JPH0491677A - Supersonic motor - Google Patents

Supersonic motor

Info

Publication number
JPH0491677A
JPH0491677A JP2206242A JP20624290A JPH0491677A JP H0491677 A JPH0491677 A JP H0491677A JP 2206242 A JP2206242 A JP 2206242A JP 20624290 A JP20624290 A JP 20624290A JP H0491677 A JPH0491677 A JP H0491677A
Authority
JP
Japan
Prior art keywords
piezoelectric element
vibrator
mechanical energy
electro
energy conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2206242A
Other languages
Japanese (ja)
Inventor
Ichiro Okumura
一郎 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2206242A priority Critical patent/JPH0491677A/en
Publication of JPH0491677A publication Critical patent/JPH0491677A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enable the agreement of each peculiar frequency by the flexural vibration of a piezoelectric element by forming electrodes in parts, respectively, on one side, corresponding to each region, and stacking piezoelectric elements so that the boundary regions of the electrodes corresponding to each polarizing region may agree with each other. CONSTITUTION:For electric-mechanical energy conversion elements (piezoelectric element plates) 3 and 4, polarizing regions, which are polarized in different directions, are made in pairs, and also electrodes a and b are formed in parts on one side each, respectively, corresponding to each region, and the piezoelectric element plates 3 and 4 are stacked so that the boundary regions of the electrodes a and b corresponding to each polarizing region may agree with each other. In the electrode part of the piezoelectric element plate 3 or 4, insulating parts d are provided in the directions of x axis and y axis, so the rigidities becomes equal regarding the flexure within the z-x face or within the z-y face. Hereby, the peculiar frequencies of each flexural vibration by both piezoelectric elements 3 and 4 can be agreed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電磁力によらず機械的動力を発生するモータ、
即ち、弾性体に設けられた圧電素子に電気エネルギーを
供給することにより、弾性体に機械的振動を励起し、振
動子の表面に円又は楕円運動させることで振動子に押圧
した移動体を摩擦駆動させる超音波モータに関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a motor that generates mechanical power without relying on electromagnetic force;
That is, by supplying electrical energy to a piezoelectric element provided on an elastic body, mechanical vibrations are excited in the elastic body, causing circular or elliptical movement on the surface of the vibrator, thereby causing friction on the moving body pressed against the vibrator. This invention relates to an ultrasonic motor to be driven.

[従来の技術] 従来、超音波モータとしては、円環形状の振動弾性体に
曲げ進行波を起こし、摩擦力により該弾性体に接触する
移動体を回転駆動させるタイプのものや、円板にたわみ
進行波を起こし、同様に回転駆動させるタイプのものが
実用化されている。
[Prior Art] Conventionally, ultrasonic motors include those that generate bending traveling waves in an annular vibrating elastic body and use frictional force to rotate a moving body that contacts the elastic body; A type that generates a flexural traveling wave and similarly drives rotation has been put into practical use.

一方、棒状振動子に2方向の曲げ振動を起こし、振動子
に接触する移動体を駆動する方式の棒状超音波モータも
提案されている。
On the other hand, a rod-shaped ultrasonic motor has also been proposed in which a rod-shaped vibrator causes bending vibration in two directions to drive a moving body that comes into contact with the vibrator.

第3図は従来の棒状超音波モータの分解斜視図である。FIG. 3 is an exploded perspective view of a conventional rod-shaped ultrasonic motor.

1は先端部の小径軸部1aと後端部の大径軸部1bとの
間に径が先端部に向は漸減するホーン形状のホーン部I
Cを形成した金属丸棒からなる振動体、2は振動体1の
大径軸部1bと同径の外径に形成された軸心にボルト通
し孔を有する金属丸棒からなる押え体、3及び4は大径
軸部1bと同径の外径に形成された円環形状の圧電素子
板、5は圧電素子板3,4の電極板で、振動体1と押え
体2との間に、電極板5を挟むようにして圧電素子板3
.4を配し、ボルト6により押え体2を振動体1に固定
することにより、圧電素子板3.4を振動体1と押え体
2との間に固定して、振動体Aを構成している。ボルト
6はその頭部が円環状の絶縁体7を介して押え体2に接
し、且つ軸部が圧電素子板3.4及び電極板5と非接触
状態に保持されている。
1 is a horn-shaped horn portion I whose diameter gradually decreases toward the tip between a small-diameter shaft portion 1a at the tip and a large-diameter shaft portion 1b at the rear end.
2 is a vibrating body made of a metal round bar formed with C; 2 is a presser body made of a metal round bar having an outer diameter the same as the large diameter shaft portion 1b of the vibrating body 1; and 3 has a bolt through hole at its axis; and 4 is an annular piezoelectric element plate formed to have the same outer diameter as the large diameter shaft portion 1b; 5 is an electrode plate of the piezoelectric element plates 3 and 4; , piezoelectric element plate 3 with electrode plate 5 sandwiched therebetween.
.. 4, and by fixing the presser body 2 to the vibrating body 1 with bolts 6, the piezoelectric element plate 3.4 is fixed between the vibrating body 1 and the presser body 2, thereby forming the vibrating body A. There is. The head of the bolt 6 is in contact with the presser body 2 via the annular insulator 7, and the shaft portion is held in a non-contact state with the piezoelectric element plate 3.4 and the electrode plate 5.

圧電素子板3,4は、片面側に分極方向が互いに異なり
、且つ厚み方向に分極された2つの電極(+電極層、−
電極b)が中心軸線位置に形成された絶縁部dの両側に
対称に形成されると共に、他面側に生電極a、−電極す
の共通電極Cが形成されていて、振動子Aの軸線に対し
て互いに位置的位相が90゛の角度ずれて配置されてい
る。なお、圧電素子板30分&IE極(+電極層、−電
極b)は導電体である振動体1の後端面に接し、また圧
電素子板4は導電体である押え体2の前輪面に接してい
る。
The piezoelectric element plates 3 and 4 have two electrodes (+ electrode layer, -
Electrodes b) are formed symmetrically on both sides of the insulating part d formed at the central axis position, and a common electrode C for the raw electrodes a and -electrodes is formed on the other side, and the axis of the vibrator A is They are arranged with a 90 degree angle shift in positional phase from each other. Note that the piezoelectric element plate 30 min & IE electrode (+ electrode layer, - electrode b) is in contact with the rear end surface of the vibrating body 1 which is a conductor, and the piezoelectric element plate 4 is in contact with the front wheel surface of the presser body 2 which is an electric conductor. ing.

そして、1i8i板5と振動子1との間に交流電圧v1
を、また電極板5と押え体2との間に交流電圧V、を印
加することにより、圧電素子板3の厚み方向における伸
縮変位による振動と、圧電素子板4の厚み方向における
伸縮変位による振動との合成により振動子Aを振動させ
る。
Then, an AC voltage v1 is applied between the 1i8i plate 5 and the vibrator 1.
Also, by applying an AC voltage V between the electrode plate 5 and the presser body 2, vibrations due to expansion and contraction displacement in the thickness direction of the piezoelectric element plate 3 and vibrations due to expansion and contraction displacement in the thickness direction of the piezoelectric element plate 4 are generated. The oscillator A is made to vibrate by combining with .

交流電圧V、と交流電圧■2とは、第4図に示すように
、振幅及び周波数が共に同じで、時間的位相が90”の
ずれを有している。
As shown in FIG. 4, the AC voltage V and the AC voltage 2 have the same amplitude and frequency, but have a temporal phase shift of 90''.

したがって、振動子Aは、軸心を中心とし、円運動を行
うことになる。8は移動体で振動体1のホーン部1cに
押圧され、振動体7から摩擦力を受けて回転する。この
摩擦、駆動のメカニズムは本発明と本質的にに関わるこ
とではないので説明を省略する。
Therefore, the vibrator A performs circular motion around the axis. Reference numeral 8 denotes a moving body that is pressed by the horn portion 1c of the vibrating body 1 and rotates under the frictional force from the vibrating body 7. The mechanism of this friction and drive is not essentially related to the present invention, so a description thereof will be omitted.

[発明が解決しようとする課題] ところで、このような超音波モータにおいて、圧電素子
板の構造から以下に述べるような問題があった。
[Problems to be Solved by the Invention] Incidentally, such an ultrasonic motor has the following problems due to the structure of the piezoelectric element plate.

圧電素子板3.4は第5図に示すように、夫夫その前後
両面に電極層(図中外周面を黒く塗りつぶしている)を
形成しており、前側の電極層はその直径部に電極を形成
しない絶縁部dが設けられ、圧電素子板3の絶縁部dは
y軸方向に、圧電素子板4の絶縁部dはX軸方向に設け
られている。これらの絶縁部dは、圧電素子板3.4を
電極板5を挟んで積層した状態において空隙となるため
、振動子が曲げ振動を起こした場合でも応力がゼロとな
る。
As shown in Fig. 5, the piezoelectric element plate 3.4 has electrode layers formed on both its front and rear surfaces (the outer peripheral surface is filled in black in the figure), and the front electrode layer has an electrode layer on its diameter. An insulating portion d that does not form a piezoelectric element plate 3 is provided in the y-axis direction, and an insulating portion d of the piezoelectric element plate 4 is provided in the x-axis direction. These insulating portions d become voids when the piezoelectric element plates 3.4 are stacked with the electrode plates 5 in between, so that stress becomes zero even when the vibrator undergoes bending vibration.

すなわち、圧電素子板3によるz−x面内の曲げ振動に
関しては、X方向に空隙のある圧電素子板4の電極部で
の剛性の方が、X方向に空隙のある圧電素子板3の電極
部での剛性より低くなる。また、逆に圧電素子板4によ
るz−y面内の曲げ振動に関しては、X方向に空隙のあ
る圧電素子板3の電極部での剛性の方が、X方向に空隙
のある圧電素子板4の電極部での剛性より低くなる。
That is, regarding the bending vibration in the z-x plane caused by the piezoelectric element plate 3, the rigidity of the electrode part of the piezoelectric element plate 4 having a gap in the X direction is higher than that of the electrode part of the piezoelectric element plate 3 having a gap in the X direction. The stiffness is lower than that at the end. Conversely, regarding bending vibration in the z-y plane caused by the piezoelectric element plate 4, the rigidity at the electrode part of the piezoelectric element plate 3 with a gap in the X direction is higher than that of the piezoelectric element plate 4 with a gap in the X direction. The rigidity is lower than that of the electrode section.

z−x面内の曲げとz−y面内の曲げでは、それぞれに
剛性の小さくなる部分が存在するが、2座標での位置が
異る。従ってZ−X面内の曲げとz−y面内の曲げのモ
ードが異なり、固有振動数も違ってしまう。
Bending in the z-x plane and bending in the z-y plane each have a portion where the rigidity is reduced, but the positions on the two coordinates are different. Therefore, the modes of bending in the Z-X plane and bending in the Z-y plane are different, and the natural frequencies are also different.

このような状態で交流電圧V 、、 V 2をどのよう
な周波数に設定しても、z−x面内の曲げとz−y面内
の曲げの両者が共に共振振動とはならない。このため、
振動子Aは円運動とならず、ロータを回転駆動させるに
は餘わめて非効率であった。
No matter what frequency the AC voltages V, V2 are set in such a state, both the bending in the z-x plane and the bending in the zy plane will not result in resonant vibration. For this reason,
The vibrator A did not move in a circular motion, and was extremely inefficient in rotating the rotor.

本発明は、このような従来の問題を解決し、圧電素子板
の絶縁空隙に起因する固有振動数の不一致をなくし、モ
ータ効率を向上させることができる超音波モータを提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ultrasonic motor that solves these conventional problems, eliminates the mismatch in natural frequencies caused by the insulation gap of the piezoelectric element plate, and improves motor efficiency.

[課題を解決するための手段] 本発明の目的を実現するための構成は、棒状弾性体に、
片面に分割された電極を有し厚み方向に伸縮する電気−
機械エネルギー変換素子を積層配置してなる振動子にお
ける該電気−機械エネルギー変換素子に交流電界を印加
することにより、該振動子に同形の屈曲モートの振動を
異なる複数の平面内に適当な位相差を持たせて励起させ
、以て該振動子の表面粒子に円又は楕円運動を行なわし
め、該振動子の摺動面に押圧した移動体を摩擦駆動する
超音波モータにおいて、該電気−機械エネルギー変換素
子は、異なる方向に分極処理された分極領域を対をなし
て形成すると共に、これら各領域に対応して片面側に夫
々電極を分割形成し、各分極領域に対応する電極の境界
領域が合致するように電気−機械エネルギー変換素子を
積層したことを特徴とする超音波モータにある。
[Means for Solving the Problem] A configuration for realizing the object of the present invention includes a rod-shaped elastic body,
Electricity that expands and contracts in the thickness direction with electrodes divided on one side.
By applying an alternating current electric field to the electro-mechanical energy converting elements in a vibrator formed by laminating mechanical energy converting elements, the vibrations of the bending motes of the same shape are adjusted to an appropriate phase difference in a plurality of different planes. In an ultrasonic motor, the electro-mechanical energy The conversion element has a pair of polarized regions polarized in different directions, and electrodes are formed separately on one side corresponding to each region, so that the boundary region of the electrode corresponding to each polarized region is The present invention provides an ultrasonic motor characterized in that electro-mechanical energy conversion elements are laminated so as to match each other.

[作   用コ 上記した構成の超音波モータは、積層される圧電素子等
の電気−機械エネルギー変換素子の機械的形状、機械的
物性値を、例えば90度回転対称とすることができ、双
方の圧電素子による各曲げ振動の固有振動数を一致させ
ることができる。
[Function] The ultrasonic motor having the above configuration can make the mechanical shape and mechanical properties of the stacked electro-mechanical energy conversion elements such as piezoelectric elements, for example, 90 degrees rotationally symmetrical. The natural frequencies of each bending vibration caused by the piezoelectric element can be matched.

[実 施 例] 第1図及び第2図は本発明による超音波モータの一実施
例も示している。
[Embodiment] FIGS. 1 and 2 also show an embodiment of an ultrasonic motor according to the present invention.

本実施例において、従来例と異なるところは、圧電素子
板3,4の前面側に設けた電極構造のみで、他の構造お
よび駆動電圧V、、V、の印加方法も同様である。
This embodiment differs from the conventional example only in the electrode structure provided on the front side of the piezoelectric element plates 3 and 4, and the other structures and the method of applying the driving voltages V, , V, are the same.

本実施例の圧電素子板3.4は共に同一の構造を有し、
直交する直径部に平面十字形状の絶縁部dを設け、4等
分された領域に(+)の分極部と(−)の分極部とを夫
々隣接して2つの領域に設け、夫々(+)の電極aと(
−)の電極すをその全面に設けている。そして、圧電素
子板3と圧電素子板4とは90”のずれを有して配置さ
れる。
The piezoelectric element plates 3.4 of this embodiment both have the same structure,
An insulating part d having a planar cross shape is provided at orthogonal diameter parts, and a (+) polarized part and a (-) polarized part are provided in two adjacent regions in each of the four equally divided regions. ) and electrode a of (
-) electrodes are provided on the entire surface. The piezoelectric element plate 3 and the piezoelectric element plate 4 are arranged with a deviation of 90''.

すなわち、第2図の圧電素子積層部の組立拡大図に示す
如く、圧電素子板3の電極部においても、又圧電素子板
4の電極部においても、絶縁部dがX軸方向とX軸方向
に設けられているため、Z−X面内の曲げに関しても、
z−y面内の曲げに関しても剛性が等しく、それぞれの
固有振動数は一致する。
That is, as shown in the assembled enlarged view of the piezoelectric element laminated portion in FIG. Since it is provided in the
The rigidity is also the same for bending in the zy plane, and the natural frequencies of each are the same.

第6図は、本発明によるモータを使用して光学レンズの
鏡筒を駆動する場合の構成例である。
FIG. 6 shows an example of a configuration in which a motor according to the present invention is used to drive an optical lens barrel.

12は移動体8と同軸的に接合された歯車で、回転出力
を歯車13に伝達し、歯車13と噛み合う歯車をもった
鏡筒14を回転させる。
A gear 12 is coaxially connected to the moving body 8 and transmits rotational output to the gear 13 to rotate a lens barrel 14 having a gear that meshes with the gear 13.

移動体8および鏡筒14の回転位置、回転速度を検出す
るために、光学式エンコーダスリット板15か歯車13
と同軸に配置され、フォトカプラ16で位置、速度を検
出する。
In order to detect the rotational position and rotational speed of the moving body 8 and the lens barrel 14, an optical encoder slit plate 15 or a gear 13 is used.
The position and speed are detected by a photocoupler 16.

[発明の効果] 以上説明してきたように、本発明によれば、積層される
駆動用の電気−機械エネルギー変換素子、例えば圧電素
子の曲げ振1による各固有振動数を一致させることがで
きるようになり、モータの駆動効率を向上させることか
できるといった効果が得られる。
[Effects of the Invention] As described above, according to the present invention, it is possible to match each natural frequency due to bending vibration 1 of stacked drive electro-mechanical energy conversion elements, for example, piezoelectric elements. This results in the effect that the driving efficiency of the motor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超音波モータの一実施例を示す分
解斜視図、第2図(a)は圧電素子板の積層状態を示す
拡大斜視図、同図(b)、(C)は圧電素子板の平面図
を示している。第3図は従来の超音波モータの分解斜視
図、′s4図はその電圧印加波形図、第5図はその圧電
素子板の積層状態を示す拡大斜視図、第6図は超音波モ
ータを用いた装置の概略図である。 1・・・振動弾性体   2・・・押え体3.4・・・
圧電素子板 5・・・電極板6・・・ボルト     
7・・・絶縁体8・・・ロータ a・・・中電極     b・・・−電極C・・・共通
電極    d・・・電極絶縁部他4名 第2図
FIG. 1 is an exploded perspective view showing an embodiment of an ultrasonic motor according to the present invention, FIG. 2(a) is an enlarged perspective view showing a laminated state of piezoelectric element plates, and FIGS. A plan view of the element plate is shown. Fig. 3 is an exploded perspective view of a conventional ultrasonic motor, Fig. 4 is a voltage application waveform diagram, Fig. 5 is an enlarged perspective view showing the laminated state of the piezoelectric element plates, and Fig. 6 is an exploded perspective view of a conventional ultrasonic motor. FIG. 1... Vibration elastic body 2... Presser body 3.4...
Piezoelectric element plate 5... Electrode plate 6... Bolt
7...Insulator 8...Rotor a...Medium electrode b...-Electrode C...Common electrode d...Electrode insulator and 4 others Figure 2

Claims (1)

【特許請求の範囲】 1 棒状弾性体に、片面に分割された電極を有し厚み方
向に伸縮する電気−機械エネルギー変換素子を積層配置
してなる振動子における該電気−機械エネルギー変換素
子に交流電界を印加することにより、該振動子に同形の
屈曲モードの振動を異なる複数の平面内に適当な位相差
を持たせて励起させ、以て該振動子の表面粒子に円又は
楕円運動を行なわしめ、該振動子の摺動面に押圧した移
動体を摩擦駆動する超音波モータにおいて、 該電気−機械エネルギー変換素子は、異な る方向に分極処理された分極領域を対をなして形成する
と共に、これら各領域に対応して片面側に夫々電極を分
割形成し、各分極領域に対応する電極の境界領域が合致
するように電気−機械エネルギー変換素子を積層したこ
とを特徴とする超音波モータ。 2 請求項1において、積層される電気−機械エネルギ
ー変換素子は、重なり合う分極領域が、同方向の分極領
域と、異方向の分極領域との組み合わせが夫々対をなし
ていることを特徴とする超音波モータ。 3 請求項1又は2に記載の超音波モータを含む装置に
おいて、振動子に押圧されて摩擦駆動される部材から駆
動力を得る出力部材を有することを特徴とする装置。
[Scope of Claims] 1. In a vibrator in which an electro-mechanical energy conversion element having an electrode divided on one side and expanding and contracting in the thickness direction is stacked on a rod-shaped elastic body, an alternating current is applied to the electro-mechanical energy conversion element. By applying an electric field, the vibration of the same bending mode is excited in the vibrator with an appropriate phase difference in a plurality of different planes, thereby causing the surface particles of the vibrator to perform circular or elliptical motion. In an ultrasonic motor that frictionally drives a movable body pressed against the sliding surface of the vibrator, the electro-mechanical energy conversion element forms a pair of polarized regions polarized in different directions, and An ultrasonic motor characterized in that electrodes are formed separately on one side corresponding to each of these regions, and electro-mechanical energy conversion elements are stacked so that the boundary regions of the electrodes corresponding to each polarization region match. 2. In claim 1, the stacked electro-mechanical energy conversion element is characterized in that the overlapping polarized regions are pairs of polarized regions in the same direction and polarized regions in different directions. sonic motor. 3. A device including the ultrasonic motor according to claim 1 or 2, further comprising an output member that obtains a driving force from a member that is pressed by a vibrator and driven by friction.
JP2206242A 1990-08-03 1990-08-03 Supersonic motor Pending JPH0491677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2206242A JPH0491677A (en) 1990-08-03 1990-08-03 Supersonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2206242A JPH0491677A (en) 1990-08-03 1990-08-03 Supersonic motor

Publications (1)

Publication Number Publication Date
JPH0491677A true JPH0491677A (en) 1992-03-25

Family

ID=16520100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2206242A Pending JPH0491677A (en) 1990-08-03 1990-08-03 Supersonic motor

Country Status (1)

Country Link
JP (1) JPH0491677A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661764A1 (en) * 1993-12-27 1995-07-05 Canon Kabushiki Kaisha Vibration wave actuator
KR100233636B1 (en) * 1995-04-28 1999-12-01 미다라이 후지오 An electro-mechanical energy conversion element and a vibration wave actuator using that
KR100965433B1 (en) * 2008-04-03 2010-06-24 한국과학기술연구원 Omni-directional linear piezoelectric ultrasonic motor
TWI393534B (en) * 2007-01-23 2013-04-21 Shimano Kk Double bearing reel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661764A1 (en) * 1993-12-27 1995-07-05 Canon Kabushiki Kaisha Vibration wave actuator
US6051911A (en) * 1993-12-27 2000-04-18 Canon Kabushiki Kaisha Vibration wave actuator
KR100233636B1 (en) * 1995-04-28 1999-12-01 미다라이 후지오 An electro-mechanical energy conversion element and a vibration wave actuator using that
TWI393534B (en) * 2007-01-23 2013-04-21 Shimano Kk Double bearing reel
KR100965433B1 (en) * 2008-04-03 2010-06-24 한국과학기술연구원 Omni-directional linear piezoelectric ultrasonic motor

Similar Documents

Publication Publication Date Title
JP3118251B2 (en) Ultrasonic driving device and method
JP2996483B2 (en) Vibration type motor
JPS59110389A (en) Vibration wave motor
JPH0117354B2 (en)
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPS6013481A (en) Vibration wave motor
JPH01129782A (en) Ultrasonic motor
JPH0491677A (en) Supersonic motor
JPS61224880A (en) Vibration wave motor
JPS6149670A (en) Cantilever beam-shaped supersonic twisted elliptical vibrator
JP3118252B2 (en) Ultrasonic vibrating device and method, and driving device and method using the same
JP2568707B2 (en) Ultrasonic motor
JPS60183981A (en) Supersonic wave motor
JP2996494B2 (en) Vibration type motor device
JP2971971B2 (en) Ultrasonic actuator
JPH09271187A (en) Vibrator for ultrasonic actuator
JPH0681523B2 (en) Vibration wave motor
JPH0491667A (en) Bar-shaped supersonic motor
JPS60226782A (en) Supersonic wave motor
JPS60207466A (en) Supersonic motor
JP2995665B2 (en) Ultrasonic motor
JPS6389078A (en) Osclllatory-wave motor
JPS60207468A (en) Supersonic motor
JPS63294280A (en) Piezoelectric driving device
JPH0744855B2 (en) Ultrasonic motor