JPH0491693A - Driving method of brushless motor - Google Patents

Driving method of brushless motor

Info

Publication number
JPH0491693A
JPH0491693A JP2207434A JP20743490A JPH0491693A JP H0491693 A JPH0491693 A JP H0491693A JP 2207434 A JP2207434 A JP 2207434A JP 20743490 A JP20743490 A JP 20743490A JP H0491693 A JPH0491693 A JP H0491693A
Authority
JP
Japan
Prior art keywords
brushless motor
voltage
signal
arithmetic
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2207434A
Other languages
Japanese (ja)
Inventor
Mitsuhisa Nakai
中井 満久
Yuzuru Tsunehiro
常広 譲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2207434A priority Critical patent/JPH0491693A/en
Publication of JPH0491693A publication Critical patent/JPH0491693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To drive a brushless motor stably by detecting currents made to flow through an armature winding, changing currents into a voltage signal, converting the voltage signal into an arithmetic quantity at the next stage and conducting specified arithmetic operation. CONSTITUTION:The armature windings iu, iv of a brushless motor are detected as voltage signals proportional to current values by a current detecting means, and the voltage signals are converted as shown in formula by a current conversion means 8. igamma and idelta obtained by conversion by the current conversion means are input to an arithmetic means 10. On the other hand, wm deg. as the command value of the number of revolution of the brushless motor and the set value LAMBDAdeltaof primary magnetic flux are input to the arithmetic means 10. The arithmetic means arithmetically operates voltage vgamma, vdelta, gamma1 to be applied to the brushless motor by specified control formula. Signal waves eu, ev, ew for forming switching signals are output from vgamma, vdelta, gamma1 to a pulse width modulation means by a coordinate conversion means. The pulse width modulation means feeds back the output voltage of an inverter so that the output voltage is not subject to the effect of DC voltage Vd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はブラシレスモータに係り、ブラシレスモータの
一次磁束を所定の値に保ちながら電機子巻線に流れる電
流を検出し 前記信号を変換して得られる信号により磁
石回転子と電機子巻線との相対的な位置を検出して転流
信号を得ることによって、負荷に対応しながら起動から
過渡及び定常運転まで速やかな運転を行なうためのブラ
シレスモータの駆動方法に関するものであa 従来の技術 通家 ブラシレスモータはその回転子の磁極位置を検出
するための磁極位置検出器が必要であも例えばこのブラ
シレスモータを空調機の圧縮機に用いる場合、高温高圧
条件下で前記検出器の信頼性が保証できないために前記
検出器を用いる方式では圧縮器の駆動は不可能であっ九
 従ってこの場合は前記磁極位置検出器を用いず電機子
巻線に誘起される電圧信号を検出し この検出信号を変
換して得られる信号に基ずいて転流信号を生成する方法
が用いられてき島 そして、前記転流信号に基ずいて回
転数を検出し 負荷に対応するために常にフィードバッ
ク制御を行いながらブラシレスモータ駆動を行なってい
も 発明が解決しようとする課題 しかし 前記の電機子巻線に誘起される電圧信号を利用
する方法は次のような問題点を有してい特へ 低回転駆
動時は前記電機子巻線に誘起される電圧信号が小さいた
め外的雑音の影響を受けやすく検出精度や安定性に欠け
るという問題があった また 電機子巻線に誘起される電圧信号を検出するため
モータが回転していることが前提となも一般的には駆動
初期は電機子巻線に強制回転磁界を与え 回転子がこの
回転磁界によって回転し電機子巻線に電圧信号が十分に
誘起された後に前記電圧信号をもとに転流信号を得る方
式に切り替える方法をとっていた よって、駆動方法に
は強制回転運転期間と転流信号による運転期間があり、
停止状態からの立ち上げ時は途中で前記期間の切り替え
を行なっていた よって、負荷の状態によっては切り替
えに失敗することがあったさらく 強制回転運転期間で
は電機子巻線に大電流が流れるため回転子磁石の減磁を
招いたり、モータ駆動用のパワートランジスタに過大な
負担を強いることとなり構成素子容量の大型化や信頼上
記課題を解決するために本発明は次に示す構成をとも 中性点非接地に結線された三相電機子巻線と、直流電源
と、前記電機子巻線への電流を通電 遮断する半導体ス
イッチング素子群と、磁石回転子及び電機子巻線を有す
るブラシレスモータと、回転数指令手段と、前記電機子
巻線に流れる電流を検出し電圧信号に変換する電流検出
手段と、前記電圧信号を次段での演算量に変換する電流
変換手段と、所定の演算を行なう演算手段と、演算結果
を座標変換する座標変換手段と、この信号をもとに前記
半導体スイッチング素子群にスイッチング指令を行なう
PWM制御手段より構成されるブラシレスモータの駆動
装置である。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a brushless motor, and is obtained by detecting the current flowing through the armature winding while maintaining the primary magnetic flux of the brushless motor at a predetermined value, and converting the signal. By detecting the relative position of the magnet rotor and armature winding using a signal and obtaining a commutation signal, a brushless motor can be operated quickly from startup to transient and steady operation while responding to the load. This relates to a drive method.a.Conventional technology experts A brushless motor requires a magnetic pole position detector to detect the magnetic pole position of its rotor.For example, when this brushless motor is used in an air conditioner compressor, Since the reliability of the detector cannot be guaranteed under high pressure conditions, it is impossible to drive the compressor with the method using the detector. Therefore, in this case, the magnetic pole position detector is not used and the A method has been used in which a commutation signal is generated based on the signal obtained by converting this detection signal by detecting a voltage signal generated by the load.Then, the rotation speed is detected based on the commutation signal, and the rotation speed is detected based on the signal obtained by converting this detection signal. However, the above-mentioned method of using voltage signals induced in the armature windings has the following problems. Especially when driving at low rotation speeds, the voltage signal induced in the armature winding is small, so it is susceptible to external noise and lacks detection accuracy and stability. Generally speaking, in the initial stage of driving, a forced rotating magnetic field is applied to the armature winding, and the rotor rotates due to this rotating magnetic field, causing the armature winding to rotate. After a sufficient voltage signal is induced in the motor, the system switches to a method in which a commutation signal is obtained based on the voltage signal.Therefore, the drive method includes a forced rotation operation period and an operation period using a commutation signal.
When starting up from a stopped state, the above-mentioned periods were switched midway through, so switching could fail depending on the load condition.During the forced rotation operation period, a large current flows through the armature windings, so In order to solve the above-mentioned problems, which may cause demagnetization of the rotor magnet and impose an excessive load on the power transistor for driving the motor, resulting in an increase in the capacitance of the component elements and reliability, the present invention has the following configuration: A brushless motor having a three-phase armature winding connected to a non-grounded point, a DC power supply, a group of semiconductor switching elements for supplying or interrupting current to the armature winding, a magnet rotor, and an armature winding. , a rotation speed command means, a current detection means for detecting the current flowing in the armature winding and converting it into a voltage signal, a current conversion means for converting the voltage signal into a calculation amount for the next stage, and a predetermined calculation. This is a brushless motor driving device comprising a calculation means for performing coordinate conversion, a coordinate conversion means for converting the coordinates of the calculation result, and a PWM control means for issuing a switching command to the group of semiconductor switching elements based on this signal.

作用 本発明は上記した構成により、ブラシレスモータの起、
動から過渡及び定常運転まで一貫した制御理論に基ずい
て負荷に対応しながら高い制御性能を実現することとな
ム 実施例 以下、本発明の実施例について図面を参考に説明すも 
第1図は本発明の実施例におけるブラシレスモータの駆
動装置のブロック図である。
Operation The present invention has the above-described configuration, and the brushless motor starts and ends.
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram of a brushless motor drive device in an embodiment of the present invention.

第1図において、 lは直流型# 2は半導体スイッチ
ング素子、 3はブラシレスモータ、 4は電機予巻[
5は磁石回転子、 6は電流検出手段、7はパルス幅変
調量比 8は電流変換手段、 9は座標変換手段、 1
0は演算量Q  11は回転数指令手段 12は磁束指
令平成 13は起動指令手段である。
In Fig. 1, l is a DC type, #2 is a semiconductor switching element, 3 is a brushless motor, and 4 is an electric pre-winding device.
5 is a magnet rotor, 6 is a current detection means, 7 is a pulse width modulation amount ratio, 8 is a current conversion means, 9 is a coordinate conversion means, 1
0 is the calculation amount Q, 11 is the rotation speed command means, 12 is the magnetic flux command, and 13 is the start command means.

以下に本発明の制御方法について説明すもブラシレスモ
ータの電機子巻線iu、  ivを電流検出手段によっ
て電流値に比例した電圧信号として検出し これを電流
変換手段8によって次の(1)式に示す変換を行なう。
The control method of the present invention will be explained below. The armature windings iu and iv of the brushless motor are detected by the current detection means as a voltage signal proportional to the current value, and this is converted into the following equation (1) by the current conversion means 8. Perform the transformation shown.

θ+= (w+dt、w+:インバータ角周波数電流変
換手段によって変換して得られたlγ、lδは演算手段
10に人力される。−人 演算手段10にはブラシレス
モータの回転数の指令値であるw、°と一次磁束の設定
値Δδが入力される。
θ+= (w+dt, w+: lγ, lδ obtained by conversion by the inverter angular frequency current conversion means are manually input to the calculation means 10. - person The calculation means 10 is inputted with w, which is the command value of the rotation speed of the brushless motor. , ° and the set value Δδ of the primary magnetic flux are input.

演算手段は以下に示す制御式によってブラシレスモータ
に加えるべき電圧v7.vδ、θ1を演算すム 改番へ
 座標変換手段によって前記v7.vδ、θ1からパル
ス幅変調手段にスイッチング信号生成のための信号波e
u、ev、e−を出力すa パルス幅変調手段(よ イ
ンバータの出力電圧が直流電圧Vdに影響されないよう
にフィードバックを行なっていも 次に 制御式について以下に説明すも 第2図において、 T−δ軸はブラシレスモータの電機
子巻線が作る回転磁界と同期して回転する座標系であも
 いま、 ci−q軸に対して図2に示すようにγ−δ
軸が角度φだけ進んでいるとすムこの時のブラシレスモ
ータの電圧方程式は(2)式となa λ py=L+1r−Aθsinφ λ pδ=L+ i  δ+AθcosφR++L+P
:電機子巻線のインピーダンスへ〇:界磁磁束に比例す
る定数 λpγ、λpδは一次磁束鎖交数のγおよびδ軸成分で
あも ここで、−次磁束λp7.  λpδを(3)式
のように制御する場合の特性について説明すも λp7=Q、λpδ=Aδ   ・・・・(3)便宜上
(4)式のように記すとブラシレスモータのトルクτは
極対数をnとして(5)式となムλr=−Aθsinφ
、λδ=Aθcosφ−−−−(4)τ=n(λδIT
−λ7iδ) =n[(λpδ−L+iδ)・1r−(λpr−L11
 γ)・l δコ =n(λpδi7−λpyiδ)−・−(5)=nAδ
iγ よって、 i7に比例したトルクが得られもまた 一方
(6)式より(7)式が得られる。
The calculation means calculates the voltage v7. to be applied to the brushless motor using the control formula shown below. Calculate vδ and θ1. Change the number by using the coordinate conversion means to convert v7. A signal wave e for generating a switching signal from vδ, θ1 to the pulse width modulation means
u, ev, e- are output by the pulse width modulation means (by the pulse width modulation means).Even if feedback is performed so that the output voltage of the inverter is not affected by the DC voltage Vd, the control formula will be explained below. The −δ axis is a coordinate system that rotates in synchronization with the rotating magnetic field created by the armature winding of the brushless motor.
If the shaft is advanced by an angle φ, the voltage equation of the brushless motor at this time is equation (2): a λ py=L+1r−Aθsinφ λ pδ=L+ i δ+AθcosφR++L+P
: To the impedance of the armature winding 〇 : Constants λpγ and λpδ proportional to the field magnetic flux are the γ and δ axis components of the primary magnetic flux linkage. Here, the -th order magnetic flux λp7. The characteristics when λpδ is controlled as shown in equation (3) are explained below. Assuming n, the equation (5) becomes λr=-Aθsinφ
, λδ=Aθcosφ---(4) τ=n(λδIT
−λ7iδ) = n[(λpδ−L+iδ)・1r−(λpr−L11
γ)・l δ co=n(λpδi7−λpyiδ)−・−(5)=nAδ
iγ Therefore, a torque proportional to i7 can be obtained, and on the other hand, equation (7) can be obtained from equation (6).

λpr=L1ir+λ7=o・・・・(6)lθ°は設
定値であり、後に説明するように運転時にはφ=−π/
6〜π/6にあるので(8)式が成立す4 ブラシレスモータの角速度をwmとすれば(9)式が成
立するからインバータ周波数W1をきめるループにlγ
をフィードバックすればよし〜W I= n Wffl
+φ            −−−−(9)ここまで
前記(3)式を仮定した力(つぎに(3)式を実現する
制御方法について述べも λpδ=L+iδ+λpδ    ・・・・(10)(
10)式を(2)式に代入し 整理すると(11)式に
なム る。
λpr=L1ir+λ7=o...(6) lθ° is a set value, and as explained later, during operation, φ=-π/
6 to π/6, so equation (8) holds true.4 If the angular velocity of the brushless motor is wm, equation (9) holds, so lγ is used in the loop that determines the inverter frequency W1.
All you have to do is give feedback ~W I= n Wffl
+φ −−−−(9) Up to this point, the force assuming the above equation (3) (Next, we will discuss the control method to realize the equation (3).λpδ=L+iδ+λpδ...(10)(
Substituting equation (10) into equation (2) and rearranging it, we get equation (11).

Pλδ=−Aθsinφ ・ φ ニーAθφ ・ φ”=   P(L+i  θ°φ”
/2)ニーP(L+ir’/2・ l θ°)・・・・
 (l 2)よって、ここで補助変数として(13)式
を導入L  (12)式を(14)式のように書き改め
もλ pδ= L + (i  δ−i r”/2・ 
l θ°)・・・・ (13)もし 電機子抵抗Rが既
知であれE(14)式の右辺の第2項内を0にするよう
に v7.vδを定めることができる。すなわ板 それ
らをv7Vδ°と記すと(15)式が成立すも v 7”==Ri 7+w+λpδ−Wlλpδ=Ri
 7十w+L+ iθ”+w+L+ (i r’/2i
θ°−1δ)Vδ゛=R1δ−にδλpδ=Ri  δ
+にδL1(ir”/2i  θ°−1δ) ・・・・ (15) この隊 −次磁束制御系は固有値(16)式をもつ安定
な系として動作することがわかムλ1.λ2−−にδ/
2± (Kδ/2)”  w+”ここで、−次磁束は安
定かつ敏速に制御可能であるとして運転周波数W1をど
のように制御すればよいかを以下に示す。
Pλδ=-Aθsinφ・φ knee Aθφ・φ”= P(L+i θ°φ”
/2) Knee P (L+ir'/2・l θ°)...
(l 2) Therefore, we can introduce equation (13) as an auxiliary variable here. We can also rewrite equation (12) as equation (14): λ pδ= L + (i δ−i r”/2・
l θ°)... (13) If the armature resistance R is known, set the second term on the right side of equation E (14) to 0. v7. vδ can be determined. In other words, if we write them as v7Vδ°, equation (15) holds true, but v 7”==Ri 7+w+λpδ−Wlλpδ=Ri
70 w+L+ iθ"+w+L+ (i r'/2i
θ°−1δ) Vδ゛=R1δ− δλpδ=Ri δ
δL1(ir”/2i θ°−1δ) (15) It can be seen that this group − order magnetic flux control system operates as a stable system with the eigenvalue equation (16) λ1.λ2−− δ/
2± (Kδ/2)"w+"Here, how to control the operating frequency W1 will be described below, assuming that the -order magnetic flux can be controlled stably and quickly.

wm=wmθで運転しているモータに 新しい速度指令
wm“(=wm1)が与えられると磁束指令手段がnw
mθからn W m Iに直線的に増加する一次磁束指
令W1°を作a もL w+°でブラシレスモータを運
転すれば −次磁束が適正に与えられてk 乱調や脱調
などの不安定現象に陥る危険があム そこで、相差角φ
に関係する量をフィードバックして系の安定化を図も ここで、 (17)式から(18)式のように制御する
場合の系の安定性を以下に示す。
When a new speed command wm" (=wm1) is given to the motor operating at wm=wmθ, the magnetic flux command means nw
Create a primary magnetic flux command W1° that increases linearly from mθ to n W m I If the brushless motor is operated at L w+°, the −th order magnetic flux will be properly applied and unstable phenomena such as disturbances and step-outs will occur. There is a danger of falling into the phase difference angle φ
Here, the stability of the system when controlled as shown in equations (17) to (18) is shown below.

λpr=oよりλγ=−L+i7二−Aθφ・・・・(
17) Wl =WI°+(Kpλ7 + K IλT)”−・
・ (18)(18)式の括弧内がフィードバック項で
、Kpとに、はPI補償器のゲインに相当している。
From λpr=o, λγ=-L+i72-Aθφ...(
17) Wl = WI° + (Kpλ7 + K IλT)”-・
- (18) The part in parentheses in equation (18) is the feedback term, and Kp and Kp correspond to the gain of the PI compensator.

な耘 (19)式から(20)式となり、j=o、λ7
=Qとなる定常状態では nwmはW1°十K +λγ
に等しく、負荷によって変動す4 λδ=λδθ+λδなどとし 任意の動作点(W、θ、
 λγθ、 λδθ)のまわりの微小変化分に対する方
程式を求めも (4)式よりPλT=−φλδである。またφθ=0と
すれば ・・・・ (20) に対する方程式は(21)式となも 7+n″wm”−nwm)λδθ 、“、Pλγ=A(1−に+λT δθW―) A=(1+Kpλδθ)−1 nλδθWm”十nλ ・・・・ (21) −X  慣性負荷を仮定すると(22)式から(23)
式が得られも JPw=nAθi 7・・・・(22)Pwa=nA 
 θ/J  ・ 1r=−nA  θ/ L + J・
λT             ・・・・(23)(2
4)式を用いて前記(22)式(23)式を書くと(2
5)式となる。
From equation (19) to equation (20), j=o, λ7
In the steady state where =Q, nwm is W1°0K +λγ
is equal to and varies depending on the load4. Let λδ = λδθ + λδ, etc., and take any operating point (W, θ,
The equation for minute changes around λγθ, λδθ) is found to be PλT=−φλδ from equation (4). Also, if φθ = 0... (20) The equation for (20) is (21) as follows. )−1 nλδθWm”10nλ (21) −X Assuming an inertial load, from equation (22), (23)
Even if the formula is obtained, JPw=nAθi 7...(22) Pwa=nA
θ/J・1r=-nA θ/L + J・
λT...(23)(2
4) If we write equations (22) and (23) above using equations, we get (2
5) Equation becomes.

λ7=−L+i7          −1°(24)
λδθ=AθCOSφであるからφが一π/6〜π/6
ではλδθ〉0となり、系は全域で安定であム 上述のようにブラシレスモータのトルクに比例するを制
御することによって起動から過渡及び定常運転に至るま
で一貫した制御理論に基すいて安定したブラシレスモー
タの駆動を行なうことができる。
λ7=-L+i7 -1°(24)
Since λδθ=AθCOSφ, φ is 1π/6 to π/6
In this case, λδθ〉0, and the system is stable over the entire range.As mentioned above, by controlling the torque proportional to the brushless motor torque, a stable brushless motor can be achieved based on a consistent control theory from startup to transient and steady operation. A motor can be driven.

本実施例では電流変換手段、演算手段、座標変換手段を
用いている力(一部または全てをマイクロコンピュータ
によって行ってもよい。
In this embodiment, the power conversion means, calculation means, and coordinate conversion means are used (some or all of which may be performed by a microcomputer.

発明の効果 以上のように本発明は前記構成により前記制御式に基ず
いて制御を行なうことによって起動から過渡及び定常運
転に至るまで一貫した制御理論に基ずいて安定したブラ
シレスモータの駆動を行なうことができる。よって、従
来のように強制回転運転期間と転流信号による運転期間
を切り替える必要がないため起動時の脱調を防ぐことが
できもまた 起動時には必要な起動トルクに合った指令
値を与えることができるので、従来方式のように電機子
巻線に必要以上の過大な電流が流れたり、モータ駆動用
のパワートランジスタに過大な負荷を強いることが避け
られも
Effects of the Invention As described above, the present invention performs control based on the control formula using the configuration described above, thereby stably driving a brushless motor based on a consistent control theory from startup to transient and steady operation. be able to. Therefore, there is no need to switch between the forced rotation operation period and the operation period using commutation signals as in the past, so it is possible to prevent step-out at startup, and it is also possible to give a command value that matches the required starting torque at startup. Therefore, it is possible to avoid excessive current flowing through the armature windings or imposing an excessive load on the power transistor for driving the motor, which is the case with conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における構成医 第2図は回
転子と電機子巻線の位置関係を示す説明図であ4 1・・・・直流型# 2・・・・半導体スイッチング素
子、 3・・・・ブラシレスモー久 4・・・・電機子
巻線5・・・・磁石回転子、 6・・・・電流検出素子
、 7・・・・パルス幅変調手洗 8・・・・電流変換
手段、 9・・・・座標変換手段、 10・・・・演算
手段、 11・・・・回転数指令手取 12・・・・磁
束指令手段、 13・・・・起動指令量比 代理人の氏名 弁理士 粟野重孝 はか1名第1図 a漬電漕 午@捧スイッ子ン2g1子 づうシしスt−9 電蝕テ瞥締 磁石回転子 宝 士 ?! 記 乎 殿 lぐルヌを轟寥訓手設 電流食ゆ手段 度 憬 ! ゆ 手 6 ffi11号役 回転歓■1釜号核 磁φ指9亨6 起h1藁嘗乎段
Fig. 1 is a configuration diagram of an embodiment of the present invention. Fig. 2 is an explanatory diagram showing the positional relationship between the rotor and the armature winding. , 3... Brushless motor 4... Armature winding 5... Magnet rotor, 6... Current detection element, 7... Pulse width modulation hand wash 8... Current conversion means, 9...Coordinate conversion means, 10...Calculation means, 11...Rotation speed command take-off 12...Magnetic flux command means, 13...Start command amount ratio agent Name Patent attorney Shigetaka Awano 1 person Figure 1 a Soaked electric row @ dedicated switch 2g 1 child t-9 Electrolytic erosion Tetsubetsu tightening magnet rotor treasurer ? ! In this article, I will teach you how to use the power to eat electricity! Yu hand 6 ffi No. 11 role rotating kan ■ 1 kettle No. nuclear magnet φ finger 9 hen 6 Ki h 1 straw change stage

Claims (1)

【特許請求の範囲】[Claims] 磁石回転子および電機子巻線を有するブラシレスモータ
の一次磁束を所定の値に保ちながら電機子巻線電流を三
相のうち二相以上検出し、前記検出信号を回転磁界と同
期して回転する座標系の軸方向成分に各々分解して得ら
れる信号成分のうち一方のトルクに比例する信号成分に
よって磁石回転子と電機子巻線の相差角を推定して回転
子位置検出を行ない前記ブラシレスモータの転流信号を
生成するブラシレスモータの駆動方法。
While maintaining the primary magnetic flux of a brushless motor having a magnet rotor and an armature winding at a predetermined value, armature winding current is detected in two or more of the three phases, and the detection signal is used to rotate in synchronization with the rotating magnetic field. The brushless motor detects the rotor position by estimating the phase difference angle between the magnet rotor and the armature winding using a signal component proportional to the torque of one of the signal components obtained by decomposing the coordinate system into axial components. A method of driving a brushless motor that generates a commutation signal.
JP2207434A 1990-08-03 1990-08-03 Driving method of brushless motor Pending JPH0491693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2207434A JPH0491693A (en) 1990-08-03 1990-08-03 Driving method of brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207434A JPH0491693A (en) 1990-08-03 1990-08-03 Driving method of brushless motor

Publications (1)

Publication Number Publication Date
JPH0491693A true JPH0491693A (en) 1992-03-25

Family

ID=16539705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207434A Pending JPH0491693A (en) 1990-08-03 1990-08-03 Driving method of brushless motor

Country Status (1)

Country Link
JP (1) JPH0491693A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050992A1 (en) * 2000-12-18 2002-06-27 Nagoya Industrial Science Research Institute Control method for synchronous motor
WO2014034291A1 (en) 2012-08-30 2014-03-06 ダイキン工業株式会社 Electric motor control device
WO2014069188A1 (en) 2012-10-31 2014-05-08 ダイキン工業株式会社 Method for controlling primary magnetic flux

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050992A1 (en) * 2000-12-18 2002-06-27 Nagoya Industrial Science Research Institute Control method for synchronous motor
WO2014034291A1 (en) 2012-08-30 2014-03-06 ダイキン工業株式会社 Electric motor control device
US9479100B2 (en) 2012-08-30 2016-10-25 Daikin Industries, Ltd. Electric motor controller
WO2014069188A1 (en) 2012-10-31 2014-05-08 ダイキン工業株式会社 Method for controlling primary magnetic flux
RU2606637C2 (en) * 2012-10-31 2017-01-10 Дайкин Индастриз, Лтд. Method of controlling primary magnetic flux
US10110150B2 (en) 2012-10-31 2018-10-23 Daikin Industries, Ltd. Primary magnetic flux control method

Similar Documents

Publication Publication Date Title
Bolognani et al. Extended-range PMSM sensorless speed drive based on stochastic filtering
MacMinn et al. Application of sensor integration techniques to switched reluctance motor drives
US6002234A (en) System and method for controlling brushless permanent magnet motors
EP0535281B1 (en) Apparatus for a universal field oriented controller for an induction machine
CN103684209B (en) The control device of permanent magnet synchronous motor and possess the control system of this control device
AU2002224030B2 (en) Synchronous motor control method and device
US6528966B2 (en) Sensorless vector control apparatus and method thereof
JP2003284389A (en) Drive unit for stepping motor
JPS5915478B2 (en) Method and device for driving an alternating current motor
WO2021061407A1 (en) Bldc motor controller/driver
JPH11113289A (en) Controller for position control motor
JPH0491693A (en) Driving method of brushless motor
Kadjoudj et al. Modified direct torque control of permanent magnet synchronous motor drives
Majeed Sensorless field oriented control of induction motor drive using extended Kalman Filter (EKF)
JPS598155B2 (en) Control circuit of inverter device
JP2778816B2 (en) Sensorless spindle motor control circuit
JPH03235695A (en) Method and apparatus for starting brushless motor
Daud et al. DSP based simulator for field oriented control of the surface permanent magnet synchronous motor drive
CN107482965A (en) The control device of synchronous motor
JP3293590B2 (en) High voltage drive brushless motor
JPH05122983A (en) Controller for permanent magnet motor
JPH07250496A (en) Induction motor controller
JPH1118498A (en) Controller for servo motor
JP3782693B2 (en) Synchronous motor system, gas turbine system, and method of adjusting synchronous motor system
Zhang et al. Study on the Vector Control Method of IM for Variable Speed Drive Based on DSP