JPH0492074A - Extraction heat increasing method for geothermal extraction method by single undermining well - Google Patents
Extraction heat increasing method for geothermal extraction method by single undermining wellInfo
- Publication number
- JPH0492074A JPH0492074A JP2207394A JP20739490A JPH0492074A JP H0492074 A JPH0492074 A JP H0492074A JP 2207394 A JP2207394 A JP 2207394A JP 20739490 A JP20739490 A JP 20739490A JP H0492074 A JPH0492074 A JP H0492074A
- Authority
- JP
- Japan
- Prior art keywords
- water
- well
- extraction
- heat
- stratum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 238000009413 insulation Methods 0.000 claims description 2
- 230000008646 thermal stress Effects 0.000 abstract description 3
- 239000011435 rock Substances 0.000 abstract description 2
- 230000035882 stress Effects 0.000 abstract description 2
- 238000005336 cracking Methods 0.000 abstract 4
- 239000011800 void material Substances 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 20
- 238000005755 formation reaction Methods 0.000 description 20
- 239000002184 metal Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 241000270666 Testudines Species 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/17—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
暖房などの熱の直接利用あるいは発電をするために、高
温の地層中に存在する蒸気や熱水を採取することなしに
熱エネルギーのみを抽出する方法に、ヒートパイプ3を
深部の高温部まで挿入する。[Detailed description of the invention] [Industrial application field] Extraction of only thermal energy without extracting steam or hot water existing in high-temperature geological formations for direct use of heat such as heating or for power generation. In this method, the heat pipe 3 is inserted deep into the high temperature area.
金属製保護管の内壁面とヒートパイプの外面の間には、
伝熱を促進するために水を満たす。ヒートパイプにより
抽出された熱エネルギーは、地上の熱交換器4を介して
作動流体に伝えられる。作動流体に伝えられた熱は暖房
等の熱の直接利用あるいは発電に使われる。Between the inner wall of the metal protection tube and the outer surface of the heat pipe,
Fill with water to promote heat transfer. Thermal energy extracted by the heat pipe is transferred to the working fluid via an above-ground heat exchanger 4. The heat transferred to the working fluid is used for direct heat utilization, such as heating, or for power generation.
このような単一坑井による地熱抽出方法は、簡便である
上、熱エネルギーのみを取り出すので、極めて清浄なエ
ネルギーを得ることができるという特長を有している。Such a geothermal extraction method using a single well is simple and has the advantage of being able to obtain extremely clean energy because it extracts only thermal energy.
L5かし、地層の熱伝導率が小さいので、地層中本:お
いて熱が熱伝導のみにより伝えられる場合には、地層が
かなり高温の場合でも抽出熱量が限られる。地層の透水
セ、が良く、坑井周囲の地層中において蒸気や水等の地
層流体が対流する場合には、熱伝導のみにより熱が伝え
破砕法の概念図を第4図に示す0図中、5は坑井であり
、亀裂を形成部分以外は金属製の保護管6が施工されて
いる。最初に、亀裂を形成する予定の位置の」下を坑井
イ」切り装N7および8で仕切る。これは通常ゴム製で
あり、機械あるいは水圧の力で膨らませられ、坑壁&こ
密着さゼられる。このようにした後に、地上の水タンク
9から高圧ボれる。したが−〕て、単一坑井による地熱
抽出方法の抽出熱量を増大させるためには、坑井周囲の
地層の透水性を収着し、対流が起こりやすくすることが
必要である。地層の透水性を改善するためには、これに
亀裂を入れ、亀裂帯を形成する必要がある。However, since the thermal conductivity of the geological formation is low, if heat is transferred only by thermal conduction in the geological formation, the amount of heat extracted will be limited even if the formation is at a fairly high temperature. When the permeability of the stratum is good and stratum fluids such as steam and water convect in the stratum around the wellbore, heat is transferred only by thermal conduction, and a conceptual diagram of the fracturing method is shown in Figure 4. , 5 is a well, and a metal protection pipe 6 is constructed except for the part where a crack is formed. First, the wellbore cuts N7 and 8 are cut off below the location where the crack is to be formed. It is usually made of rubber, is inflated by mechanical or hydraulic force, and is pressed against the mine wall. After doing this, high pressure is released from the above-ground water tank 9. However, in order to increase the amount of heat extracted by the geothermal extraction method using a single well, it is necessary to sorb the water permeability of the strata surrounding the well and make convection more likely to occur. In order to improve the permeability of a geological formation, it is necessary to create cracks in it and form a crack zone.
地層に亀裂を入れるブ】法としては、高圧の水を地層中
に圧入り5、その圧力により地層に亀裂を入れるいわゆ
る水片破砕法が濤スられている。水1]なり、ついには
この圧力により地層に亀裂13が形成される。As a method for creating cracks in the strata, the so-called water fragmentation method is used, in which high-pressure water is injected into the strata5 and the pressure is used to create cracks in the strata. water 1], and eventually a crack 13 is formed in the stratum due to this pressure.
この水圧破砕法は、■地層の透水性がある程度良い場合
には、注入し、た水が逸散し、亀裂を造成することが困
1こなる。このため、地層の透水性が極めて悪い場合で
なければ適用できない、■発生する亀裂が非常に薄く、
亀裂中における流動抵抗が大きい、このため、対流が起
こりに<<、大きな抽出熱量増大効果は期待できない、
■地11−の状態や地層の性状に応じて特定の方向に亀
裂が進展することが多く5坑井の周囲ζこ効果的に亀裂
帯を造ることが困難、■亀裂の初生位1は地層中の既存
の6縞あるいは弱点のうち最も弱い部分に発生ずるので
、1回の作業で坑井の長い区間にまんべんなく亀裂を造
成することが困難である。長い区間に亀裂帯を形成する
ためには、坑井を仕切り費用がかかる8等の問題があり
、必ずしも効果的な亀裂帯造成方法とは言い雛い
〔発明の目的〕
発明者は、上記の水圧破砕法によらずに、熱抽出作業に
先立って坑井周囲i:亀亀裂を形成12.て地層の透水
性を改善し、対流が起こり易< しておく場合は少なく
、従来性われている方法では確実に区間に仕切ることが
難しい場合が多い、坑壁の状態によっては、仕切ること
ができない場合がある。In this hydraulic fracturing method, (1) If the stratum has a certain degree of permeability, the water that is injected will escape and it will be difficult to create cracks. For this reason, it can only be applied when the permeability of the stratum is extremely poor. ■The cracks that occur are very thin;
The flow resistance in the cracks is large, so convection occurs, and a large effect of increasing the amount of extracted heat cannot be expected.
■ Cracks often develop in specific directions depending on the condition of the ground and the properties of the strata, making it difficult to effectively create a crack zone around the 5 wells. It is difficult to create cracks evenly over a long section of the wellbore in one operation because they occur at the weakest of the six existing fringes or weak points in the wellbore. In order to form a crack zone in a long section, there are problems such as the cost of partitioning the wellbore, and it is not necessarily an effective method for creating a crack zone.[Object of the Invention] 12. Formation of turtle cracks around the wellbore prior to heat extraction operations without using hydraulic fracturing. There are few cases in which it is difficult to reliably divide the mine into sections using conventional methods. It may not be possible.
■坑井を仕切るための既存装置の耐熱性能が低いことか
ら、地層が高温の場合には適用が困難である。■高圧の
水を大量に地層に圧入するので、大型の高圧ポンプが必
要であり、かつ坑井を仕切るための装置も必須である。■Existing devices for partitioning wells have low heat resistance, making them difficult to apply when the geological formations are at high temperatures. ■Since a large amount of high-pressure water is injected into the geological formation, a large high-pressure pump is required, and a device to partition the well is also essential.
また、作業が煩雑なので、多数の作業−を必要とする。Moreover, the work is complicated and requires a large number of works.
このため多額の水性が良い場合にも適用可能である。ま
た、高温の地層を急激に冷却し、岩石が収縮するときに
発生する応力により亀裂帯を形成するので、水圧破砕法
に比べて形成される亀裂の厚さが大きくなる。Therefore, it can be applied even when a large amount of water is good. In addition, because the high-temperature strata are rapidly cooled and crack zones are formed due to the stress generated when the rock contracts, the thickness of the cracks formed is larger than with hydraulic fracturing.
このため、亀裂帯中における流動抵抗が小さくなり、対
流が起こりやすくなる。すなわち、より大きな抽出熱量
増大効果が期待できる。坑井を冷却する場合に地層中に
発生する熱応力は、坑壁付近で大きく、これより遠くな
るにつれて小さくなるので、坑井の周囲に効果的ζご亀
裂帯を形成することができる。さらに、水圧破砕法で長
い区間Gご亀裂帯を形成するためには、坑井を短区間に
社切りながら繰り返1.水圧破砕を行う必要があるが、
本方法では亀裂帯が形成される区間が長いので、1回の
作業で所定の区間に亀裂帯を形成できる可能性がある。Therefore, the flow resistance in the crack zone becomes small, and convection becomes more likely to occur. In other words, a greater effect of increasing the amount of extracted heat can be expected. Thermal stress generated in the geological formation when cooling a wellbore is large near the wellbore wall and decreases as the distance goes further, so an effective ζ-crack zone can be formed around the wellbore. Furthermore, in order to form a long section G crack zone using the hydraulic fracturing method, repeat step 1 while cutting the well into short sections. Although it is necessary to perform hydraulic fracturing,
In this method, since the section in which the crack zone is formed is long, there is a possibility that the crack zone can be formed in a predetermined section in one operation.
水圧破砕法では、抗Aを区間に仕切るが必要でない、水
圧破砕法に比べると、大量がりの設備が不要であり、作
業も単純なので費用が安くてすむと考えられる。In the hydraulic fracturing method, it is not necessary to divide the drag A into sections, and compared to the hydraulic fracturing method, a large amount of equipment is not required, and the work is simple, so it is thought that the cost will be low.
以」二の結果、低コストで、かつ容易に厚さが大きい亀
裂帯を高温地層中に形成することが可能になるので、本
発明は単一坑井による地熱抽出ブ】法における亀裂帯の
形成による抽出熱量の増大方法を変更するだけで亀裂帯
を形成する位置を変更することができる。地層を冷却す
ることにより亀裂帯を形成するので、地層の温度が高温
になる程、亀裂帯形成が容易である。また高温に曝され
る機材は断熱管のみであり、か−ノ断熱管の耐熱性能が
高いので、水圧破砕法が適用困難な程高温の地層にも適
用が可能である。水圧破砕法では高圧の大型ポンプを必
要とするが、本発明によれば、低温の水を坑夫内で循環
するだけなので、高圧ポンプ法の例を示すものである4
図中、14は高温地層中に掘削された坑井である。亀裂
帯を形成する予定の区間は地層が剥き出しであるが、そ
れ以外の区間は金属製保護管15で坑壁が保護されてい
る。この坑井の中に、亀裂帯を形成する予定の深度まで
断熱管16を挿入する。この断熱管としては、真空重管
式断熱管やセラミクス管、あるいはセラミクス・金属複
合管等が考えられる。その後、地上の水タンク17から
ポンプ18により、断熱管16の内側に低温の水を注入
する。管は断熱されているので、注入された水はほとん
どそのままの温度で管の下端まで到達する。この水は、
その後、坑壁と断熱管の間の環状の隙間を通して、地上
に還流する。還流する低温の水によって地層は急激に冷
却されるが、この時に発生する熱応力にJり地層中に亀
裂4119が形成される。地1まで還流した水は、して
、坑壁を冷却しながら地上に還流する。このときの水の
温度は図中の点Cから点Aまでの実線で表される。この
還流する水の温度と地層の温度との差が大きい区間にお
いて亀裂帯が生じる。還流する水の温度が高くなり、地
層の温度との差が小さくなると亀裂は生じなくなるが、
−回の操作で長い区間に亀裂帯を形成するためには、大
量のこの場合に予想される坑月内の温度分布の例を第2
図に示す0図の場合の坑井の深度と断熱管挿入深度は約
3,000 mである9図中において点Aがら点Bまで
の破線で表される温度は低温水を注入する前の地層の温
度分布である。断熱管に注入された水はほどんどその丈
まの温度で管の下端まで到・達する。このときの断熱管
内の水の温度分布は点Aから点Cまでの実線で示される
。その後、注入された水は坑壁と断熱管の間の環状の隙
間を通め、断熱管の下端において最も効果的に亀裂帯を
形成することができる。したがって、坑井の長い区間に
わたって亀裂帯を確実に生じさせるために、管の下端の
位置を移動させて繰り返し冷却することも考えられる。As a result of the above, it becomes possible to easily form a large crack zone in a high-temperature geological formation at low cost. The position where the crack zone is formed can be changed simply by changing the method of increasing the amount of heat extracted by formation. Since crack zones are formed by cooling the strata, the higher the temperature of the strata, the easier the formation of crack zones. In addition, the only equipment exposed to high temperatures is the insulated pipe, and since the heat-resistant performance of the insulated pipe is high, it can be applied to strata at such high temperatures that hydraulic fracturing is difficult to apply. The hydraulic fracturing method requires a large, high-pressure pump, but according to the present invention, only low-temperature water is circulated within the mine, so this is an example of the high-pressure pump method.
In the figure, 14 is a well drilled into a high-temperature stratum. In the section where the crack zone is planned to be formed, the strata are exposed, but in other sections, the pit wall is protected by a metal protection pipe 15. A thermally insulated tube 16 is inserted into this wellbore to the depth at which the fracture zone is to be formed. As this heat insulating pipe, a vacuum heavy heat insulating pipe, a ceramic pipe, a ceramic/metal composite pipe, etc. can be considered. Thereafter, low-temperature water is injected into the inside of the heat insulating pipe 16 from the water tank 17 on the ground using the pump 18. Since the tube is insulated, the injected water reaches the lower end of the tube at almost the same temperature. This water is
The water then returns to the ground through an annular gap between the mine wall and the insulated pipe. The geological formation is rapidly cooled by the circulating low-temperature water, but cracks 4119 are formed in the geological formation due to the thermal stress generated at this time. The water that has returned to the ground 1 is then returned to the ground while cooling the mine wall. The temperature of the water at this time is represented by a solid line from point C to point A in the figure. A crack zone occurs in an area where there is a large difference between the temperature of this flowing water and the temperature of the stratum. As the temperature of the refluxing water increases and the difference between it and the temperature of the strata decreases, cracks will no longer form.
- In order to form a crack zone over a long section with multiple operations, an example of the temperature distribution in the tunnel expected in this case is shown in the second example.
The depth of the wellbore and the insertion depth of the insulated pipe in the case of figure 0 shown in the figure are approximately 3,000 m. In figure 9, the temperature represented by the broken line from point A to point B is the temperature before injecting low-temperature water. This is the temperature distribution of the strata. Water injected into an insulated pipe reaches the bottom end of the pipe at almost the same temperature. The temperature distribution of the water in the heat-insulated pipe at this time is shown by a solid line from point A to point C. The injected water can then pass through the annular gap between the pit wall and the insulated pipe, forming a crack zone most effectively at the lower end of the insulated pipe. It is therefore conceivable to move the position of the lower end of the tube and cool it repeatedly in order to ensure the formation of a crack zone over a long section of the wellbore.
このようにして坑井周囲の地層中に亀裂帯を形成した後
に、単一坑井による地熱抽出方法により熱抽出を行う、
場合によっては、亀裂帯を形成した後に、金属製保護管
により、亀裂帯が形成された区間を保護することもある
。After forming a crack zone in the strata surrounding the well in this way, heat is extracted using a geothermal extraction method using a single well.
In some cases, after the crack zone is formed, a metal protection tube may be used to protect the section where the crack zone is formed.
なお、この例では亀裂帯を形成する区間は地層が刺き出
しにな−)ているが、亀裂帯を形成する区間を含めて坑
井の全長Cわたって金属製保!lcRを施工した上で、
本発明により亀裂帯を形成することも考えられる。保護
管は金属製であり、熱伝導率が大きいので、このよう(
7L、でも地層の冷却器ことが可能ζこなる。In addition, in this example, the stratum is exposed in the section where the crack zone is formed, but the entire length of the well C, including the section where the crack zone is formed, is covered by a metal shield. After constructing lcR,
It is also conceivable to form crack zones according to the invention. The protection tube is made of metal and has high thermal conductivity, so it is
7L, even a geological cooler is possible.
なお、亀裂帯の造成後、熱抽出が行われるが、し−ドパ
イブを用いる場合C4°は、亀裂帯形成に使用し、た断
熱管を撤去し5た後に、L−)パイプを坑引中G′:O
挿入して熱抽出をbう、坑井的間軸熱交換器を用いる場
合には、亀裂帯形成に用いた断熱管をそのま才内管とし
て用いて熱抽出を(]つ場合と、断熱管の間の環状の陣
間に低温水を注入し、断熱管を遥して地上に還流させる
方法も考えられるが、この場合には深部における循環水
と地層との温度差は本発明の循環方法の場合に比べてか
なり小さくなるので亀裂帯形成効果は劣ると考えられる
。Note that heat extraction is performed after the creation of a crack zone, but when using a shield pipe, C4° is used to create the crack zone, and after removing the insulated pipe, G':O
In the case of using a borehole shaft heat exchanger, which is inserted to extract heat, there are cases in which the insulated tube used for forming the crack zone is used as an inner tube for heat extraction, and It is also possible to inject low-temperature water into the annular space between the pipes and return it to the ground through the insulated pipes. Since the crack band formation effect is considerably smaller than that in the case of the method, it is considered that the crack band formation effect is inferior.
辺土のようにし、て坑ガ周囲に亀裂帯を形成することr
より、従来の亀裂帯形成方法に伴う同髭点を解決するこ
とができ、安価に、かつ確実に岸−坑井による地熱抽出
′7+’ *の抽出熱量の増大を図るる目的で、亀裂帯
形成後に亀裂帯中に水を注入することも考えられる。こ
の作業は金属製保護管の施工前や施工後、あるいは熱抽
出作業中に行うことができる。forming a crack zone around the pit.
This method solves the same whisker points associated with the conventional crack zone formation method, and aims to inexpensively and reliably increase the amount of extracted heat in geothermal extraction '7+' * from shore to well. It is also conceivable to inject water into the crack zone after formation. This operation can be carried out before or after the installation of the metal protection tube, or during the heat extraction operation.
第1図は本発明による坑井周囲の地層中への亀裂形成力
法の例を示す説明図である。第2図は本発明により地層
中に亀裂を形成する場合に予想される坑井内の温度分布
の例を示す説明図、第3図。
は単一坑井による地熱抽出方法の例を示1説明図である
。また、第4図は従来の方法により坑井周囲の地層中に
亀裂を形成する場合の例を示す説明図である0図中、
】−坑井 2−金属製保護管3−ヒート
パイプ 4−熱交換器第1図
13−亀裂
15−金属製保護管
17・−水タンク
19−亀裂帯
である。
坑井
断熱管
タンク
冷却器FIG. 1 is an explanatory diagram showing an example of the force method for forming cracks in the strata surrounding a wellbore according to the present invention. FIG. 2 is an explanatory diagram showing an example of temperature distribution in a well that is expected when a crack is formed in a geological formation according to the present invention, and FIG. 1 is an explanatory diagram showing an example of a geothermal extraction method using a single well. In addition, FIG. 4 is an explanatory diagram showing an example of forming cracks in the strata around a wellbore by a conventional method. Heat exchanger Fig. 1 13 - Crack 15 - Metal protective tube 17 - Water tank 19 - Crack zone. Well insulation pipe tank cooler
Claims (1)
坑井の中に高度の断熱性能を有する断熱管を挿入し、こ
の断熱管内を通して地上より低温の水を断熱管の下端ま
で送り込み、その水を坑壁と内管の間の環状の隙間を通
して地上まで環流することにより、深部の高温の地層を
急激に冷却し、これにより坑井周囲の地層中に熱応力を
発生させ、この熱応力により坑井周囲に亀裂帯を形成す
ることを特徴とする抽出熱量増大方法。In single-well geothermal extraction, before the heat extraction operation,
An insulated pipe with a high degree of insulation performance is inserted into the well, and water at a lower temperature than the surface is sent through the insulated pipe to the lower end of the insulated pipe, and the water is sent to the ground through the annular gap between the well wall and the inner pipe. It is characterized by rapidly cooling the deep, high-temperature strata by circulating the current up to Method for increasing extraction heat amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2207394A JPH0637827B2 (en) | 1990-08-03 | 1990-08-03 | Extraction heat enhancement method for single well geothermal extraction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2207394A JPH0637827B2 (en) | 1990-08-03 | 1990-08-03 | Extraction heat enhancement method for single well geothermal extraction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0492074A true JPH0492074A (en) | 1992-03-25 |
JPH0637827B2 JPH0637827B2 (en) | 1994-05-18 |
Family
ID=16539014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2207394A Expired - Lifetime JPH0637827B2 (en) | 1990-08-03 | 1990-08-03 | Extraction heat enhancement method for single well geothermal extraction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0637827B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102518416A (en) * | 2011-12-15 | 2012-06-27 | 中国海洋石油总公司 | Thickened oil thermal recovery water treatment method and system |
CN110469312A (en) * | 2019-09-12 | 2019-11-19 | 杰瑞能源服务有限公司 | A kind of oil field fracturing system with resistance to frost |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102808603B (en) * | 2012-09-10 | 2015-02-18 | 吉林大学 | Cold and hot alternating high-speed airflow oil shale crushing device and method for crushing oil shale |
CA3044153C (en) * | 2018-07-04 | 2020-09-15 | Eavor Technologies Inc. | Method for forming high efficiency geothermal wellbores |
-
1990
- 1990-08-03 JP JP2207394A patent/JPH0637827B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102518416A (en) * | 2011-12-15 | 2012-06-27 | 中国海洋石油总公司 | Thickened oil thermal recovery water treatment method and system |
CN110469312A (en) * | 2019-09-12 | 2019-11-19 | 杰瑞能源服务有限公司 | A kind of oil field fracturing system with resistance to frost |
CN110469312B (en) * | 2019-09-12 | 2022-02-22 | 杰瑞能源服务有限公司 | Oil field fracturing system with anti-freezing performance |
Also Published As
Publication number | Publication date |
---|---|
JPH0637827B2 (en) | 1994-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9708885B2 (en) | System and method for extracting energy | |
US3786858A (en) | Method of extracting heat from dry geothermal reservoirs | |
US4644750A (en) | Heat recovery systems | |
CN107989589B (en) | A method of improving heat exchange efficiency after hot dry rock pressure break | |
CN206439038U (en) | A kind of situ downhole fluid microwave electric heater | |
CN111271036B (en) | Liquid nitrogen fracturing process method | |
US6035949A (en) | Methods for installing a well in a subterranean formation | |
JP2022542910A (en) | geothermal mining system | |
CN106839478A (en) | A kind of method of construction of deep geothermal heat heat transfer root system | |
WO2015132404A1 (en) | Geothermal plant using hot dry rock fissured zone | |
KR20230039737A (en) | Cooling for Geothermal Well Drilling | |
CN109458167A (en) | Technique is led in the increasing of geothermal well pressure break | |
JPH0492074A (en) | Extraction heat increasing method for geothermal extraction method by single undermining well | |
WO2020141437A9 (en) | Geothermal heat exchange installation and method | |
JPH0733819B2 (en) | How to extract and use geothermal energy | |
Ando et al. | Simulating effect of insulated drillpipe on downhole temperature in supercritical geothermal well drilling | |
CN208106392U (en) | A kind of geothermal well | |
CN117266820B (en) | Hydraulic fracture propagation azimuth control method based on liquid nitrogen cooling reservoir | |
RU2570586C1 (en) | Method for production of high-viscosity oil from oil deposit in permafrost zone | |
RU2701029C1 (en) | Method of petrothermal heat extracting | |
WO2023091786A1 (en) | Supercritical geothermal energy system | |
Cho et al. | Heat Preservation and Heating of Production Wells to Improve the Productivity of Heavy Oil | |
Xue et al. | Study on Rock Interface Stability in the Heat Exchange Channel of the Horizontal Section of U-Shaped Wells in Hot Dry Rock | |
WO2024044251A1 (en) | Methods for forming pathways of increased thermal conductivity for geothermal wells | |
CA3228836A1 (en) | Method and apparatus to establish a geothermal well for closed loop fluid circulation and geothermal heat extraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |