP4112891B2 publication Critical patent/JP4112891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば沸騰水型原子炉(以下、BWRと記す)における原子炉圧力容器内または炉内構造物の点検、検査または洗浄等の保守作業を行うのに好適した移動装置及び原子炉内作業方法に関する。
【0002】
【従来の技術】
BWRにおける原子炉圧力容器内に設置される炉内構造物等の機器は図4に示したように配置されている。図4はその要部を部分的に概略図で示したもので、図4中、符号1は下鏡を部分的に示しており、下鏡1は筒状原子炉圧力容器の下鏡開口部を閉塞するものである。下鏡1には多数本のスタブチューブ2が取り付けられ、これらのスタブチューブ2を貫通して制御棒駆動機構(以下、CRDと記す)ハウジング3が溶接されている。CRDハウジング3の先端部に制御棒案内管4が据え付けられている。CRDハウジング3内にはCRD(図示せず)が設置されている。
【0003】
制御棒案内管4は炉心支持板5の孔6を貫通し突出して炉心支持板5に支持されており、制御棒案内管4の上部開口部に燃料支持金具7が挿脱自在に設けられている。制御棒案内管4及び燃料支持金具7は炉心支持板5に設けられた位置決めピン(図示せず)にそれぞれのラグが挿入され固定されている。
【0004】
制御棒案内管4内部には水平断面十字形の制御棒8が昇降自在に設けられ、制御棒8の下端はCRDの上端に連結されており、制御棒案内管4の上端から燃料集合体9同士の間隙に制御棒8を挿入することができる。
【0005】
燃料支持金具7の上部は4体の燃料集合体9の下部タイプレートを支持し、燃料集合体9の上部は上部格子板10により支持されている。なお、図4中、符号11は下鏡1に取り付けられたインコアハウジング、12はインコア案内管で、炉心支持板5までの間に設けられている。
【0006】
ところで、原子炉圧力容器の下鏡1を洗浄、点検、検査等の保守作業を行う場合、前述したように下鏡1には多数本のスタブチューブ2やインコアハウジング11が林立し、下鏡1は傾斜した湾曲面であるため、各種の作業装置を搭載した走行台車を使用して作業するには困難を伴う。
【0007】
そこで、従来、上記保守作業を行う場合には各種の作業装置を長尺のポール先端部に取り付け、作業員がポールを原子炉圧力容器の上方から吊り下ろし、上部格子板10、炉心支持板5の穴6を通過させて操りながら作業員が手作業により行っている。
【0008】
また、炉心支持板5の穴6が通過可能な長尺の筐体内に、各種の作業装置の移送、位置決めを行うマニピュレータや、送り込み機構を組み込み、この装置を炉心支持板5上やCRDハウジング3上に設置して各種の作業を行っている。
【0009】
【発明が解決しようとする課題】
しかしながら、原子炉圧力容器内の各種の作業を作業員の手作業により行う場合は、水中下約25m程度の位置で、長尺のポールを操らなければならないので、非常に作業性が劣り、時間と労力を要する課題がある。
【0010】
また、炉心支持板5の穴6が通過可能な長尺の作業装置を炉底部に設置して作業を行う場合は一つの設置位置から作業可能な範囲は限られており、設置位置を変更するには長尺で大型の装置を炉心支持板5の穴6、上部格子板10を通過させて上部格子板10の上に装置全体を吊上げてから次の設置位置に移動しなければならないので、これも時間と労力を要する課題がある。
本発明は上記課題を解決するためになされたもので、保守作業を効率的に行うことができる移動装置及び原子炉内作業方法を提供することにある。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、第1の単列クローラモジュールと、第2の単列クローラモジュールと、前記第1及び第2の単列クローラモジュールをそれぞれの長手方向に連結し、直交する3軸まわりに回転自在な関節機構と、前記関節機構の垂直軸関節機構に設けられた歯車からなりこの垂直軸関節機構を動作させて前記第1及び第2の単列クローラモジュールの接続角度を変化させる回転駆動機構と、この回転駆動機構の駆動源となるモータと、前記第1及び第2の単列クローラモジュールに搭載されたフロートと、を具備したことを特徴とする。
【0012】
請求項2に係る発明は、前記フロートは、内部が気体で満たされ、外圧により縮小し、内圧により膨張することを特徴とする。
請求項3に係る発明は、画像センサとこの画像センサをパン方向及びチルト方向に回転自在な雲台とを前記第1の単列クローラモジュールに搭載したことを特徴とする。
【0013】
請求項4に係る発明は、ブラシと吸引ノズルを有する吸引洗浄装置とを前記単列クローラモジュールに搭載したことを特徴とする。
請求項5に係る発明は、検査対象部位に倣わせるための超音波探触子を前記単列クローラモジュールに搭載したことを特徴とする。
【0016】
【発明の実施の形態】
図1により本発明に係る移動装置の第1の実施の形態を説明する。
図1は本実施の形態に係る移動装置の正面図で、図1中、符号13は第1の単列クローラモジュール、14は第2の単列クローラモジュールである。
【0017】
第1の単列クローラモジュール13と第2の単列クローラモジュール14とは回転自在な関節機構15によりそれぞれの長手方向に連結されている。回転自在な関節機構15は旋回軸回転関節16と、水平軸回転関節17及び垂直軸回転関節18とからなり、直交する3軸まわりに回転する。そして、垂直軸回転関節18に回転駆動機構を取り付ける。これにより第1の単列クローラモジュール13と第2の単列クローラモジュール14を相対的に水平面上で回転させて全体の姿勢を変えることができる。
【0018】
すなわち、垂直軸回転関節18には回転駆動機構としての大径歯車19と、大径歯車19に噛合する小径歯車20及び回転モータ21が取り付けられる。小径歯車20は回転モータ21の回転軸に取り付けられている。回転モータ21は第2の単列クローラモジュール14の上板22に取付部材23を介して搭載されている。
【0019】
第1の単列クローラモジュール13の上板24には雲台25が搭載され、雲台25に照明付きCCDカメラ(画像センサ)26が回転自在に取り付けられている。雲台25は目視点検用の照明付きCCDカメラ26をパン(左右)方向とチルト(上下)方向に向きを変えるためのものである。
【0020】
本実施の形態によれば、二つの単列クローラモジュール13,14を直交する3軸まわりに回転自在な関節機構15によりそれぞれの長手方向に連結し、各クローラモジュール13,14を関節機構15を介して平面上で回転させて全体の姿勢を変えることによって自在に移動することができる。また、各々の単列クローラモジュール13,14は単列であり、幅を取らないので、細長く構成することができ、狭隘部を通過する場合には、くの字型に変形させることができ、有利な形状となっている。
【0021】
さらに、クローラモジュールを駆動するモータは回転するクローラベルト27内に配置することができるので、クローラモジュールの重心を低くでき、原子炉圧力容器下面の傾斜した湾曲面を有する下鏡1上でも転倒することなく、十分な駆動力を確保することができる。
【0022】
つぎに、図2、図3及び図4を参照して本発明に係る原子炉内作業方法の第1の実施の形態を説明する。
本実施の形態は図1で説明した移動装置により原子炉圧力容器内の下鏡1上を移動して原子炉圧力容器内底部の保守作業を行う例である。
【0023】
図2及び図3は図1に示した構成の原子炉内移動装置が原子炉圧力容器内下鏡上1のスタブチューブ2やインコアハウジング11まわりの狭隘部を移動、つまり走行して作業する状態を模式的に示したもので、図2及び図3は図4中A−A矢視方向から見た概略的上面図である。
【0024】
本実施の形態ではまず、図4において、燃料集合体9、燃料支持金具7、制御棒8、制御棒案内管4を撤去した後に原子炉圧力容器内上方から原子炉内移動装置を上部格子板10、炉心支持板5を通過させ下鏡1上に設置する。この場合、前進、後進のみの移動であれば第1及び第2の単列クローラモジュール13,14が相対的に直列のままで各クローラモジュールを駆動して移動することができる。
【0025】
しかし、図2に示すように下鏡1上でスタブチューブ2に回り込む場合には、回転モータ21を回転し単列クローラモジュール13,14の相対的な向きを変えて移動装置全体がくの字に変形するように制御する。この状態で各クローラモジュール13,14を駆動すれば移動装置は図2の矢印の方向に進みスタブチューブ2に回り込むことができる。また、図3に示すようにインコアハウジング11をかわしながら回り込む場合には上記と同様にして移動装置全体が回転自在な関節機構15を中心軸としてくの字に変形するように制御すれば、移動が容易となる。
【0026】
また、本実施の形態では目視用の照明付きCCDカメラ26を搭載することにより、下鏡1上の状況や原子炉圧力容器とスタブチューブ2との溶接部や原子炉圧力容器とインコアハウジング11の溶接部の目視検査作業を行うことができる。また、ブラシや吸引ノズルを有する吸引洗浄装置(図示せず)を搭載した場合には、下鏡1上を吸引洗浄作業を行うことができる。また、超音波探触子を搭載し、この超音波探触子を原子炉圧力容器とスタブチューブ2との溶接部や原子炉圧力容器とインコアハウジング11などの検査対象部位に倣わせながら溶接部の超音波探傷検査作業を行うことができる。
【0027】
本実施の形態によれば、移動装置が小型で自走移動可能なので原子炉圧力容器内下鏡上においてスタブチューブ間やスタブチューブとインコアハウジング間の狭隘部を通過することができる。また、重心が低く構成されているので、傾斜した湾曲面や凹凸面上でも転倒することなく、安定した移動性能を確保することができる。従って、移動装置を下鏡1上の一箇所へ設置して広範囲の洗浄、点検、検査等の保守作業が可能であると共に、短時間で設置位置の変更が可能であり、洗浄、点検、検査といった原子炉圧力容器内底部の保守作業を効率的に行うことができる。
【0028】
次に本発明に係る移動装置及び原子炉内作業方法の第2の実施の形態について説明する。
本実施の形態が第1の実施の形態と異なる点は第1及び第2のクローラモジュール13,14にフロート(図示せず)を搭載したことにある。フロートとは、内部に空気などの気体を満たした一種の「浮き」であり、移動装置全体に浮力を供給するものである。このフロートにより、原子炉内移動装置の重心位置が高くなった場合、下鏡1の傾斜面や凹凸面上の走行時の転倒を防止することができる。従って、傾斜面や凹凸面上でも安定した駆動力を確保することができる。
【0029】
また、第1及び第2のクローラモジュール13,14に搭載するフロートを、水中での水圧(外圧)により縮小し空気圧(内圧)を印加することで膨張可能に構成する。例えば膨張した時の形状を保つガイドを備えた水密のジャバラにより構成することもできる。そして、図示しないポンプ等によりフロート内に適量の空気圧が加わるよう制御する。
【0030】
下鏡1上は水面下約25m程度の位置にあり、通常は水圧によりフロートは縮小している。そして移動装置が傾斜面で転倒した時だけ空気圧を印加してフロートを膨張させ、浮力により移動装置を復帰させクローラの駆動面を下鏡1上へ接触させる。従って、通常時はフロートの浮力による水中重量を減少させないで済むのでクローラモジュールの駆動力を最大限に確保することができる。
【0031】
【発明の効果】
本発明によれば、狭隘部での保守作業を効率的に行うことができる。
【図面の簡単な説明】
【図1】本発明に係る移動装置の第1の実施の形態を説明するための正面図。
【図2】本発明に係る移動装置の走行状態の第1の例を説明するための図4中A−A矢視方向から見た上面図。
【図3】図2と同じく第2の例を説明するための図4中A−A矢視方向とは異なった方向から見た上面図。
【図4】BWRの原子炉圧力容器内構造物の配置を示す斜視図。
【符号の説明】
1…下鏡、2…スタブチューブ、3…CRDハウジング、4…制御棒案内管、5…炉心支持板、6穴、7…燃料支持金具、8…制御棒、9…燃料集合体、10…上部格子板、11…インコアハウジング、12…インコア案内管、13…第1の単列クローラモジュール、14…第2の単列クローラモジュール、15…関節機構、16…旋回軸回転関節、17…水平軸回転関節、18…垂直軸回転関節、19…大径歯車、20…小径歯車、21…回転モータ、22…上板、23…取付部材、24…上板、25…雲台、26…照明付きCCDカメラ(画像センサ)。
[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention relates to a mobile device and a reactor suitable for performing maintenance work such as inspection, inspection or cleaning of a reactor pressure vessel or a reactor internal structure in, for example, a boiling water reactor (hereinafter referred to as BWR). It relates to the working method.
[0002]
[Prior art]
Equipment such as an in-reactor structure installed in a reactor pressure vessel in the BWR is arranged as shown in FIG. FIG. 4 is a partial schematic view of the main part. In FIG. 4, reference numeral 1 partially indicates a lower mirror, and the lower mirror 1 is a lower mirror opening of a cylindrical reactor pressure vessel. Is to block. A plurality of stub tubes 2 are attached to the lower mirror 1, and a control rod drive mechanism (hereinafter referred to as CRD) housing 3 is welded through the stub tubes 2. A control rod guide tube 4 is installed at the tip of the CRD housing 3. A CRD (not shown) is installed in the CRD housing 3.
[0003]
The control rod guide tube 4 projects through the hole 6 of the core support plate 5 and is supported by the core support plate 5. A fuel support fitting 7 is removably provided in the upper opening of the control rod guide tube 4. Yes. The control rod guide tube 4 and the fuel support fitting 7 are fixed by inserting respective lugs into positioning pins (not shown) provided on the core support plate 5.
[0004]
A control rod 8 having a horizontal cross section is provided in the control rod guide tube 4 so as to be movable up and down. The lower end of the control rod 8 is connected to the upper end of the CRD, and the fuel assembly 9 extends from the upper end of the control rod guide tube 4. The control rod 8 can be inserted into the gap between them.
[0005]
The upper portion of the fuel support bracket 7 supports the lower tie plate of the four fuel assemblies 9, and the upper portion of the fuel assembly 9 is supported by the upper lattice plate 10. In FIG. 4, reference numeral 11 is-core housing attached to the lower mirror 1, 12 in the in-core guide tube, it is provided between the up furnace center support plate 5.
[0006]
By the way, when performing maintenance work such as cleaning, inspection and inspection of the reactor pressure vessel lower mirror 1, as described above, the lower mirror 1 is provided with a number of stub tubes 2 and in-core housings 11. Is an inclined curved surface, and it is difficult to work using a traveling carriage equipped with various working devices.
[0007]
Therefore, conventionally, when performing the above maintenance work, various work devices are attached to the end of the long pole, and an operator suspends the pole from above the reactor pressure vessel, and the upper lattice plate 10 and the core support plate 5 are suspended. An operator manually performs the operation while passing through the hole 6.
[0008]
Further, a manipulator for transferring and positioning various working devices and a feeding mechanism are incorporated in a long casing through which the hole 6 of the core support plate 5 can pass, and this device is mounted on the core support plate 5 and the CRD housing 3. It is installed on top and performs various tasks.
[0009]
[Problems to be solved by the invention]
However, when the various operations in the reactor pressure vessel are performed manually by workers, the long pole must be operated at a position of about 25 m underwater, so the workability is very inferior and time There is a problem that requires labor.
[0010]
Further, when a long working device through which the hole 6 of the core support plate 5 can pass is installed at the bottom of the furnace, the workable range is limited from one installation position, and the installation position is changed. In this case, a long and large device must pass through the hole 6 of the core support plate 5 and the upper lattice plate 10 to lift the entire device on the upper lattice plate 10 and then move to the next installation position. This also has a problem that requires time and labor.
The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a moving apparatus and an in-reactor operation method capable of efficiently performing maintenance work.
[0011]
[Means for Solving the Problems]
The invention according to claim 1, and connected to the first single-row crawler module, a second single-row crawler module, the first and second single-row crawler module to respective longitudinal, perpendicular 3 a rotatable joint mechanism around axis, the connection angle of the first and second single-row crawler module by operating the vertical axis joint mechanism consists gear provided on the vertical axis joint mechanism of the joint mechanism The rotary drive mechanism to change, the motor used as the drive source of this rotary drive mechanism, and the float mounted in the said 1st and 2nd single row crawler module were provided.
[0012]
The invention according to claim 2 is characterized in that the inside of the float is filled with gas, is reduced by an external pressure, and is expanded by an internal pressure .
The invention according to claim 3 is characterized in that an image sensor and a pan head that is rotatable in the pan direction and the tilt direction are mounted on the first single-row crawler module .
[0013]
The invention according to claim 4 is characterized in that a brush and a suction cleaning device having a suction nozzle are mounted on the single row crawler module .
The invention according to claim 5 is characterized in that an ultrasonic probe for following a region to be inspected is mounted on the single row crawler module .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of a mobile device according to the present invention will be described with reference to FIG.
FIG. 1 is a front view of a moving apparatus according to the present embodiment. In FIG. 1, reference numeral 13 denotes a first single-row crawler module, and 14 denotes a second single-row crawler module.
[0017]
The first single row crawler module 13 and the second single row crawler module 14 are connected to each other in the longitudinal direction by a rotatable joint mechanism 15. The rotatable joint mechanism 15 includes a turning axis rotating joint 16, a horizontal axis rotating joint 17, and a vertical axis rotating joint 18, and rotates around three orthogonal axes. Then, a rotation drive mechanism is attached to the vertical axis rotary joint 18. Thereby, the 1st single row crawler module 13 and the 2nd single row crawler module 14 can be rotated relatively on a horizontal surface, and the whole attitude | position can be changed.
[0018]
That is, a large-diameter gear 19 serving as a rotational drive mechanism, a small-diameter gear 20 that meshes with the large-diameter gear 19, and a rotary motor 21 are attached to the vertical shaft rotary joint 18. The small-diameter gear 20 is attached to the rotation shaft of the rotary motor 21. The rotary motor 21 is mounted on the upper plate 22 of the second single row crawler module 14 via an attachment member 23.
[0019]
A pan head 25 is mounted on the upper plate 24 of the first single-row crawler module 13, and an illuminated CCD camera (image sensor) 26 is rotatably attached to the pan head 25. The pan head 25 is for changing the direction of the illuminated CCD camera 26 for visual inspection in the pan (left and right) direction and the tilt (up and down) direction.
[0020]
According to the present embodiment, two single row crawler modules 13 and 14 are connected in the longitudinal direction by joint mechanisms 15 that are rotatable around three orthogonal axes, and each crawler module 13 and 14 is connected to joint mechanism 15. It is possible to move freely by rotating on a plane and changing the overall posture. Also, each single row crawler module 13, 14 is a single row and does not take a width, so it can be configured to be elongated, and when passing through a narrow part, it can be transformed into a dogleg shape, It has an advantageous shape.
[0021]
Furthermore, since the motor for driving the crawler module can be disposed in the rotating crawler belt 27, the center of gravity of the crawler module can be lowered, and the lower mirror 1 having an inclined curved surface on the lower surface of the reactor pressure vessel can also fall over. Therefore, a sufficient driving force can be ensured.
[0022]
Next, a first embodiment of the in-reactor working method according to the present invention will be described with reference to FIG. 2, FIG. 3 and FIG.
The present embodiment is an example in which maintenance work is performed on the bottom of the reactor pressure vessel by moving on the lower mirror 1 in the reactor pressure vessel using the moving device described in FIG.
[0023]
2 and 3 show a state in which the in-reactor moving apparatus having the structure shown in FIG. 1 moves, that is, moves and moves in the narrow portion around the stub tube 2 and the in-core housing 11 on the inner mirror 1 of the reactor pressure vessel. 2 and 3 are schematic top views as seen from the direction of arrows AA in FIG.
[0024]
In the present embodiment, first, in FIG. 4, after removing the fuel assembly 9, the fuel support 7, the control rod 8, and the control rod guide tube 4, the in-reactor moving device is connected to the upper lattice plate from above the reactor pressure vessel. 10. Pass through the core support plate 5 and place on the lower mirror 1. In this case, if the movement is only forward and backward, the first and second single-row crawler modules 13 and 14 can be driven and moved while the crawler modules 13 and 14 are relatively in series.
[0025]
However, as shown in FIG. 2, when the stub tube 2 is wrapped around the lower mirror 1, the rotary motor 21 is rotated to change the relative orientation of the single-row crawler modules 13 and 14, so that the entire moving device becomes a square shape. Control to deform. When the crawler modules 13 and 14 are driven in this state, the moving device can move in the direction of the arrow in FIG. Also, as shown in FIG. 3, when the in- core housing 11 is swung around while being moved, if the entire moving device is controlled so as to be deformed into a dogleg shape with the rotatable joint mechanism 15 as the central axis, the movement can be achieved. Becomes easy.
[0026]
Further, in this embodiment, by mounting a CCD camera 26 with illumination for visual observation, the situation on the lower mirror 1, the welded portion between the reactor pressure vessel and the stub tube 2, the reactor pressure vessel and the in-core housing 11 Visual inspection of the weld can be performed. Further, when a suction cleaning device (not shown) having a brush or a suction nozzle is mounted, the suction cleaning operation can be performed on the lower mirror 1. In addition, an ultrasonic probe is mounted, and this ultrasonic probe is welded while following the inspection target site such as the reactor pressure vessel and the stub tube 2 or the reactor pressure vessel and the in-core housing 11. Ultrasonic flaw detection work can be performed.
[0027]
According to this embodiment, since the moving device is small and can be self-propelled, it can pass through the narrow portion between the stub tubes or between the stub tube and the in-core housing on the reactor pressure vessel inner mirror. In addition, since the center of gravity is configured to be low, stable movement performance can be ensured without falling even on an inclined curved surface or uneven surface. Therefore, the mobile device can be installed at one location on the lower mirror 1 to perform maintenance work such as extensive cleaning, inspection, inspection, etc., and the installation position can be changed in a short time. Cleaning, inspection, inspection The maintenance work of the bottom of the reactor pressure vessel can be efficiently performed.
[0028]
Next, a second embodiment of the moving apparatus and the in-reactor working method according to the present invention will be described.
This embodiment is different from the first embodiment in that floats (not shown) are mounted on the first and second crawler modules 13 and 14. A float is a kind of “floating” filled with a gas such as air, and supplies buoyancy to the entire moving device. With this float, when the position of the center of gravity of the in-reactor moving apparatus is increased, it is possible to prevent the fall during traveling on the inclined surface or the uneven surface of the lower mirror 1. Therefore, a stable driving force can be ensured even on an inclined surface or an uneven surface.
[0029]
Moreover, the float mounted in the 1st and 2nd crawler modules 13 and 14 is comprised by shrinking | reducing by the water pressure (external pressure) in water, and applying air pressure (internal pressure) so that expansion | swelling is possible. For example, it can also be constituted by a watertight bellows provided with a guide that keeps the shape when expanded. Then, control is performed so that an appropriate amount of air pressure is applied to the float by a pump (not shown).
[0030]
The lower mirror 1 is located about 25 m below the water surface, and the float is usually reduced by water pressure. Then, the air pressure is applied only when the moving device falls on the inclined surface to expand the float, and the moving device is returned by buoyancy to bring the crawler drive surface into contact with the lower mirror 1. Therefore, it is not necessary to reduce the underwater weight due to the buoyancy of the float, so that the driving force of the crawler module can be secured to the maximum.
[0031]
【The invention's effect】
According to the present invention, it is possible to efficiently perform maintenance work in a narrow part.
[Brief description of the drawings]
FIG. 1 is a front view for explaining a first embodiment of a moving apparatus according to the present invention.
FIG. 2 is a top view seen from the direction of arrows AA in FIG. 4 for explaining a first example of the traveling state of the mobile device according to the present invention.
3 is a top view seen from a direction different from the direction of arrows AA in FIG. 4 for explaining a second example as in FIG. 2;
FIG. 4 is a perspective view showing an arrangement of structures in a reactor pressure vessel of a BWR.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Lower mirror, 2 ... Stub tube, 3 ... CRD housing, 4 ... Control rod guide tube, 5 ... Core support plate, 6 holes, 7 ... Fuel support metal fitting, 8 ... Control rod, 9 ... Fuel assembly, 10 ... Upper lattice plate, 11 ... in-core housing, 12 ... in-core guide tube, 13 ... first single row crawler module, 14 ... second single row crawler module, 15 ... joint mechanism, 16 ... swivel rotary joint, 17 ... horizontal Shaft rotary joint, 18 ... Vertical axis rotary joint, 19 ... Large diameter gear, 20 ... Small diameter gear, 21 ... Rotary motor, 22 ... Upper plate, 23 ... Mounting member, 24 ... Upper plate, 25 ... Head, 26 ... Illumination CCD camera (image sensor).

Claims (5)

第1の単列クローラモジュールと、第2の単列クローラモジュールと、前記第1及び第2の単列クローラモジュールをそれぞれの長手方向に連結し、直交する3軸まわりに回転自在な関節機構と、前記関節機構の垂直軸関節機構に設けられた歯車からなりこの垂直軸関節機構を動作させて前記第1及び第2の単列クローラモジュールの接続角度を変化させる回転駆動機構と、この回転駆動機構の駆動源となるモータと、前記第1及び第2の単列クローラモジュールに搭載されたフロートと、を具備したことを特徴とする原子炉内移動装置。A first single-row crawler module, a second single-row crawler module, the first and second single-row crawler module connected to respective longitudinal, rotatable joint mechanism to 3 about the axis orthogonal When, a rotation drive mechanism that vertically axis joint mechanism consists gear provided on operate this vertical axis joint mechanism varying said first and connection angle of the second single-row crawler module of the joint mechanism, the An in-reactor moving apparatus comprising: a motor serving as a driving source of a rotation driving mechanism; and a float mounted on the first and second single row crawler modules . 前記フロートは、内部が気体で満たされ、外圧により縮小し、内圧により膨張することを特徴とする請求項1記載の原子炉内移動装置。 2. The in- reactor transfer apparatus according to claim 1 , wherein the float is filled with gas, contracted by an external pressure, and expanded by an internal pressure . 画像センサとこの画像センサをパン方向及びチルト方向に回転自在な雲台とを前記第1の単列クローラモジュールに搭載したことを特徴とする請求項1記載の原子炉内移動装置。An image sensor of the image sensor Toko pan direction and reactor mobile device according to claim 1, wherein the rotatable pan head in the tilt direction, characterized in that mounted on the first single-row crawler module. ブラシ吸引ノズルを有する吸引洗浄装置とを前記単列クローラモジュールに搭載したことを特徴とする請求項1記載の原子炉内移動装置。The in-reactor moving apparatus according to claim 1 , wherein a brush and a suction cleaning apparatus having a suction nozzle are mounted on the single row crawler module . 検査対象部位に倣わせるための超音波探触子を前記単列クローラモジュールに搭載したことを特徴とする請求項1記載の原子炉内移動装置。2. The in-reactor moving apparatus according to claim 1, wherein an ultrasonic probe for copying the inspection target part is mounted on the single row crawler module .
JP2002118680A 2002-04-22 2002-04-22 In-reactor transfer device Expired - Fee Related JP4112891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118680A JP4112891B2 (en) 2002-04-22 2002-04-22 In-reactor transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118680A JP4112891B2 (en) 2002-04-22 2002-04-22 In-reactor transfer device

Publications (2)

Publication Number Publication Date
JP2003315486A JP2003315486A (en) 2003-11-06
JP4112891B2 true JP4112891B2 (en) 2008-07-02

Family

ID=29535447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118680A Expired - Fee Related JP4112891B2 (en) 2002-04-22 2002-04-22 In-reactor transfer device

Country Status (1)

Country Link
JP (1) JP4112891B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634742B2 (en) * 2004-05-18 2011-02-16 株式会社東芝 In-reactor repair device and in-reactor repair method
EP2476604B1 (en) * 2006-11-13 2013-08-21 Raytheon Company Tracked robotic crawler having a moveable arm
WO2008073203A2 (en) * 2006-11-13 2008-06-19 Raytheon Sarcos Llc Conformable track assembly for a robotic crawler
JP5520048B2 (en) * 2006-11-13 2014-06-11 レイセオン カンパニー Serpentine robotic endless track car
JP2008261807A (en) * 2007-04-13 2008-10-30 Toshiba Corp Underwater remote operation vehicle for nuclear reactor inside inspection
US8002716B2 (en) 2007-05-07 2011-08-23 Raytheon Company Method for manufacturing a complex structure
CN101784435B (en) 2007-07-10 2013-08-28 雷神萨科斯公司 Modular robotic crawler
US8392036B2 (en) 2009-01-08 2013-03-05 Raytheon Company Point and go navigation system and method
CA2763352C (en) * 2009-05-27 2017-08-22 R. Brooks Associates, Inc. Steam generator upper bundle inspection tools
WO2010144813A1 (en) 2009-06-11 2010-12-16 Raytheon Sarcos, Llc Method and system for deploying a surveillance network
JP2013113597A (en) * 2011-11-25 2013-06-10 Hitachi-Ge Nuclear Energy Ltd Inspection vehicle, apparatus for inspecting inside of container, and image processing method
US8393422B1 (en) 2012-05-25 2013-03-12 Raytheon Company Serpentine robotic crawler
US9031698B2 (en) 2012-10-31 2015-05-12 Sarcos Lc Serpentine robotic crawler
US9409292B2 (en) 2013-09-13 2016-08-09 Sarcos Lc Serpentine robotic crawler for performing dexterous operations
CN105658501B (en) 2013-10-16 2018-04-20 英属盖曼群岛商立凯绿能移动科技股份有限公司 A kind of motor auxiliary joint system of hinged bus
US9566711B2 (en) 2014-03-04 2017-02-14 Sarcos Lc Coordinated robotic control
US10071303B2 (en) 2015-08-26 2018-09-11 Malibu Innovations, LLC Mobilized cooler device with fork hanger assembly
US10807659B2 (en) 2016-05-27 2020-10-20 Joseph L. Pikulski Motorized platforms
CN117399834B (en) * 2023-12-13 2024-03-08 四川惠科达仪表制造有限公司 Flange steel pipe assembly intelligent welding device with positioning function

Also Published As

Publication number Publication date
JP2003315486A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP4112891B2 (en) In-reactor transfer device
JP3219745B2 (en) Apparatus and method for cleaning upper tube bundle of steam generator
US20100307545A1 (en) Underwater cleaning robot and auxiliary cleaning work machine
JP2006313152A (en) Device for sending out tool into immersion bore
US6058153A (en) Preventive maintenance apparatus for structural members in a nuclear pressure vessel
US5749384A (en) Method and apparatus for performing preventive maintenance on the bottom portion of a reactor pressure vessel using cavitation bubbles
CN109317463A (en) A kind of underwater cleaning robot
JP2010078433A (en) Remotely-operated device
US5838752A (en) Apparatus and method for carrying out workings at reactor bottom
JP3905051B2 (en) Repair inspection system for structure surface
JP2003337192A (en) Inspection and preventive maintenance apparatus for structure within reactor pressure vessel, and inspection method
JP2856997B2 (en) Remote in-furnace operation device and operation method thereof
JP2007003400A (en) Inspection device for control rod through-hole member
JP2007024857A (en) Work device and work method
JP3819380B2 (en) In-reactor inspection equipment
CN209094050U (en) A kind of underwater cleaning robot
KR101240275B1 (en) Auto-welding machine for repairing penetration nozzle in primary system of nuclear power plant
JP3887442B2 (en) Furnace bottom working device and working method
JP3710539B2 (en) Remote in-furnace work apparatus and work method thereof
JP2859240B2 (en) Preventive maintenance device in reactor vessel
JP4090712B2 (en) Underwater narrow part movement system
JP3895162B2 (en) Reactor repair robot
CN213745976U (en) Camera pan-tilt applied to building security system
JP2571995B2 (en) Automatic cleaning device for outer surface of heat exchanger
JP3779416B2 (en) Preventive maintenance facilities for reactor pressure vessel structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees