JPH049176B2 - - Google Patents

Info

Publication number
JPH049176B2
JPH049176B2 JP58217952A JP21795283A JPH049176B2 JP H049176 B2 JPH049176 B2 JP H049176B2 JP 58217952 A JP58217952 A JP 58217952A JP 21795283 A JP21795283 A JP 21795283A JP H049176 B2 JPH049176 B2 JP H049176B2
Authority
JP
Japan
Prior art keywords
weight
refractive index
glass
sio
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58217952A
Other languages
Japanese (ja)
Other versions
JPS60127334A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21795283A priority Critical patent/JPS60127334A/en
Publication of JPS60127334A publication Critical patent/JPS60127334A/en
Publication of JPH049176B2 publication Critical patent/JPH049176B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特に透明感のある合成樹脂成形品を製
造するために有用な充填材に関するものである。 従来、例えばバスタブ、便器等の合成樹脂成形
品にガラス系充填材を混合して機械的強度、耐水
性、耐蝕性を改良することが行われている。そし
てこのような熱硬化性樹脂成形品に透明感を与え
ることは意匠的にみて極めて望ましいものであ
る。 本発明は上記のように熱硬化性樹脂成形品に望
ましい透明感を与えること、および該透明感を長
期にわたつて維持し、もつて合成樹脂成形品の市
場性を高めることを目的とするものである。 上記目的を達成するために本発明者等は鋭意研
究を重ねた結果、下記の組成のガラスからなる充
填材が最とも適したものであることを見出した。 SiO2 45〜70重量%(以下単に%とする) B2O3 1〜9重量% R2O 5〜15重量% MO 15〜35重量% Al2O3 0〜10重量% ここにRはアルカリ金属であり、R2Oは一種も
しくは二種以上のアルカリ金属酸化物の混合物で
あつてもよく、MはMg、Ca、BaおよびZnから
選ばれた金属であり、MOは一種もしくは二種以
上の該金属の酸化物の混合物であつてもよい。 SiO2は化学耐久性に重要な成分であり、SiO2
の含有量が45%以下では化学耐久性に劣るガラス
しか得られない。しかし70%以上の含有量ではガ
ラスが高融点になりフリツト化に高温を要する。 B2O3とMOとはガラスの屈折率に関与する成
分であり、B2O3は屈折率を下げる方向に関与し、
MOは屈折率を上げる方向に関与する。各種合成
樹脂に近い屈折率を得るためにはMOが15〜35%
の範囲であることが必要であり、なかんづくCaO
はガラスの屈折率を大きくするために重要な成分
でありCaOがMO全体の40重量%以上を占めるこ
とが必要である。特にMOが上記範囲において少
なくなるとCaOの割合を増やす必要がある。
B2O3は屈折率の補助的調整要素として1〜9%
の範囲で添加されるが、含有量が9%以上になる
と屈折率が低くなり過ぎ調整が困難になり、また
得られる成形品の耐酸性、耐アルカリ性、耐熱水
性等に悪影響を及ぼす。 R2Oはフリツト化する為の融剤としての作用を
するものであり、R2Oの含有量が5%以下では融
剤効果が乏しくなり、15%以上の含有量ではガラ
スの耐久性に悪影響を及ぼす。 Al2O3は化学耐久性および屈折率に対して助長
効果をもたらすために添加されるが、含有量が10
%を越えるとガラスの融点が高くなり、フリツト
化に高温を要する。 上記組成において、SiO2/B2O3は7〜35の範
囲の重量比とする。そしてSiO2/B2O3が7を下
廻るとガラスの耐水性が悪くなり、SiO2/B2O3
が35を上廻るとフリツト化が困難である。また
SiO2/B2O3が上記範囲であると屈折率が所定の
範囲に調節し易い。 上記組成範囲のガラスは屈折率が1.45〜1.65の
範囲にあり、この種の成形品に多用される例えば
ポリエステル樹脂の屈折率1.52〜1.57、アクリル
樹脂の屈折率1.48〜1.57、エポキシ樹脂の屈折率
1.61、フエノール樹脂の屈折率1.50〜1.58、尿素
樹脂の屈折率1.54〜1.56、ポリカーボネートの屈
折率1.586、ポリスチレンの屈折率1.59〜1.60、ポ
リエチレンの屈折率1.54、ポリプロピレンの屈折
率1.49、ポリアセタールの屈折率1.48、ナイロン
の屈折率1.53等に一致もしくは極めて近似するも
のであり、これら合成樹脂の成形品に混合されて
極めて良好な透明感を与えるものである。 本発明の充填材は粉末状、繊維状、片状等任意
の形状で提供されるものである。そして繊維状の
場合には不織布あるいは編織物とされてもよい。 本発明の充填材は上記したように合成樹脂の成
形品に添加されて極めて良好な透明感を与えるも
のであるが、該透明感を維持するには更に上記組
成のガラス表面にシラン処理を施こした充填材を
用いることが必要である。該シラン処理とはシラ
ンカツプリング剤、シリコン樹脂、オルガノポリ
シロキサン等の珪素化合物によつてガラス表面を
処理することを言う。該シラン処理は具体的には
上記例示したような珪素化合物を0.5〜50%、望
ましくは0.7〜10%の水および/または有機溶剤
溶液にガラスを浸漬させた後、常温で乾燥、ある
いは所望なれば150〜250℃程度の温度で熱処理を
行うことにより実施される。かくしてシラン処理
を施こせば合成樹脂とガラスとの結合力が強化さ
れ、合成樹脂とガラスとの剥離にもとづく白化現
象のような透明感を阻害するような要因は排除さ
れ、長期にわたつて透明感を維持することが出来
る。 以上本発明によれば上記組成のガラスは屈折率
が各種合成樹脂と実質的に一致し、したがつて充
填材として成形品に添加されて極めて優れた透明
感が得られ、該透明感は該ガラス表面をシラン処
理することによつて長期間にわたつて維持される
が、上記組成のガラスはまた耐熱水性、耐寒性、
耐薬品性にも優れ、キツチンカウンター、浴槽、
便器、洗面化粧台、流し台、壁材、床材等に有用
な市場性の高い合成樹脂成形品を提供する。 実験1(B2O3溶出試験) 次の組成をベース組成としてB2O3の含有量を
種々に変えたガラス粉末(平均粒径50μ前後)を
作成し、該ガラス粉末の50gを500mlの蒸留水中
に入れ、室温(20℃)および60℃にて6時間撹拌
し、上澄液中に溶出したB2O3の濃度(μg/ml)
を分析した。該実験は3回繰返して行われ、その
結果を第1表、第1図および第2図に示す。 ベース組成 SiO2 55重量部 Na2O 10重量部 K2O 2重量部 CaO 20重量部 Al2O3 3重量部 溶出試験結果
The present invention particularly relates to a filler useful for producing transparent synthetic resin molded articles. Conventionally, glass fillers have been mixed into synthetic resin molded products such as bathtubs and toilet bowls to improve their mechanical strength, water resistance, and corrosion resistance. From a design point of view, it is extremely desirable to impart transparency to such thermosetting resin molded articles. As mentioned above, the present invention aims to provide desirable transparency to thermosetting resin molded products, maintain this transparency over a long period of time, and thereby increase the marketability of synthetic resin molded products. It is. In order to achieve the above object, the present inventors have conducted extensive research and have found that a filler made of glass having the following composition is the most suitable. SiO 2 45-70% by weight (hereinafter simply referred to as %) B 2 O 3 1-9% by weight R 2 O 5-15% by weight MO 15-35% by weight Al 2 O 3 0-10% by weight Here R is is an alkali metal, R 2 O may be one or a mixture of two or more alkali metal oxides, M is a metal selected from Mg, Ca, Ba, and Zn, and MO is one or two alkali metal oxides. It may be a mixture of the above metal oxides. SiO 2 is an important component for chemical durability, and SiO 2
If the content is less than 45%, only glass with inferior chemical durability can be obtained. However, if the content exceeds 70%, the glass has a high melting point and requires high temperatures to form into a frit. B 2 O 3 and MO are components that are involved in the refractive index of glass, and B 2 O 3 is involved in lowering the refractive index,
MO is involved in increasing the refractive index. To obtain a refractive index close to that of various synthetic resins, MO should be 15 to 35%.
It is necessary that the CaO
CaO is an important component to increase the refractive index of glass, and it is necessary that CaO accounts for 40% by weight or more of the entire MO. In particular, when MO decreases within the above range, it is necessary to increase the proportion of CaO.
B 2 O 3 is 1-9% as an auxiliary adjustment element for refractive index
However, if the content exceeds 9%, the refractive index becomes too low and adjustment becomes difficult, and it also has a negative effect on the acid resistance, alkali resistance, hot water resistance, etc. of the resulting molded product. R 2 O acts as a fluxing agent for fritting, and if the R 2 O content is less than 5%, the fluxing effect will be poor, and if the content is more than 15%, the durability of the glass will be affected. Adversely affect. Al 2 O 3 is added to have a supportive effect on chemical durability and refractive index, but when the content is 10
%, the melting point of the glass becomes high and a high temperature is required for fritting. In the above composition, the weight ratio of SiO 2 /B 2 O 3 is in the range of 7 to 35. When SiO 2 /B 2 O 3 is less than 7, the water resistance of the glass deteriorates, and SiO 2 /B 2 O 3
If it exceeds 35, it is difficult to make it into a frit. Also
When SiO 2 /B 2 O 3 is within the above range, the refractive index can be easily adjusted to a predetermined range. Glasses with the above composition range have a refractive index in the range of 1.45 to 1.65, and are often used in this type of molded product.For example, polyester resin has a refractive index of 1.52 to 1.57, acrylic resin has a refractive index of 1.48 to 1.57, and epoxy resin has a refractive index of 1.45 to 1.65.
1.61, refractive index of phenolic resin 1.50-1.58, refractive index of urea resin 1.54-1.56, refractive index of polycarbonate 1.586, refractive index of polystyrene 1.59-1.60, refractive index of polyethylene 1.54, refractive index of polypropylene 1.49, refractive index of polyacetal 1.48, and nylon's refractive index of 1.53, etc., and when mixed into molded products made of these synthetic resins, it gives extremely good transparency. The filler of the present invention is provided in any shape such as powder, fiber, flake, etc. In the case of a fibrous material, it may be made into a nonwoven fabric or a knitted fabric. As mentioned above, the filler of the present invention is added to a synthetic resin molded product to give it an extremely good transparency, but in order to maintain the transparency, the glass surface of the above composition must be further treated with silane. It is necessary to use strained filler. The silane treatment refers to treatment of the glass surface with a silicon compound such as a silane coupling agent, silicone resin, or organopolysiloxane. Specifically, the silane treatment is performed by immersing the glass in a water and/or organic solvent solution of 0.5 to 50%, preferably 0.7 to 10%, of a silicon compound such as those exemplified above, and then drying at room temperature, or as desired. For example, heat treatment is performed at a temperature of about 150 to 250°C. In this way, silane treatment strengthens the bond between the synthetic resin and glass, eliminates factors that impede transparency, such as the whitening phenomenon caused by peeling of the synthetic resin and glass, and maintains transparency for a long time. It is possible to maintain the feeling. As described above, according to the present invention, the refractive index of the glass having the above-mentioned composition is substantially the same as that of various synthetic resins, and therefore, when added to molded products as a filler, extremely excellent transparency can be obtained; Although it is maintained over a long period of time by silane treatment of the glass surface, the glass with the above composition also has hot water resistance, cold resistance,
Excellent chemical resistance, suitable for kitchen counters, bathtubs,
We provide highly marketable synthetic resin molded products that are useful for toilet bowls, vanities, sinks, wall materials, floor materials, etc. Experiment 1 (B 2 O 3 elution test) Using the following composition as a base composition, glass powders (average particle size around 50μ) with various B 2 O 3 contents were prepared, and 50 g of the glass powder was poured into 500 ml of Concentration (μg/ml) of B 2 O 3 eluted into the supernatant after being placed in distilled water and stirred at room temperature (20°C) and 60°C for 6 hours.
was analyzed. The experiment was repeated three times and the results are shown in Table 1, Figures 1 and 2. Base composition SiO 2 55 parts by weight Na 2 O 10 parts by weight K 2 O 2 parts by weight CaO 20 parts by weight Al 2 O 3 3 parts by weight Elution test results

【表】 第1表、第1図および第2図によればB2O3
含有量が本発明の限定範囲(10重量部以上)を越
えかつSiO2/B2O3が7を下廻るとB2O3の溶出量
が急激に増加することが明らかである。 実験2(屈折率の組成依存) 次の組成をベースとしてMO含有量を種々に変
えたガラスを作成し屈折率を測定した。但しMO
はCaO:BaO=1:1とする。その結果を第2
表および第3図に示す。 ベース組成1 SiO2 50重量部 Na2O 10重量部 K2O 2重量部 Al2O3 3重量部 B2O3 5重量部 ベース組成2 SiO2 50重量部 Na2O 10重量部 K2O 2重量部 Al2O3 3重量部 B2O3 10重量部 ベース組成3 SiO2 50重量部 Na2O 10重量部 K2O 2重量部 Al2O3 3重量部 B2O3 15重量部
[Table] According to Table 1, Figures 1 and 2, the B 2 O 3 content exceeds the limited range of the present invention (10 parts by weight or more) and the SiO 2 /B 2 O 3 ratio is less than 7. It is clear that the amount of B 2 O 3 eluted increases rapidly as the rotation of the tube increases. Experiment 2 (composition dependence of refractive index) Glasses with various MO contents were prepared based on the following composition, and the refractive index was measured. However, MO
is CaO:BaO=1:1. The result is the second
It is shown in the table and FIG. Base composition 1 SiO 2 50 parts by weight Na 2 O 10 parts by weight K 2 O 2 parts by weight Al 2 O 3 3 parts by weight B 2 O 3 5 parts by weight Base composition 2 SiO 2 50 parts by weight Na 2 O 10 parts by weight K 2 O 2 parts by weight Al 2 O 3 3 parts by weight B 2 O 3 10 parts by weight Base composition 3 SiO 2 50 parts by weight Na 2 O 10 parts by weight K 2 O 2 parts by weight Al 2 O 3 3 parts by weight B 2 O 3 15 Weight part

【表】 第2表および第3図に示すようにB2O3を本発
明に限定範囲以内で含むベース組成1においては
MOと屈折率との関係がMOが15〜35重量部の範
囲で略線型になり、しかもその範囲で屈折率は
1.45〜1.65の範囲に入る。したがつてベース組成
1ではMOの量で屈折率を調節することが容易で
ある。しかしB2O3を本発明の限定範囲以上で含
むベース組成2、3ではMOと屈折率との関係が
非線型になり、更にMOの低含有領域では屈折率
が1.45を下廻る。 実験3(屈折率の組成依存) 次に組成においてMOをCaO+BaOとしてCaO
のMO中の重量%を種々に変えたガラスを作成し
屈折率を測定した。その結果を第3表に示す。 SiO2 60重量% Na2O 10重量% K2O 2重量% MO 20重量% Al2O3 3重量% B2O3 5重量%
[Table] As shown in Table 2 and Figure 3, in base composition 1 containing B 2 O 3 within the limited range according to the present invention,
The relationship between MO and refractive index is approximately linear in the range of 15 to 35 parts by weight of MO, and the refractive index is
It falls in the range of 1.45 to 1.65. Therefore, with base composition 1, it is easy to adjust the refractive index by adjusting the amount of MO. However, in base compositions 2 and 3 containing B 2 O 3 in an amount greater than the limited range of the present invention, the relationship between MO and refractive index becomes nonlinear, and furthermore, in a low MO content region, the refractive index falls below 1.45. Experiment 3 (composition dependence of refractive index) Next, in the composition, MO is CaO + BaO and CaO
Glasses with various weight percentages of MO in MO were prepared and their refractive indices were measured. The results are shown in Table 3. SiO 2 60% by weight Na 2 O 10% by weight K 2 O 2% by weight MO 20% by weight Al 2 O 3 3% by weight B 2 O 3 5% by weight

【表】 第3表に示すようにMO中にCaOが40重量%以
下含まれているガラスは屈折率が1.45以下にな
る。 実施例 1 次の組成ガラス粉末を充填材とする。 SiO2 58% B2O3 7% Na2O 8% K2O 1% CaO 26% 上記充填材の屈折率は1.55である。 上記充填材300gを不飽和ポリエステル:スチ
レン単量体の1:1混合物700gと混合し、該混
合物に更にメチルエチルケトンハイドロパーオキ
サイド0.5gを添加し真空脱泡しつつ混練する。
該混練物を所定の鋳型中に流しこみ、70℃3時間
の加熱により透明性の良好な成形物を得る。 実施例 2 次の組成のガラス繊維でガラスクロスを作成す
る。 SiO2 55% B2O3 7% Na2O 7% K2O 3% CaO 27% Al2O3 2% 上記ガラスクロスの屈折率は1.57である。 上記ガラスクロスをシランカツプリング剤とし
てビニルトリメトキシシランの5%トルエン溶液
に含浸し、含浸後10分間の風乾の後100℃5分の
加熱乾燥を行う。かくしてシラン処理を施こした
ガラスクロスによつて成形型中で実施例1の合成
樹脂原料を用いてハンドレイアツプ法にて成形物
を成形する。該成形物は良好な透明感を有し該透
明感は該成形物を80℃の温水に400時間浸漬した
後も維持される。 実施例 3 次の組成のガラス小片を用いる。 SiO2 55% B2O3 3% Na2O 10% K2O 3% CaO 20% Al2O3 9% 上記ガラス小片の屈折率は1.53である。 上記ガラス小片をシリコン油(オルガノポリシ
ロキサン:信越化学社製KF−96)に浸漬し浸漬
後200℃10分間の熱処理を行う。かくして得られ
た充填材400gをポリエチレン600gの溶融物と混
合し、ペレタイザーによつてペレツト化して成形
用コンパウンドを得る。該コンパウンドは射出成
形、押出成形等によつて透明性良好な成形品を得
る。 実施例 4 実施例1のガラス粉末に代えて次の組成のガラ
ス粉末を充填材とし、実施例1と同様にして透明
性の良好な成形物を得る。 SiO2 60% B2O3 5% Na2O 7% K2O 2% CaO 12% BaO 5% ZnO 9% 上記ガラス粉末の屈折率は1.58である。 実施例 5 次の組成のガラス繊維を作成する。 SiO2 55% B2O3 7% Na2O 12% K2O 2% CaO 10% MgO 4% Al2O3 7% ZnO 3% 上記ガラス繊維の屈折率は1.50である。 上記ガラス繊維をシランカツプリング剤として
ビニルトリメトキイシシランの5%トルエン溶液
に含浸し、含浸後10分間の風乾の後100℃5分の
加熱乾燥を行う。かくしてシラン処理を施したガ
ラス繊維300gをポリプロピレン700gの溶融物と
混合し、鋳込法により透明性良好な成形品を得
る。 実施例 6 実施例3のガラス小片に代えて次の組成のガラ
ス小片を用いて実施例3と同様にして透明性良好
な成形品を得る。 SiO2 60% B2O3 3% Na2O 9% CaO 25% ZnO 2% MgO 1% 上記ガラス小片の屈折率は1.55である。 実施例 7 次の組成のガラス粉末を充填材とする。 SiO2 55% B2O3 2% Na2O 3% K2O 3% CaO 25% BaO 7% Al2O3 5% 上記充填材の屈折率は1.60である。 上記充填材300gをエポキシ樹脂700gと混合
し、該混合物に更にポリアミン10gを添加し真空
脱泡しつつ混練する。該混練物を所定の鋳型中に
流しこみ室温で10時間硬化させれば透明性の良好
な成形物を得る。 比較例 1 次の組成のガラス粉末を充填材として実施例1
と同様に成形物を作成する。 SiO2 55% B2O3 5% Na2O 5% K2O 18% CaO 12% 上記組成の充填材はCaOを本発明の限定範囲の
15%を下回る量で含み、屈折率が1.42と低く成形
物の透明感は良好でない。 比較例 2 次の組成のガラス粉末を充填材として実施例1
と同様に成形物を作成する。 SiO2 50% B2O3 3% Al2O3 6% Na2O 6% CaO 30% BaO 7% 上記組成の充填材はCaO+BaOを本発明の限
定範囲の35%を上回る量で含み、屈折率が1.68と
高く成形物の透明感は良好でない。 比較例 3 次の組成のガラス粉末はNa2Oを本発明の限定
範囲の5%を下回る量で含み、フリツト化に高温
を要し困難である。 Si2O3 65% B2O3 5% Al2O3 7% Na2O 4% CaO 17% MgO 2% 比較例 4 次の組成のガラス粉末はNa2Oを本発明の限定
範囲の15%を上回る量で含み、耐久性に劣る。 Si2O3 45% B2O3 5% Al2O3 8% Na2O 18% CaO 24% 比較例 5 次の組成のガラス粉末を充填材とする。 SiO2 53% B2O3 12% Na2O 8% K2O 1% CaO 26% 上記充填材の屈折率は1.46である。 上記充填材を用いて実施例1と同様にして成形
物を製造したが、該成形物の透明性は充分なもの
ではなかつた。 比較例 6 次の組成のガラス繊維でガラスクロスを作成す
る。 SiO2 50% B2O3 12% Na2O 7% K2O 3% CaO 27% Al2O3 2% 上記ガラスクロスの屈折率は1.48である。 上記充填材を用いて実施例2と同様にして成形
物を製造したが、該成形物の透明性は充分なもの
ではなかつた。 耐熱水性試験 実施例1、2および比較例5、6の成形物を用
いて耐熱水性試験を行う。耐熱水性試験は各成形
物について厚さ5mm、50×50mmのテストピースを
作成し、100℃の沸騰水中に100時間浸漬した後の
テストピース表面の状態を目視により観察する。
試験結果は下表の通りである。 テストピース 表面の状態 実施例 1 変化なし 2 変化なし 比較例 5 黄 変 6 黄 変 上記試験により、B2O3を本発明の限定範囲を
越えて含有する比較例5、6の充填材を用いた成
形物は耐熱水性に劣るが、B2O3を本発明の限定
範囲内で含有する実施例1、2の充填材を用いた
成形物は耐熱水性が良好である。
[Table] As shown in Table 3, glasses containing 40% by weight or less of CaO in MO have a refractive index of 1.45 or less. Example 1 A glass powder having the following composition was used as a filler. SiO 2 58% B 2 O 3 7% Na 2 O 8% K 2 O 1% CaO 26% The refractive index of the above filler is 1.55. 300 g of the above filler is mixed with 700 g of a 1:1 mixture of unsaturated polyester and styrene monomers, and 0.5 g of methyl ethyl ketone hydroperoxide is added to the mixture, followed by kneading while defoaming in vacuum.
The kneaded product is poured into a predetermined mold and heated at 70° C. for 3 hours to obtain a molded product with good transparency. Example 2 A glass cloth is made from glass fibers having the following composition. SiO 2 55% B 2 O 3 7% Na 2 O 7% K 2 O 3% CaO 27% Al 2 O 3 2% The refractive index of the above glass cloth is 1.57. The above glass cloth was impregnated with a 5% toluene solution of vinyltrimethoxysilane as a silane coupling agent, and after the impregnation, it was air-dried for 10 minutes and then heated at 100° C. for 5 minutes. A molded article is molded using the synthetic resin raw material of Example 1 using the silane-treated glass cloth in a mold by the hand lay-up method. The molded product has good transparency, and this transparency is maintained even after the molded product is immersed in hot water at 80° C. for 400 hours. Example 3 Glass pieces having the following composition are used. SiO 2 55% B 2 O 3 3% Na 2 O 10% K 2 O 3% CaO 20% Al 2 O 3 9% The refractive index of the above glass piece is 1.53. The above-mentioned glass piece is immersed in silicone oil (organopolysiloxane: KF-96 manufactured by Shin-Etsu Chemical Co., Ltd.), and after immersion is heat-treated at 200° C. for 10 minutes. 400 g of the filler thus obtained is mixed with 600 g of melted polyethylene and pelletized using a pelletizer to obtain a molding compound. A molded article with good transparency can be obtained from the compound by injection molding, extrusion molding, or the like. Example 4 A molded article with good transparency is obtained in the same manner as in Example 1 except that glass powder having the following composition is used as a filler in place of the glass powder in Example 1. SiO 2 60% B 2 O 3 5% Na 2 O 7% K 2 O 2% CaO 12% BaO 5% ZnO 9% The refractive index of the above glass powder is 1.58. Example 5 A glass fiber having the following composition is prepared. SiO 2 55% B 2 O 3 7% Na 2 O 12% K 2 O 2% CaO 10% MgO 4% Al 2 O 3 7% ZnO 3% The refractive index of the above glass fiber is 1.50. The above glass fibers were impregnated with a 5% toluene solution of vinyltrimethoxysilane as a silane coupling agent, and after impregnating, air-dried for 10 minutes and then heated at 100° C. for 5 minutes. 300 g of the glass fibers thus treated with silane are mixed with 700 g of melted polypropylene, and a molded article with good transparency is obtained by casting. Example 6 A molded article with good transparency is obtained in the same manner as in Example 3 except that glass pieces having the following composition are used in place of the glass pieces of Example 3. SiO 2 60% B 2 O 3 3% Na 2 O 9% CaO 25% ZnO 2% MgO 1% The refractive index of the above glass piece is 1.55. Example 7 A glass powder having the following composition is used as a filler. SiO 2 55% B 2 O 3 2% Na 2 O 3% K 2 O 3% CaO 25% BaO 7% Al 2 O 3 5% The refractive index of the above filler is 1.60. 300 g of the above filler is mixed with 700 g of epoxy resin, 10 g of polyamine is further added to the mixture, and the mixture is kneaded while defoaming in vacuum. The kneaded product is poured into a predetermined mold and cured at room temperature for 10 hours to obtain a molded product with good transparency. Comparative Example 1 Example 1 using glass powder with the following composition as a filler
Create a molded object in the same way. SiO 2 55% B 2 O 3 5% Na 2 O 5% K 2 O 18% CaO 12% The filler with the above composition contains CaO within the limited range of the present invention.
It is contained in an amount of less than 15%, the refractive index is as low as 1.42, and the transparency of the molded product is not good. Comparative Example 2 Example 1 using glass powder with the following composition as a filler
Create a molded object in the same way. SiO 2 50% B 2 O 3 3% Al 2 O 3 6% Na 2 O 6% CaO 30% BaO 7% The filler with the above composition contains CaO + BaO in an amount exceeding 35% of the limited range of the present invention, and has a refractive index. The ratio is as high as 1.68, and the transparency of the molded product is not good. Comparative Example 3 A glass powder having the following composition contains Na 2 O in an amount less than 5% of the limited range of the present invention, and requires high temperature and is difficult to frit. Si 2 O 3 65% B 2 O 3 5% Al 2 O 3 7% Na 2 O 4% CaO 17% MgO 2% Comparative Example 4 Glass powder with the following composition contains Na 2 O within the limited range of the present invention. %, the durability is poor. Si 2 O 3 45% B 2 O 3 5% Al 2 O 3 8% Na 2 O 18% CaO 24% Comparative Example 5 A glass powder having the following composition was used as a filler. SiO 2 53% B 2 O 3 12% Na 2 O 8% K 2 O 1% CaO 26% The refractive index of the above filler is 1.46. A molded article was produced in the same manner as in Example 1 using the above filler, but the transparency of the molded article was not sufficient. Comparative Example 6 A glass cloth is made from glass fibers having the following composition. SiO 2 50% B 2 O 3 12% Na 2 O 7% K 2 O 3% CaO 27% Al 2 O 3 2% The refractive index of the above glass cloth is 1.48. A molded article was produced in the same manner as in Example 2 using the above filler, but the transparency of the molded article was not sufficient. Hot Water Resistance Test A hot water resistance test is conducted using the molded products of Examples 1 and 2 and Comparative Examples 5 and 6. In the hot water resistance test, a test piece of 5 mm thickness and 50 x 50 mm is prepared for each molded product, and the condition of the surface of the test piece is visually observed after being immersed in boiling water at 100°C for 100 hours.
The test results are shown in the table below. Test piece Surface condition Example 1 No change 2 No change Comparative example 5 Yellowing 6 Yellowing According to the above test, the fillers of Comparative Examples 5 and 6 containing B 2 O 3 exceeding the limited range of the present invention were used. The molded products using the fillers of Examples 1 and 2 containing B 2 O 3 within the limited range of the present invention have good hot water resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は室温におけるB2O3含有量とB2O3溶出
量との関係を示すグラフ、第2図は60℃における
B2O3含有量とB2O3溶出量との関係を示すグラ
フ、第3図はMOと屈折率との関係を示すグラフ
であり、図中・−・はベース組成1、x−xはベ
ース組成2、△−△はベース組成3に関するグラ
フである。
Figure 1 is a graph showing the relationship between B 2 O 3 content and B 2 O 3 elution amount at room temperature, and Figure 2 is a graph showing the relationship between B 2 O 3 content and B 2 O 3 elution amount at room temperature.
Figure 3 is a graph showing the relationship between B 2 O 3 content and B 2 O 3 elution amount, and Figure 3 is a graph showing the relationship between MO and refractive index. is a graph regarding base composition 2, and Δ-Δ is a graph regarding base composition 3.

Claims (1)

【特許請求の範囲】 1 SiO245〜70重量%、B2O31〜9重量%、
R2O5〜15重量%(ここにRはアルカリ金属であ
る)、MO15〜35重量%(ここにMはMg、Ca、
BaおよびZnから選ばれた一種または二種以上の
金属である)、Al2O30〜10重量%の組成であつ
て、SiO2/B2O3が7〜35の範囲であり、CaOは
MO全体の40重量%以上を占めるガラスからなる
合成樹脂成形品用充填材 2 SiO245〜70重量%、B2O31〜9.9重量%、
R2O5〜15重量%(ここにRはアルカリ金属であ
る)、MO15〜35重量%(ここにMはMg、Ca、
BaおよびZnから選ばれた一種または二種以上の
金属である)、Al2O30〜10重量%の組成であつ
て、SiO2/B2O3が7〜35の範囲であり、CaOは
MO全体の40重量%以上を占めるガラス表面にシ
ラン処理を施した合成樹脂成形品用充填材
[Claims] 1 SiO 2 45-70% by weight, B 2 O 3 1-9% by weight,
R 2 O 5-15% by weight (where R is an alkali metal), MO 15-35% by weight (here M is Mg, Ca,
one or more metals selected from Ba and Zn), Al 2 O 3 0 to 10% by weight, SiO 2 /B 2 O 3 in the range of 7 to 35, CaO teeth
Filler 2 for synthetic resin molded products made of glass that accounts for 40% or more of the entire MO SiO 2 45 to 70% by weight, B 2 O 3 1 to 9.9% by weight,
R 2 O 5-15% by weight (where R is an alkali metal), MO 15-35% by weight (here M is Mg, Ca,
one or more metals selected from Ba and Zn), Al 2 O 3 0 to 10% by weight, SiO 2 /B 2 O 3 in the range of 7 to 35, CaO teeth
A filler for synthetic resin molded products whose glass surface is silane-treated, accounting for more than 40% by weight of the entire MO.
JP21795283A 1983-11-18 1983-11-18 Filler for synthetic resin molded article Granted JPS60127334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21795283A JPS60127334A (en) 1983-11-18 1983-11-18 Filler for synthetic resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21795283A JPS60127334A (en) 1983-11-18 1983-11-18 Filler for synthetic resin molded article

Publications (2)

Publication Number Publication Date
JPS60127334A JPS60127334A (en) 1985-07-08
JPH049176B2 true JPH049176B2 (en) 1992-02-19

Family

ID=16712282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21795283A Granted JPS60127334A (en) 1983-11-18 1983-11-18 Filler for synthetic resin molded article

Country Status (1)

Country Link
JP (1) JPS60127334A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2098566A1 (en) * 1991-11-15 1993-05-16 Masaya Okamoto Polycarbonate resin composition and process for producing the same
JPH081998B2 (en) * 1991-12-13 1996-01-10 東光株式会社 Shield case with power transistor
JP6576096B2 (en) * 2015-05-14 2019-09-18 凸版印刷株式会社 Decorative sheet and method for producing the decorative sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512351A (en) * 1974-05-23 1976-01-09 Nippon Telegraph & Telephone ENKAKUSOSASEISHIGAZOSATSUZOSOCHI
JPS5121951A (en) * 1974-08-12 1976-02-21 Matsushita Electric Works Ltd HEAADORAIYA
JPS5123538A (en) * 1974-08-21 1976-02-25 Canon Kk JUSHI SEIBUTSU
JPS5429538A (en) * 1977-08-09 1979-03-05 Toshiba Corp Information processing system
JPS56148538A (en) * 1980-04-19 1981-11-18 Nippon Fueroo Kk Molding of thermosetting resin
JPS57167358A (en) * 1981-04-08 1982-10-15 Chisso Corp Silane-based inorganic filler-treating agent and inorganic filler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512351A (en) * 1974-05-23 1976-01-09 Nippon Telegraph & Telephone ENKAKUSOSASEISHIGAZOSATSUZOSOCHI
JPS5121951A (en) * 1974-08-12 1976-02-21 Matsushita Electric Works Ltd HEAADORAIYA
JPS5123538A (en) * 1974-08-21 1976-02-25 Canon Kk JUSHI SEIBUTSU
JPS5429538A (en) * 1977-08-09 1979-03-05 Toshiba Corp Information processing system
JPS56148538A (en) * 1980-04-19 1981-11-18 Nippon Fueroo Kk Molding of thermosetting resin
JPS57167358A (en) * 1981-04-08 1982-10-15 Chisso Corp Silane-based inorganic filler-treating agent and inorganic filler

Also Published As

Publication number Publication date
JPS60127334A (en) 1985-07-08

Similar Documents

Publication Publication Date Title
US6939820B2 (en) Antibacterial glass composition and antibacterial polymer composition using the same
DE2446041A1 (en) SILICONE RESIN MOLDING COMPOUND
JPH049176B2 (en)
JP2002037643A (en) Antimicrobial glass and its resin components
US3629297A (en) Solvent-free liquid organosilicon resins
JPS5571737A (en) Heat-resistant composition
JPH02153966A (en) Glittering resin molding material and molded article
KR100492751B1 (en) Antibiotic smc of zeolite substituted metal ion and a tank manufactured thereof
JP3979546B2 (en) Glass filler for resin filling
JPH0311306B2 (en)
JP2001226139A (en) Antibacterial glass and resin composition containing the same
JPS62243638A (en) Amino resin molding compound
JP4072229B2 (en) Dissolvable glass and antibacterial composition using the same
JPS6039299B2 (en) Manufacturing method of phenolic resin composition
JPS63270759A (en) Thermoplastic composition
US2803608A (en) Phenol-formaldehyde molding composition for lastic closures
JPS5682840A (en) Phenolic resin molding compound
GB2011921A (en) Reinforced thermoplastic compositions of polyester resins and glass fibres in combination with particulate mica
DE1903934A1 (en) Synthetic teeth
JPS5790014A (en) Epoxy resin composition
JP2016102044A (en) Antibacterial glass and resin molding prepared therewith
JP2533261B2 (en) Artificial marble
JPH06136180A (en) Glass filler for thermosetting resin molding
JPS6017453B2 (en) Polysulfone resin composition
KR100286142B1 (en) Manufacturing method of polypropylene resin and polypropylene resin material product manufactured using the same